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PROOF ROUTINES FOR THE PROPOSITIONAL CALCULUS

HUGUES LEBLANC

I prove in the pages that follow a conjecture of mine, to wit:

Any metastatement of the form

Av Λ

2> Άn h B,

where Aχ, A2, . . . , An(n > 0), and B are tuffs of PC and f | - ' is the customary
yields sign, is provable, when valid, by means of the three structural rules
in Table I and the intelim rules in Table I for such of the connectives %nJ,
%y, '&', V , and '= ' as occur in Aχ9 A2, . . . , An \- B,

and sketch a routine for proving Aχ9 A2, . . . , An \- B, when valid, for each
one of the 32 cases covered by the conjecture.1 I also discuss a related
conjecture of mine concerning the intuitionist fragment of PC.

My thanks go to Nuel D. Belnap, Jr., who should be credited for some
of the results of Section II, and to Henry Hiz and Michael D. Resnik, who
read an earlier version of the paper.

I

Let all five of W , *D\ *&', V , and *=* be elected to serve as the
primitive connectives of PC; let Ά', 'B*, *C', and <D> be elected to range
over the well-formed formulas (wffs) of PC; let a metastatement of the form
Aι9 A2, . . . , An \- β, called for short a T-statement, be rated valid if, in
case n = 0, B is satisfied by any assignment of truth-values to the propo-
sitional variables occurring in B, or, in case n > 0, B is satisfied by any
assignment of truth-values to the propositional variables occurring in Λχ,
i42, . . . , An, and B which simultaneously satisfies Aί9 A2, . . . , and An;
let a T-statement be rated provable if it is the last entry in a finite column
of T-statements each one of which is of the form R in Table I or follows
from one or more previous T-statements in the column by application of one
of the remaining rules in Table I; and, finally, let a T-statement be rated
provable by means of the structural rules in Table I (to be collectively re-
ferred to as S) and zero or more of the intelim rules in Table I if it is the
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last entry in a finite column of T-statements each one of which i s of the

form R or follows from one or more previous T-statements in the column by

application of E, P, or one of the intelim rules in question.

TABLE I

Structural rules:

R: A \- A;

E: // Aχ, A2, . . . ,An \- B, then At, A,, . . . ,An+1 \- B;

P: // Aχ, A2, . . . ,A^+i \- B, then Aχ, A2, . . . , A{_t, Ai+1, A{, A{+1, . . . ,

An+2 (- B, where i <_n + I.

Intelim rules for ' ~ ' 'D', '&', V , and '=':

Nl: // (1) Aιt A2, . . . ,An+i \- B and (2) Aί, A2, . . . , An+ι \- ~ β , then

Ai> At> • • ' An h ~ An+S

NE: // Ax, A2, . . . ,An\-' B, then Aχ, At, . . . , An \- B;

HI: // Aι, A2, . . . , An+l \- B, then At, A2, . . . , An \- An+1 D B;

HE: // (1) A17A2,...,An\-BDC and (2) Aχ, A2, . . . , An\- (B D D)D B,

then A,, A2, . . . , An \- C;

Cl: // (1) Aιt A l t . . . , A n \ - B and (2) Aι, Ai, . . . , An \- C, then A1?

A2, . . . , An \- B & C;

CE: // (1) \ , A2, . . . ,An \- B & C and (2) A,, A2, . . . , An, B, C \- D,

thenA^ A2, . . . , An\- D;

Dl: // Aιt A2, . . . , An \- B, then (1) Λ,, A2, . . . , An \- B v C and (2) A,,

A2,...,An\- CvB;

DE: // (1) Alt A 2 , . . . , A n \ - B w C, (2) A,, A2, . . . , An, B \- D, and

(3) A,, A2,...,An,C\- D, then Aιt A%, . . . , An \- D;

Bl: // (1) Aχ, A2, . . . ,An, B \- C and (2) Aχ, A2, . . . , An, C \- B, then

A1,A2,...,An\-B^C;

BE: // (1) A l ? A2, . . . ,An\- B and (2) either Ax, A2, . . . , An μ (D = B) =

(D = C) or At, A2, . . . , A n h (D = C) = (D = B), then Aιt Aa, . . . , An

\-C.

It is easily shown that:

Tl: // Aχ, Λ2, . . . JΛn )- B is provable, then Aχ, A2, . . . , An \- B is valid.

I shall accordingly leave this matter to the reader and restrict myself to

proving—as announced before—the following theorem:

T2: // AχJ A2, . . . , An \- B is valid, then Ax, A2, . . . , An \- B is provable

by means of S and the intelim rules for such of the connectives *^J', 'I)',

'&', 'v', and ' = ' as occur in Alf A2, . . . , An \- B,
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from which the converse of Tl, namely:

T3: // Aι9 A2, . . . ,An \- B is valid, then Aί9 A2, . . . , An \- B is provable,

trivially follows.

Of theorems T2 and T3, the second still holds when the elimination
rules for ' 3 ' and *=' are phrased in the more traditional fashion:

HE 1 : // (1) Aχ, Λ2, . . . , An μ B and (2) Al7 A2, . . . , An \- B D C, then

Ay, A2, . . . , An \- C,

and

BE 1 : // (1) Aι9 A2, . . . , An μ B and (2) either Al9 A2, . . . , An μ B = C or

Aχ, A2, . . . , An μ C = β, then Aχ, A2, . . . , An [- C.

The first, however, fails, as I shall establish in Section IV.

II

I address myself in this section to the cases where Aχ9 A2, . . . , An \- B
exhibits no connective (Case 1) and to the 15 cases, reduced by various in-
ductions to Case 1, where Aί9 A2, . . . , An μ B exhibits any one, any two,
any three, or all four of the connectives *3', '&*, 'v', and '= ' . The condi-
tions under which a. wff of PC is said in the proof of Case 6 to be in con-
junctive normal form and the routine employed to put a wff of PC in con-
junctive normal form need no rehearsing here. As for the conditions under
which an occurrence of a connective in a wff of PC is said in the proofs of
Cases 2-3 and Cases 7-10 to be either nested or unnested, they read: Let
A be a wff of PC of one of the four forms B 3 C, B & C, B v C, and B = C;
then (1) every occurrence {if any) of ' 3 ' , '&', V , or '= ' in B or in C is a
nested occurrence of that connective, and (2) every occurrence {if any) of
' 3 ' , *&', *v', or '=' in A that is not nested is unnested.

Case 1: No connective occurs in Aί9 A2, . . . , An \- B.

Proof: Suppose Aι9 A2, . . . , A \- B is valid. Then there is bound
to be an i such that Ai is β , 4 in which case Aχ9 A2, . . . , An μ β follows
from β μ β (= R) by means of E and P. Hence T2.

Case 2: The only connective that occurs in Aι9 A2, . . . , An μ B is '3*.

Proof: (a) by induction on p, the number of occurrences of '3* in β,
(b) when p = 0, by induction on q, the number of nested occurrences of '3*
in Aί9 A2, . . . , and An, and (c) when q = 0, by induction on the number of
unnested occurrences of '3* in Aχ, A2, . . . , and An.

Step 1: p = 0.

Step 1.1: q = 0. Suppose Aχ9 A2, . . . , An μ β is valid. Then (1) there is
bound to be an i such that A^ is β, in which case

Aι,A1,...,Aj_ι,Aj+ι,...,An\- B, (2.1)
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where A (/ < i or / > i) i s the left-most one of Aχ, A2, . . . , and An to ex-

hibit an occurrence of 'I)', is valid and hence—in view of Case 1 or of the

hypothesis of induction—provable by means of S, HI, and HE, or (2) there

is bound to be an i and there is bound to be a / (/ < i or > ΐ) such that Ai

is A D Ai , in which case

A ί , A 1 , . . . , A ί _ ι , A i i , A ί + ι , . . . , A n y B (2.2)

is valid and hence—in view of Case 1 or of the hypothesis of induction-

provable by means of S, HI, and HE. 5 But Aχ, A2, . . . , An \- B follows

from (2.1), in one case, by means of S and from (2.2), in the other, by means

of S, HI, and HE. Hence T2.

Step 7.2: q > 0. Then there is bound to be an i such that Az i s of one of the

two forms (Ai 3 A. ) 3 A? and Ai D (Ai D Aχ ). Now suppose Aιf A2, . . . ,

An \- B is valid and Ai is of the form (A{ D A{ ) D A{ . Then both

* i . \> • • ' Ai-s \> \ D \> A M ' ->>>An\-B (2.3)

and

A1,A1,...,Ai_ι,Ai3,Ai+l,...,An[- B (2.4)

are bound to be valid and hence—in view of the hypothesis of induction-

provable by means of S, HI, and HE. Or suppose AχJ A2, . . . , An |— B is

valid and A{ i s of the form A{ D (A{ D A{ ). Then both

\> AΛ,... , A ^ , A^ J A 3 , A.+1, . . . , An μ β (2.5)

and

\ > \ > - - - > A i - ί ' \ => \ > Ai+i> •••>An\-B < 2 6>

are bound to be valid and hence—in view of the hypothesis of induction-

provable by means of S, HI, and HE. But Aχ, A2, . . . , An \- B follows

from (2.3) - (2.4) in one case and from (2.5) - (2.6) in the other by means of

the said rules. Hence T2.

Step 2: p > 0. Then B is bound to be of the form Bx D B2. Now suppose

Aι9 A2, . . . , An (- B is valid. Then

A l f A2, . . . , An, Bx h B2 (2.7)

is bound to be valid and hence—in view of Case 1 or of the hypothesis of

induction—provable by means of S, HI, and HE. But AJL, A2, . . . , An (- B

follows from (2.7) by means of the said rules. Hence T2.^

Case 3: The only two connectives that occur in Aι9 A2, . . . , AΛ f- B are

<D9 and *&'.

Proof: (a) by induction on p, the number of occurrences of fD' and c&*

in β, (b) when p = 0, by induction on q, the number of nested occurrences
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of '3* and '&' in A , A2, . . . , and An, and (c) when q — 0, by induction on
the number of unnested occurrences of '&' in Aχ, A2, . . . , and An>

Step 7: p = 0.

Step 1.1: q- 0. Then there is bound to be an i such that Ai is of the form
Aj & Ai . Now suppose A±, A2, . . . , An |— B is valid. Then

\> \> -> V .> \ , \ , A

i + ι , • • > An h β (3-D

is bound to be valid and hence—in view of Case 2 or of the hypothesis of
induction—provable by means of S, HI, HE, Cl, and CE. But A^ A2, . . . ,
An \- B follows from (3.1) by means of the said rules. Hence T2.

Step 1.2: q > 0. Then there is bound to be an i such that Ai is of one of
the eight forms (A{ 3 A{ ) D A{ , A{ D (A{ D A{ ), (A{ & Ai ) & A{ , A{ &

(Λ. & A. ), (A D \ ) & A , A{ & (A D \ . ), (Λ & A{ ) D A{ , and A\ D
2 3 1 2 3 1 2 3 1 2 3 1

(Ai & Λz ), where in the last case Ai is a propositional variable.9

Sfep 1.2.7: Λz is of one of the first two forms listed. Proof similar to the
proof of Case 2, Step 1.2, but with S, HI, HE, Cl, and CE doing duty for S,
HI, and HE.

Step 1,2.2: Az is of one of the next four forms listed. Proof similar to the
proof of Step 1.1.

Step 7.2.3: A{ is of the form (Ai & A{ ) D Ai . Suppose Λχ, A2, . . . , An f-
B is valid. Then both

\ , A

t , , A ^ , A ^ D A γ A i + 1 , . . . , A n \ - B (3.2)

and

Aιt A 2 , . . . , A^, A^ D Ait, Ai+1, . . . , An \- B (3.3)

are bound to be valid and hence—in view of Case 2 or of the hypothesis of
induction—provable by means of S, HI, HE, Cl, and C E . 1 0 But Aχ, A2, . . . ,
An\- B follows from (3.2) - (3.3) by means of the said rules. Hence T2.

Step 1.2.4: Ai is of the form A^ 3 (Ai & Ai ), where Ai is a propositional

variable. Suppose Aι9 A2, . . . , An |— B is valid. Then

A v A l t . . . , A ^ , A ^ D A ^ , A ^ 3 A ^ , A i + l , ...,An\-B ( 3 . 4 )

is bound to be valid and hence—in view of Case 2 or of the hypothesis of
induction—provable by means of S, HI, HE, Cl, and CE. But A1, A , . . . ,
An |— B follows from (3.4) by means of the said rules. Hence T2.

Step 2: p > 0. Then B is bound to be of one of the two forms Bχ D B2 and

Bx & B,

Step 2.1: B is of the form B1 D B2. Proof similar to the proof of Case 2,
Step 2, but minus the reference to Case 1 and with S, HI, HE, Cl, and CE
doing duty for S, HI, and HE.
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Step 2.2: B is of the form Bx & B2. Suppose Λχ, A2, . . . , Λn \- B is valid.

Then both

Aι,A2,...,An\-Bι (3.5)

and

A1,At,...,An\-Bt (3.6)

are bound to be valid and hence—in view of Case 2 or of the hypothesis of

induction-provable by means of S, HI, HE, Cl, and CE. But Aχ9 A2, . . . ,

An \- B follows from (3.5) - (3.6) by means of Cl. Hence T2.

Case 4: The only connective that occurs in A19 A2, . . . , An |— B is *&\

Proof by induction on the number of occurrences of '&* in Aχ9 A2, . . . ,

An, and B.

Step I: There is an i such that Ai is of the form Ai & Λz . Proof similar

to the proof of Case 3, Step 1.1, but with Case 1 doing duty for Case 2 and

with S, Cl, and CE doing duty for S, HI, HE, Cl, and C E . 1 2

Step 2: B is of the form Bχ & B2 Proof similar to the proof of Case 3,

Step 2.2, but with Case 1 doing duty for Case 2 and with S, Cl, and CE

doing duty for S, HI, HE, Cl, and CE.

Case 5: The only connective that occurs in A19 Λ2, . . . , An \~ B is V .

Proof by induction on p, the number of occurrences of 'v* in Ax, Λ2, . . . ,

and A , and, when p — 0, by induction on the number of occurrences of fv*

in B.

Step 1: p = 0. Then B is bound to be of the form Bχ v B2 Now suppose

Aχ9 A2, . . . ,A (— B is valid. Then (1) there is bound to be an i such that

A- is or occurs in Bχ, in which case

A1,A1,...,An\-Bι (5.1)

is valid and hence—in view of Case 1 or of the hypothesis of induction-

provable by means of S, Dl, and DE, or (2) there is bound to be an i such

that Ai is or occurs in B2, in which case

A1,A1,...,An\-B1 (5.2)

is valid and hence—in view of Case 1 or of the hypothesis of induction-

provable by means of S, Dl, and DE.1^ But Aχ, Λ2, . . . , An \- B follows

from (5.1) in one case and from (5.2) in the other by means of Dl. Hence

T2.

Step 2: p > 0. Then there is bound to be an i such that Ai is of the form

Λz v Aj . Now suppose Aχ9 A2, . . . 9 An \- B is valid. Then both

Aιt At, A^, A^, Ai+1, ...,An\-B (5.3)
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and
Av \ , -->Ai-1>\,Ai+1,...,An\-B (5.4)

are bound to be valid and hence—in view of Case 1 or of the hypothesis of
induction—provable by means of S, Dl, and DE. But Aχ9 A2, . . . , An \- B
follows from (5.3) - (5.4) by means of the said rules. Hence T2.

Case 6: The only two connectives that occur in Aiy A2, . . . , An |- B are
V and <&\

Proof (a) by induction on p, the number of wffs among Al7 A2, . . . , An,
and B which fail to be in conjunctive normal form, and (b) when p = 0, by
induction on the number of occurrences of *&* in Aχ, A2, . . . , An, and B.

Step I: ρ = 0.

Step 7.1: There is an i such that Ai is of the form Ai & Ai . Proof similar

to the proof of Case 3, Step 1.1, but with Case 5 doing duty for Case 2 and
with Dl and DE doing duty for HI and HE.

Step 7.2: B is of the form Bχ & B2. Proof similar to the proof of Case 3,
Step 2.2, but with Case 5 doing duty for Case 2 and with Dl and DE doing
duty for HI and HE.

Step 2: ρ> 0.

Step 2.1: There is an i such that Ai fails to be in conjunctive normal form.
Suppose Aχy A2, . . . , An \- B is valid. Then

Aχ, A,,.-., V . ' A*> Ai+S ' An h β > ( 6-L>

where A^ is any result of putting A^ in conjunctive normal form, is bound to
be valid and hence—in view of Step 1 or of the hypothesis of induction-
provable by means of S, Dl, DE, Cl, and CE. But Al9 A2, . . . , An \- B
follows from (6.1) by means of the said rules. Hence T2.

Step 2,2: B fails to be in conjunctive normal form. Proof similar to the
proof of Step 2.1.

Case 7: The only connective that occurs in Aι9 A2, . . . , An \- B is *=\

Proof (a) by induction on p, the number of occurrences of f=* in B,
(b) when p = 0, by induction on q, the number of nested occurrences of f=*
in Aiy A2, . . . , and An, and (c) when q - 0, by induction on the number of
unnested occurrences of '=' in A , A , . . . , and An.

Step 7: p = 0.

Step J.I: q- 0. Suppose Aι9 A2> . . . , An (- B is valid. Then (1) there is
bound to be an i such that Aί is B, in which case

A l t A 2 , . . . , A h i , A - + ι , . . . , A n \ - B , (7.1)
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where A (/ < i or ;' > i) is the left-most one of Aχ9 A2, . . . , and An to ex-

hibit an occurrence of '=*, is valid and hence—in view of Case 1 or of the

hypothesis of induction—provable by means of S, Bl, and BE, or (2) there

is bound to be an i and there is bound to be a / (/ > / or / > ί) such that Ai

is A = A^ , in which case

A ι , A i , . . . , A i _ ί , A κ , A i + ι , . . . , A n ^ B (7.2)

is valid and hence—in view of Case 1 or of the hypothesis of induction-

provable by means of S, Bl, and BE, or (3) there is bound to be an i and

there is bound to be a / (/ < i or / > i) such that Ai is A^ = A., in which

case

\ , \ > Ai-V \> Ai+ί>
 An I" B <7 3)

is valid and hence—in view of Case 1 or of the hypothesis of induction-

provable by means of S, Bl, and BE. But Aχy A2, . . . , An \- B follows

from (7.1) in the first case by means of S, from (7.2) in the second by means

of S, Bl, and BE, and from (7.3) in the third by means of S, Bl, and BE.

Hence T2.

Step ί.2: q > 0. Then there is bound to be an i such that A^ is of one of

the two forms (A^ = A^ ) = A^ and A^ = (A^ = Λz ). Now suppose Aί9 A2,

. . . , An \- B is valid. Then all three of

Av * a , , A^, A 2 , A^ Ξ A 3 , A + 1 , . . . , An μ β, (7.5)

and

A 1 ? Λ 2 , . . . , A { _ t , A i } , A ^ Ξ Λ Z j J A i + ι , . . . , A n \ - B (7.6)

are bound to be valid and hence—in view of the hypothesis of induction-

provable by means of S, Bl, and BE. But Aι9 A2, . . . , An \- B follows

from (7.4) - (7.6) by means of the said rules. Hence T2.

Step 2: p > 0. Then B is bound to be of the form Bχ = B2. Now suppose

Aί9 A2, . . . ,An \- B is valid. Then both

A1,A2,...,An,B1\- B2 (7.7)

and

Av Λ2, . . . ,An, B2 μ βχ (7.8)

are bound to be valid and hence—in view of Case 1 or of the hypothesis of

induction—provable by means of S, Bl, and BE. But Aι9 A2, . . . , An | - B

follows from (7.7) - (7.8) by means of the said rules. Hence T2.

Case 8: The only two connectives that occur in Al9 A2, . . . , An [~ β are

V and *y.
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Proof (a) by induction on p, the number of occurrences of *=' and '3*

in β, (b) when p = 0, by induction on q, the number of nested occurrences

of *=' and *y in Aχ9 A2, . . . , and Λn, and (c) when q = 0, by induction on

the number of unnested occurrences of '3* in Aί9 A2, . . . , and An

Step 1: p = 0.

Step 1.1: q = 0. Then there is bound to be an i such that Az i s of the form

Ai 3 Ai . Now suppose Aχ9 A2, . . . , An (- B i s valid. Then both

^ , ΛJf . . . , A _ i ; Λ^ - Λ v Λ.+1, . . . , An μ B (8.1)

and

^ » . \ , - , A^, A^, Ai+1, ...,An\-B (8.2)

are bound to be valid and hence—in view of Case 7 or of the hypothesis of

induction—provable by means of S, Bl, BE, Cl, and CE. But Aι9 A2, . . . ,

An \- B follows from (8.1) - (8.2) by means of the said rules. Hence T2.

Step 1.2: q > 0. Then there i s bound to be an i such that Λz i s of one of

the eight forms (Λ. = A. ) = A. , A{ = (A = A- ) , (A. 3 A ) 3 A. , A. D

(A. D A. ), (A. D Λ. ) EE'A . , Λ*. EE (Λ D Λ ), (A =A )D \ , and A/ 3
2 3 Z l Z 2 3 Z l Z 2 3 1 2 *3 Z l

(Λz = Λz ), where in the last case Ai i s a propositional variable.

Step 1.2. ϊ: .Aj. i s of one of the first two forms listed. Proof similar to the

proof of Case 7, Step 1.2, but with S, Bl, BE, HI, and HE doing duty for S,

Bl, and BE.

Step 1,2.2: Ai i s of one of the next two forms listed. Proof similar to the

proof of Case 2, Step 1.2, but with S, Bl, BE, HI, and HE doing duty for S,

HI, and HE.

Step 7.2.3: Ai i s of the form (Ai 3 Ai ) = Ai . Suppose Aχ9 A2, . . . , An

(~ β i s valid. Then both ι 2 3

A1? A2, . . . , A._1? A., A. Ξ A., Λ f + ι, . . . ,An\- B (8.3)

and

\ > A l t . . . , A { _ l t A ^ D A ^ A γ A i + 1 , . . . , A n \ - B (8.4)

are bound to be valid and hence—in view of Case 7 or of the hypothesis of

induction-provable by means of S, Bl, BE, HI, and H E . 1 8 But A19 A2, . . . ,

An\- B follows from (8.3) - (8.4) by means of the said rules. Hence T2.

Step 1.2.4: Ai i s of the form Ai = (Ai 3 Ai ) . Proof similar to the proof of

Step 1.2.3, but with Ai doing duty for Ai , Ai doing duty for A^, and Ai

doing duty for A^ .

Step 1.2.5: Ai i s of the form (Ai = Ai ) 3 Ai . Suppose Al9 A2, . . . , An \-

B i s valid. Then all three of
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\ , A t , . . . , A { - 1 , A i t A t D A - , A i + ι , . . . , A n \ - B , (8.5)

A ι t A 2 , . . . , A ._χ, Λ f j , A ^ D Λ f , Λ ί + 1 , ...,An\-B, (8.6)

and

^ , ^ Ai-ι> \> Ai+ι> •• >An\-B (8-7)

are bound to be valid and hence—in view of Case 7 or of the hypothesis of

induction—provable by means of S, Bl, BE, HI, and HE. ^ But Aχ9 A2, . . . ,

An |— B follows from (8.5) - (8.7) by means of the said rules. Hence T2.

Step Ί.2.6: Ai D (Ai = Ai ), where Ai i s a propositional variable. Suppose

Aι9 A2, . . . , An \- B i s valid. Then both

Λlf A2, . . . , A..1 ? A^ 3 Λ 2 , A^ 3 Λ ^, Λ + 1 , . . . , An μ β (8.8)

and

*i. ^ > ̂ i-x, >lIa - ^ z V Ai+1, ...,An\-B (8.9)

are bound to be valid and hence—in view of Case 7 or of the hypothesis of

induction—provable by means of S, Bl, BE, HI, and HE. But Aχ, A2, . . . ,

An μ B follows from (8.8) - (8.9) by means of the said rules. Hence T2.

Step 2: p > 0. Then B i s bound to be one of the two forms B1 = B^ and

Step 2.1: B i s of the form Bχ = B2. Proof similar to the proof of Case 7,

Step 2, but minus the reference to Case 1 and with S, Bl, BE, HI, and HE

doing duty for S, Bl, and BE.

Step 2.2: B i s of the form Bχ D B2. Proof similar to the proof of Case 2,

Step 2, but with Case 7 doing duty for Case 1 and with S, Bl, BE, HI, and

HE doing duty for S, Bl, and BE.

Case 9: The only two connectives that occur in Alf A2, . . . , An μ B are

V and*&.

Proof (a) by induction on p, the number of occurrences of '= ' and *&'

in β, (b) when p = 0, by induction on q, the number of nested occurrences

of ' = ' and '&* in Aι9 Λ2, . . . , and Λw, and (c) when q - 0, by induction on

the number of unnested occurrences of *&' in Aί9 A2, . . . , and An.

Step J: p = 0.

Step I.I: q = 0. Then there i s bound to be an i such that Ai i s of the form

Aj & Ai , in which case T2 by the same reasoning as in Case 3, Step 1.1,

but with Case 7 doing duty for Case 2 and with Bl and BE doing duty for

HI and HE.
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Step 1.2: q > 0. Then there i s bound to be an i such that Az i s of one of
the eight forms (A = A ) = A , A. = (A = A ), (A & A. ) & A , A. &

(A f & A ), (A Ξ A ) & A f , A. & (A. = A. ), (A. & Af ) = A. , and A{ EE
2 3 1 2 3 1 2 3 i 2 3 1

(A. & A ), where A, in the seventh case and A in the eighth case are
2 Z 3 *3 *1

propositional variables.

Step 1.2.?: Az is of one of the first two forms listed. Proof similar to the
proof of Case 7, Step 1.2, but with S, Bl, BE, Cl, and CE doing duty for S,
Bl, and BE.

Step Ί.2.2: Ai is of one of the next four forms listed. Proof similar to the
proof of Step 1.1.

Step 1.2.3: Ai is of the form (Az & Ai ) = Ai , where Az is a propositional

variable. Suppose Aχ, A2, . . . , An \- B is valid. Then all three of

A ι t A v . . . , A ^ , A ^ Ξ Λ v A j ( A i + ι , ...,An\-B, (9.1)

Aχ, A,,..., A^, A^ . A , v Λ,.χ> A i + 1, . . . , A n h B, (9-2)

and

Λ l 5 A2, . . . , A{_17 A{ = At , Ai Ξ A,. , Ai+ι, . . . , An \- B (9.3)
1 3 2 3

are ΐ>ound to be valid and hence—in view of Case 7 or of the hypothesis of
induction-provable by means of S, Bl, BE, Cl, and CE. 2 1 But Aχ, A2, . . . ,
An \- B follows from (9.1) - (9.3) by means of the said rules. Hence T2.

Step 1.2.4: A is of the form A. = (A & A ), where A is a propositional
1 h 2 3 1

variable. Proof similar to the proof of Step 1.2.3, but with Ai doing duty
for A , A. doing duty for A , and A doing duty for A .

Z 3 Z 2 1 3 Z 3

Step 2: p > 0. Then B is bound to be of one of the two forms Bt = B2 and
f?x & Ba.

Step 2.1: B is of the form βχ = B2. Proof similar to the proof of Case 7,
Step 2, but minus the reference to Case 1 and with S, Bl, BE, Cl, and CE
doing duty for S, Bl, and BE.

Step 2.2: B is of the form Bx & B2. Proof similar to the proof of Case 3,
Step 2.2, but with Case 7 doing duty for Case 2 and with Bl and BE doing
duty for HI and HE.

Case 10: The only two connectives that occur in Ax, A2, . . . , An |— B are
<=' and V .

Proof (a) by induction on p, the number of occurrences of '=' and 'v* in
β, (b) when p = 0, by induction on q, the number of nested occurrences of
'=' and 'v* in A , A2, . . . , and Aw, and (c) when q = 0, by induction on the
number of unnested occurrences of 'v* in Aχ, A2, . . . , and An.
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Step 1: P = 0.

Step 1.1: q = 0. Then there is bound to be an i such that Λz is of the form

Λi v Ai , in which case T2 by the same reasoning as in Case 5, Step 2, but

with Case 7 doing duty for Case 1 and with S, Bl, BE, Dl, and DE doing duty

for S, Dl, andDE.

Step 1.2: q> 0. Then there is bound to be an i such that Ai i s of one of the

eight forms (A^ Ξ A{) Ξ A^, A- Ξ (A f j Ξ A^), (A^ v A{) v A^, Af. v (A,.

v A,O, (A^ s Al

f. ) v A^, A f Λ {Ai2 s A^), (A^ v Af*) ss A^ f and^^ » (Af. v

Af ), where A2 in the seventh case and Ai in the eighth case are proposί-
3 3 1

tional variables.

Step 7.2.7: Az is of one of the first two forms listed. Proof similar to the

proof of Case 7, Step 1.2, but with S, Bl, BE, Dl, and DE doing duty for S,

Bl, and BE.

Step 1.2.2: Ai i s of one of the next four forms listed. Proof similar to the

proof of Step 1.1.

Step 1.2.3: A^ i s of the form (Az v Ai ) = Ai , where A± i s a propositional

variable. Suppose Al7 A2, . . . , An | - B is valid. Then all three of

\ , \ , . . , A _ χ , Λ v A 3 , Λ ; + l, . . . Λ h B . (10.1)

t̂» ^ >Ai-i> \> \> Ai+i> • • ,An\- B, (10.2)

and

\ , A v . . . , A { _ t , A κ . A i t , A i t . A i % , A i + 1 , ...,An\-B (10.3)

are bound to be valid and hence—in view of Case 7 or of the hypothesis of

induction-provable by means of S, Bl, BE, Dl, and D E . 2 1 b l s But A l f A%,

. . . , An f- B follows from (10.1) - (10.3) by means of the said rules. Hence

T2.

Step 1.2.4: Ai i s of the form Ai = (Ai v Ai ), where Ai i s a propositional

variable. Proof similar to the proof of Step 1.2.3, but with Ai doing duty

for Ai , Ai doing duty for Ai , and Ai doing duty for Ai .

Step 2: p > 0. Then β is bound to be of one of the forms Bχ = B2 and

Z3χ v B,.

Step 2.1: B is of the form B1 = B2. Proof similar to the proof of Case 7,

Step 2, but minus the reference to Case 1 and with S, Bl, BE, Dl, and DE

doing duty for S, Bl, and BE.

Step 2.2: B is of the form Bχ v B2. Suppose Ax, A2, . . . , An \- B is valid.

Then

A19A%, . . . ,An, β l S β a μ B1 (10.4)
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is bound to be valid and hence—in view of Case 7 or of the hypothesis of

induction-provable by means of S, Bl, BE, Dl, and D E . 2 1 t e Γ But Aχ9 A2,

. . . , A (- B follows from (10.4) by means of the said rules. Hence T2.

Case 11: The only two connectives that occur in Al9 A2, . . . , An \- B are

*y and V .

Proof by induction on the number of occurrences of 'v* in A19 A2, . . . ,

An, and B.

Step 1: β is of the form β χ v B2, where B2 does not exhibit any V . Sup-

p o s e Aι9 A2, . . . ,An\- B is v a l i d . T h e n

AιfA2,. . .yAnl-(B1DB2)DB2 (11.1)

is bound to be valid and hence—in view of Case 2 or of the hypothesis of

induction—provable by means of S, HI, HE, Dl, and DE. But Aχ9 A2, . . . ,

A J— β follows from (11.1) by means of the said rules. Hence T2.

Step 2: B has a component of the form β v β^, where β^ does not ex-

hibit any V . Suppose Λχ, A2, . . . , An |— β is valid. Then

Aι,A2,...,An\-B, (11.2)

where β is like B except for exhibiting ((β. 3 β^) D β^) D B[ where B ex-

hibits ( β ; v β^) 3 Bι or for exhibiting B{ D ((β ; D Bk) D Bk) where B ex-

hibits β. 3 (β v Bi), is bound to be valid and hence—in view of Case 2
* 7

or of the hypothesis of induction—provable by means of S, HI, HE, Dl, and

DE. But Aί9 A2y . . . , An \- B follows from (11.2) by means of the said

rules. Hence T2.

Step 3: There is an i such that Ai is of the form Ai v Ai , where Ai does

not exhibit any *v*. Proof similar to the proof of Step 1.

Step 4: There is an i such that A{ has a component of the form A{ v A{ ,

where Ai does not exhibit any *v\ Proof similar to the proof of Step 2.

Cases 12-16 are provable along similar lines. Appended is a table

(Table lib) of the various cases to which they reduce and of the transfor-

mations—effected for illustration's sake on β χ 3 β , βχ & B2, Bχ v β , and

β χ = B2—which insure those reductions. A key to the abbreviations used in

Table lib is supplied in Table Πa.
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TABLE Ha

Tl. Bί 3 B2 -> (Bχ & B2) ^ β t

T2: Bχ 3 B1 —> (Bι v B2) EE B 2

2 3

T3: B, & B2 —> ((B t 3 B2) 3 B2) Ξ (Bχ Ξ B2)

T4. B, & B2 - > (B, v B2) S (B, S B2)

T5: B, v B2 —> (B, 3 B2) 3 B2

T6: B t v B2 —> (B t & B2) = (B t = B2)

T7: B, = B2 - > (B, 3 B2) & (B2 D Bχ)

TABLE lib

Cases Reducible to Cases By means of

12: *:>', '&', and V 3 T5

( 3 ΎΊ

13: 'D', '&', and ' = ' ^

ί 8 T5
14: '3', V, and V <

I 10 T2

( 9 T6

15: <*>, V, and V { w

i6, y; v. v, ( 3 r " > " d T 7

a a d V ) 8 T3 and T5

^ 9 TJ and T6

( 10 T2 and T4

III

I complete in this section the proof of T2 by solving the case where

Aι9 A2, . . . , An \- exhibits only f ^/ (Case 17) and reducing to Case 17 the

15 cases where Aχ, A2, . . . , An \- B exhibits besides %r>J any one, any

two, any three, or all four of fD', *&\ V , and '='.

Case 17: The only connective that occurs in Aι9 A2, . . . , An \- B is ' ^ ' .

Proof by induction on p, the number of wffs among Aχy A2, . . . , An,

and Bt which consist of two or more occurrences of *c*J followed by a propo-

sitional variable.

Step I: p = 0. Suppose Aχ9 A2, . . . , An \- B i s valid. Then (1) there i s

bound to be an i such that Λz i s B, in which case Aχ, A2, . . . , An \- B fol-

lows from B |— B (= R) by means of E and P, or (2) there i s bound to be an

i and there i s bound to be a ( < i or / > i) such that Ai i s ^ Λ , in which

case A 9 A2, . . . ,An (- β follows from A \- Λ and ^ A (- ^ Λ (= R) by

means of E, P, Nl, and N E . 2 4 Hence T2.



PROOF ROUTINES FOR THE PROPOSITIONAL CALCULUS 95

Step 2: p > 0. Then there is bound to be an i such that Λi is of the form
^/^/. . ,~A*y where k> 2 and A* is a prepositional variable, or B is bound

& times
to be of the form^ ~ . . . o^B*, where & > 2 and B* is a propositional vari-

k times
able.

Sfep 2./: Ai is of the form^^. . . c^A?. Suppose Aχ9 A2, . . . , An j- B is

& times
valid and & is even. Then

\ , \,-- , A^, Aί, A i + 1, . . . , ^ M (17-1)

is bound to be valid and hence—in view of Step 1 or of the hypothesis of
induction—provable by means of S, Nl, and NE. Or suppose Aι9 A2, . . . ,
A \- B is valid and k is odd. Then

*x. Λ,» . . . , A^, ~A*{, Ai+1, . . . , An μ B (17.2)

is bound to be valid and hence—in view of Step 1 or of the hypothesis of
induction—provable by means of S, Nl, and NE. But Λχ, A2, . . . , An |- B
follows from (17.1) in one case and from (17.2) in the other by means of the
said rules. Hence T2.

Step 2.2: B is of the form^^. . . ̂ β * . Proof similar to the proof of Step

k times
2.1.

Case 18: The only two connectives that occur in Aι9 Λ2, . . . , An \- B are
%rJ and <y.

Proof by induction on the number of occurrences of '3 f in Al9 A2, . . . ,
An9 and B.

Step 1: There is an i such that Ai is of the form ~r^. . . ̂  (Ai D Ai )

k times
where k > 0.

Step I.I: k equals 0 or k is even. Suppose Aί9 A2, . . . , An \- B is valid.
Then both

\ , A2, . . . , Λ . _ i ; ^ A^, Ai+ι, . . . ,An \- B (18.1)

and

A , , A , , . . . , A._,, Λ , v A i + 1 , ...,An\-B (18.2)

are bound to be valid and hence—in view of Case 17 or of the hypothesis of
induction—provable by means of S, Nl, NE, HI, and HE. But Al9 A2, . . . ,
An \- B follows from (18.1) - (18.2) by means of the said rules. Hence T2.
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Step 7.2: k is odd. Suppose Aχ, A2, . . . , An \- B is valid. Then

Aι9 A v . . . ,A.^, ~AV Ai+ί, . . . ,An h B (18.3)

is bound to be valid and hence—in view of Case 17 or of the hypothesis of
induction—provable by means of S, Nl, NE, HI, and HE. 2 8 But Aχ9 A2, . . . ,
An (- B follows from (18.3) by means of the said rules. Hence T2.

Step 2: B is of the form^ ^ . . . ~ (Bt D B2), where k> 0.

k times

Step 2.7: k equals 0 or k is even. Suppose Al9 Λ2, . . . ,An )- B is valid.
Then

Aι9Al9 . . . ,An, βχ μ β2 (18.4)

is bound to be valid and hence—in view of Case 17 or of the hypothesis of
induction-provable by means of S, Nl, NE, HI, and HE. 2 9 But A19 Λ2, . . . ,
An μ β follows from (18.4) by means of the said rules. Hence T2.

Step 2.2: k is odd. Suppose Aί9 A3, . . . , Λ^ μ B is valid. Then both

Aι,A1,...,An\-B1 (18.5)

and

Λχ, Λ2, . . . , Λ n μ ~ β 2 (18.6)

are bound to be valid and hence—in view of Case 17 or of the hypothesis of
induction-provable by means of S, Nl, NE, HI, and HE. 5 0 But Aχ9 A^, . . . ,
An μ β follows from (18.5) - (18.6) by means of the said rules. Hence T2.

Case 19: The only two connectives that occur in Aι9 A2, . . . , An μ β are
KrJ and <&'.

Proof similar to the proof of Case 18, but with '&' doing duty for '3',
Cl and CE doing duty for HI and HE,

Aχ, A2, . . . 9Aimml, A^, A^, Ai+1, . . . ,An \- B

doing duty for (18.1) - (18.2),

\> A2, . . . iAimml9n*> A^, Λ f + 1 , . . . ,An μ β

and

Aι9 A2, . . . , Aimml9nu Ai , Ai+1, . . . , An μ β

doing duty for (18.3),

A1,A2,...,An\rBι

and

Aι,At,...,An\-Bt
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doing duty for (18.4), and

A17A2, . . . ,ΛΠ, Bχ μ ^ , β 2

doing duty for (18.5) - (18.6).

Case 20: The only two connectives that occur in Aι7 A2, . . . , An \- B are
V? andW.

Proof similar to the proof of Case 18, but with 'v* doing duty for 'I)',
Dl and DE doing duty for HI and HE,

\j A2, . . . , Λ ί β l , A^, Ai+1, . . . , An \- B

and

Ai> Λ2> >Λz-i' Ai; Ai+V iAn V B

doing duty for (18.1) - (18.2),

Aiy A2, . . . , Λ ^ , ~Λ^, ^^z 2 ? ^ z + 1 > , A

n h β

doing duty for (18.3),

Aχ, /la, . . . ,ΛΠ, r^B x |- B2

doing duty for (18.4), and

Aί9 A2, . . . , A π μ ~ B 1

and

doing duty for (18.5) - (18.6).

Case 21: The only two connectives that occur in Aί9 A2, . . . , An μ β ίzre
^ ' and x=\

Proof similar to the proof of Case 18, but with '=' doing duty for eD',
Bl and BE doing duty for HI and HE,

\> A2> ' > V l > A V Λ Z 2 ' Λ ί+1' " • ' ^ M

and

A1? Λ2, . . . j A ^ , ~A^9 ^Ά^, Λ ί+1, . . . ,ΛΛ μ B

doing duty for (18.1) - (18.2),

Av A

2, - yAi^, Ai^^ Ai2,
 A

i+1, ,A

n μ B

and

i4χ, A2, . . . iAi_1, ~A{ , A{ , Λz + 1 , . . . ,^4W μ β
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doing duty for (18.3),

and

Λl7 A2, . . . ,An, B2 \- Bχ

doing duty for (18.4), and

Ax,Att...,An,~Bι\- B,

and

Aί9 Λ2, . . . ,An, ~B2 μ Bx

doing duty for (18.5) - (18.6).

Cases 22-32 are provable in the same manner as Case 11. Appended
is a table (Table Mb) of the various cases to which they reduce and of the
transformations—effected for illustration's sake on Bχ D B2, Bx & B2, Bx v B2,
and βχ = B2—which insure those reductions. A key to the abbreviations used
in Table IΠb is supplied in Table Ilia.

TABLE Ilia

Tl: Bχ D B2 —> ~ (B, & ~ B2)

T2: Bχ 3 B2 —> ~ βχv B2

T3: Bι8ιBi~>~(BιD~B2)

T4: B, & B2 —>~ (~B t v ^B2)

T5: Bt v B2~>~B1JB2

T6: B, v B2 —y^ir^B,^ & ^ B a )

T7: Bx ^ B2 — > ~ ((β, 3 B2) 3 ~ ( B 2 D β,))

T8: Bχ = B2 — > ^ (B, & <v,B2) & ̂ (B2 & ^B,)

T9: Bχ = B2 — > ^ ( ^ ( ^ β χ v B2) v ~ ( ^ B 2 v B,))

TABLE IΠb

Cases Reducible to Cases By means of

ί 18 T3
22: W , V , « d V | i 9 T J

( 18 T5

23: <~ , V, and V { ^ r 2

24: «~ , *D', and '=' 18 T7

/ 19 T6

25: W, V, and V { 2 0 Γ 4
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TABLE IΠb (Continued)

Cases Reducible to Cases By means of

26: VJ, <&', and f=* 19 T8

27: VΛ V , and V 20 T9

/ 18 T3 and T5

28: f ~ ' , O', '&'
and V \ 1 9 T i a n d Tβ

V 20 T2 and T4

9O. « > «-V <*r> ( 1 8 T3 and T7
29: ~ , J , & , J

and V I 19 T2 and T8

30: e ~ ' , ' 3 ' , V , ί 18 T5 and T7

a n d < Ξ > I 20 T2 and T9

31: W, '&\ V , ί 19 T6 and T8

a n d ' - ' I 20 T4 and T9

/ 18 T37 T5, and T7

32: VΛ fDf, f&f, j
V , and s ) 1 9 T1> T6> a n d T δ

^ 20 T2, T49 and T9

IV

My main theorem, T2, fails, as I remarked in Section II, when the elimi-

nation rules for *Df and ' = ' are respectively made to read like HE1 and BE 1.

p 3 q, (p D r) D q |— q, for example, though classical ly valid, is not intuition-

istically valid; R, E, P, HI, and HE1, on the other hand, are all intuition-

istically sound; p D q, (p 3 r) D q \- q i s therefore not provable by means of

R, E, P, HI, and H E 1 . 3 1 Similarly, p, (r = p) Ξ (r = q) μ q and p, (r = q) =

(r = p) μ <?, though classical ly valid, are not intuitionistically valid; R, E,

P, Bl, and BE 1, on the other hand, are all intuitionistically sound; neither

p, (r = p) = (r = q) \- q nor p, (r = q) = (r = p) \- q i s therefore provable by

means of R, E, P, Bl, and BE 1.

It should, nonetheless, be noted that HE follows from HE1 by means of

R, E, P, HI, Nl, and NE or by means of R, E, P, HI, Bl, and BE, and hence

may occasionally give way to HE1. Similarly, BE follows from BE1 by means

of R, E, P, Bl, HI, and HE or by means of R, E, P, Bl, Nl, and NE, and

hence may occasionally give way to BE1. Finally, NE follows from the in-

tuitionist elimination rule for V /̂, namely:

N E ! : // (1) At, Λ27 . . . , An μ B and (2) Al9 A2, . . . , An μ ~ B , then Aχ,

A Λ 9 . - . , A n h C ,
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by means of R, E, P, Nl, HI, and HE or by means of R, E, P, Nl, Bl, and
BE, and hence may occasionally give way to NE1.

Now for my second conjecture. Suppose Aχ9 A2, . . . , An (- B exhibits
no connective or exhibits no connective other than '&' and 'v*. It follows
from Tl and T2 that if Aχ9 A2, . . . , An j - β is provable or, as I shall now
put it, classically provable, then Aχ9 A2, . . . , An \- B is provable by means
of R, E, P, Cl, CE, Dl, and DE. But all seven of those rules—I just noted-
are intuitionistically sound. Hence if Aχ9 A2, . . . , An μ β is classically
provable, then Aι9 A2, . . . , AQ \- B is intuitionistically provable as well.
I conjectured that in view of this result one cannot convert a set of struc-
tural and intelim rules fit for PCp the intuitionist variant of PC, into one
fit for PC by altering the intelim rules for *&' or *v\ The surmise is of
some interest since we have long known how to bridge the gap between PCj
and PC by altering the intelim rules for V̂ /' and have recently learned how
to bridge that gap by altering the intelim rules for *D* or those for f = \ Proof
of it is now available, but must be saved for another occasion.

NOTES

1. See "Etudes sur les Regies d'Inference dites Regies de Gentzen, Pre-
miere Partie," Dialogue, vol. I, no. 1, pp. 56-66, where I offered the
conjecture for a slightly different, but equivalent, set of structural and
intelim rules. Four cases of my conjecture (Cases 1, 4, 5, and 6) have
been studied independently by Nuel D. Belnap, Jr. and R. H. Thomason;
see footnote 2.

2. In view of Tl and T2 a T-statement T, when provable at all, is bound to
be provable by means of S and the intelim rules for such of the connec-
tives x~\ *y, '&*, V , and *=' as occur in T. Now let the following
structural rule:

C: // (1) Al9 A2, . . . ,An, B \- C and (2) Ax, A^ . . . , An μ B, then
Aχ7 A2, . . . , An μ C,

be appended in Table I to R, E, and P; let a T-statement T be rated
derivable from n (w > 0) T-statements Tχ9 T2, . . . , and Tn if T is the
last entry in a finite column of T-statements each one of which is a Tz ,
or is of the form R in Table I, or follows from one or more previous T-
statements in the column by application of one of the remaining rules in
Table I; and let the same T-statement T be rated derivable from the same
T-statements Tl9 T2, . . . , and 7' by means of S and zero or more of the
intelim rules in Table I if T is the last entry in a finite column of T-
statements each one of which is a Tz , or is of the form R in Table I, or
follows from one or more previous T-statements in the column by appli-
cation of E, P, C, or one of the intelim rules in question. Belnap and
Thomason have recently proved of any n+1 T-statements T, Tι9 T2, . . . ,

and T which exhibit no connective or exhibit no connective other thann
'&* and *v* that T, when derivable at all from Tl9 T2, . . . , and Tn9 is
derivable from them by means of S and the intelim rules for such of the
connectives '&' and fv' as occur in T, Tχ9 Ta, . . . , and Tn; see "A
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Rule-completeness Theorem," Notre Dame Journal of Formal Logic, vol.

IV, no. 1 (1963), pp. 39-43. I would conjecture, to generalize upon this

result, that a T-statement T, when derivable at all from n T-statements

Tl9 T2, . . . , and Tn, is derivable from them by means of S and the

intelim rules for such of the connectives *r*J, *3', '&*, 'v', and '=' as

Occur in T, 7\, T2, . . . , and T . Rule C, by the way, is redundant in

the presence of the intelim rules for any one of the connectives V*/,

<y, <&', V , and f = \

3. Version HE of the elimination rule for '3* was suggested to me by Pro-

fessor Stig Kanger.

4. Note that if there were no ί such that Az is B, then Aχ, A2, . . . , An

\~ B would come out false when the truth-value T is assigned to every

one of Aχ9 A2, . . . , and An, and the truth-value F is assigned to B.

5. Note that if there were no i such that Az is B and there were no two i

and / such that Ai is A 3 A? , then Aχ9 A2, . . . , An \- B would come

out false when F is assigned to B, F is assigned to the left-hand com-

ponent of every conditional among Aχ9 A2, . . . , and An whose right-

hand component is assigned F, and T is assigned to every other propo-

sitional variable that may occur in Al9 A2, . . . , and An. Note also

that (A & (A 3 Ai )) = (A & A{ ) is valid

6. N o t e t h a t ((A D A ) 3 A ) = ((A & ( A D A )) v A ) i s v a l i d , a p o i n t
Z l 2 3 Z l Z 2 Z 3 Z 3

which was brought to my attention by Professor Henry Hiz and Professor

Belnap and proved crucial to the solution of Case 2.

7. Note that (A D (A. D A )) = ((A D A ) v (A. D A. )) i s valid.
Z l Z 2 Z 3 Z l Z 3 Z 2 Z 3

8. Case 2 could be proved somewhat more simply if I modified it to read:

"The only connective (if any) that occurs in Al9 A2, . . . , An \- B is

'3 ' ," and did not insist on reducing it to Case 1. The same holds true

of a few other cases in this section.

9. Note that when Az is a conditional, then the Ai in question is of the

first form listed, and when Â  is a conjunction, then the Az in question

is of the seventh form listed. That the eight forms listed (and like ones

in the proofs of Cases 8-10) are exhaustive was pointed out to me by

Professor Belnap and proved crucial to the solution of Case 3.

10. Note that ((A . & A. ) 3 A. ) = ((A. D Λ. ) v (A. 3 A. )) is valid.
Z l Z 2 Z 3 Z l Z 3 Z 2 3

1 1 . N o t e t h a t (A. 3 ( A . & A{ ) ) = ( ( A . D A . ) & (A{ 3 A ) ) i s v a l i d ; n o t e
1 2 3 1 2 1 3

also that, so long as A. is a prepositional variable, A. 3 A and A
Z l Z l 2 1

3 A jointly exhibit one nested occurrence of '3* and '&' less than

A. 3 (A. & A ) does.
Z l Z 2 £ 3
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12. The above proof of Step 1, presupposing as it does rule C of footnote
2, no longer goes through when the elimination rule for '&' is phrased
in the more traditional fashion:

CE': IfAί9 A2, . . . ,An h B & C, then (1) Aχ, Aa, . . . , An μ β and (2) Aχ9

A2,...,An\- C,

since CE1 does not yield C. Professor Belnap has obtained a proof of
Step 1 which eschews CE in favor of CE1. The proof, however, does
not suit my declared strategy of reducing all of Cases 2-16 to Case 1.
In view of the conjecture of footnote 2, I also prefer of two elimination
rules the one which yields C. CE was suggested to me as a substi-
tute for CE1 by Professor Belnap.

13. Note that if there were no i such that Az is or occurs in B1 or B2, then
Aί9 A2, . . . , An μ B would come out false when T is assigned to every
one of At, A2, . . . , and An, and F is assigned to every propositional
variable that occurs in B.

14. The above proof of Case 5 still goes through when the elimination rule
for V is phrased in the more traditional fashion:

DE1: // (1) Aχ9 A2, . . . , An, B μ D and (2) Aχ9 A2, . . . , An, C μ D, ****
Aι9 A2, . . . ,An, B v C μ D.

In view, however, of the conjecture of footnote 2, I prefer DE, which
yields rule C of that footnote, to DE1, which does not. DE was sug-
gested to me as a substitute for DE1 by Professor Belnap.

15. Note that if there were no i such that Ai is B and there were no two
i and 7 such that Ai is A- Ξ Ai or Ai = A , then Aχ, A2, . . . , An μ β

would come out false when F is assigned to B, F is assigned to the
left-hand (right-hand) component of every biconditional among Aι9

A2, . . . , and An whose right-hand (left-hand) component is assigned
F, and T is assigned to every other propositional variable that may
occur in Aι9 A2, . . . , and An Note also that {A, & (A = A{ )) ~ (A. &
Ai ) is valid.

16. Note that ((Λ. = A. ) ΞΞ A. ) Ξ (((A & (A. Ξ A. )) v (A. & (A. = A. )))
Z l 2 3 l l l2 3 J 2 Z l Z 3

v (A. & (A. = A. ))) is valid, a point which was brought to my atten-
Z 3 Z l 2

tion by Professor Belnap and proved crucial to the solution of Case
7.

17. Note that (A. D A. ) = ((A. = A. ) v A. ) is valid.
Z l 2 1 2 2

18. Note that ((A. 3 A. ) = A. ) Ξ ((A. & (A. Ξ A. )) v ((A. D A. ) & Af ))
i s Valid. * » » 1 2 3 1 2 3

19. Note that ((A . s A . ) ^ A. ) ^ (((A . & (A. D A. )) v (A. & (A . 3 A . )))
1 Z 2 3 Z l 2 Z 3 Z 2 Z l Z 3

v Az ) is valid.
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20. Note that (A. D (A. = A. )) = (((A. D A. ) & (A, D A. )) v (A. ^ A. ))
,. j 1 2 3 1 2 1 3 2 3

is valid.

21. Note that ((A ̂  & A. ) = A .^ = ((((A^ = AfO & A. ) v ((A. = A .^ & A,0)

v ((A^ s A.) & (A χ Λ A.s)j) is valid!

2 1 . b i s Note that ((A. v A. ) = A. ) s (((A. & A. ) v (A. & A. )) v ((A. =
Z l Z 2 Z 3 Z l Z 3 Z 2 Z 3 Z l

A . ) & (A . = A£ ))) is valid.

2 1 . t e r Note that (βχ v J32) = ((β1 = Ba) D βχ) is valid.

22. Note that (β χ v βa) = ((Bι D B2) 3 B2) is valid. The need for the restric-
tion 'where B2 does not exhibit any Ύ" (and like ones in Steps 2-4) was
pointed out to me by Professor Belnap.

23. Or, less familiarly, (βχ = B2) v B%.

24. Note that if there were no i such that A is B and there were no two
i and / such that Aχ. is ~ A., then Aχ, A2, . . . , An \- B would come
out false when F is assigned to every propositional variable that is
prefaced in Alt A2, . . . , and An by f ^ ' , T is assigned to every other
propositional variable that may occur in Alt A2, and An, and T or F is
assigned to the propositional variable that occurs in β according as
that variable is prefaced or not by *~\

25- Note that, where k is even,,^ ^ . . . ̂  A? = Az* is valid.

k times

26. Note that, where k is odd, r̂  ^. . . ̂  A^ = ̂ A^ is valid.

k times

27. Note that, where k is 0 or even, ^ ^ . . . ^>(AZ 3 Az ) = ( ^ Az v /L )

^ times
is valid.

28. Note that, where k is odd, ^ r̂  . . . ro (Az 3 Af ) = (A; & ro Az ") is

k times
valid.

29. Note that, where U s 0 or even, ^ ^ . . . ^ (B i D B2) = (B1 D β2) is

^ times
valid.

30. Note that, where & is odd, ^ ^ . . . ~ {Bχ D B2) = (βχ & B2) is valid.

k times

31. HE, by the way, is nothing but a combined version of HE1 and Peirce's
Law.

32. For proofs of some of those results, see E. W. Beth and H. Leblanc,
*A Note on the Intuitionist and the Classical Propositional Calculus,"
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Logique et Analyse, no. 11-12 (I960), pp. 174-176, H. Leblanc and Nuel
D. Belnap, Jr., "Intuitionism Reconsidered,* Notre Dame Journal of
Formal Logic, vol. Ill, no. 2 (1962), pp. 79-82, and H. Leblanc, "Etudes
sur les Regies d'Inference dites Regies de Gentzen, Premiere Partie."

33. Similarly, AχJ A2, . . . , An \- B, when classically valid, is intuition-
istically valid as well, so long as Av A2, . . . , An |~ B exhibits no
connective or exhibits no connective other than '&' and 'v*.

34. See the last paper of mine mentioned in footnote 32.

35. See N. D. Belnap, Jr., H. Leblanc, and R. H. Thomason, "On not
strengthening intuitionistic logic," forthcoming in this journal. R. E.
Vesley's disproof of the conjecture in "On strengthening intuitionistic
logic," this journal, vol. IV, no. 1 (1963), p. 80, uses an intelim rule
for 'v* which violates the requirements implicitly placed here upon an
intelim rule. Weak forms of the conjecture have already been proved by
D. H. J. de Jongh and by Belnap and Thomason; see in connection with
the latter two the paper mentioned in footnote 2.
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