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PROOF ROUTINES FOR THE PROPOSITIONAL CALCULUS

HUGUES LEBLANC

I prove in the pages that follow a conjecture of mine, to wit:
Any metastatement of the form
A, A,...,A, B,

where A, A,, . . ., A, (n>0),and B are wffs of PC and ‘|-? is the customary
yields sign, is provable, when valid, by means of the three structural rules
in Table 1 and the intelim rules in Table 1 for such of the connectives '~’,

O, &, V', and ‘=’ as occurin A, A, . . -, A, L B,

and sketch a routine for proving A, 4,, .. ., A, b B, when valid, for each
one of the 32 cases covered by the conjecture.! I also discuss a related
conjecture of mine concerning the intuitionist fragment of PC.

My thanks go to Nuel D. Belnap, Jr., who should be credited for some
of the results of Section II, and to Henry Hiz and Michael D. Resnik, who
read an earlier version of the paper.

I

Let all five of ‘~’°, O’ ‘&’, ‘v’, and ‘=’ be elected to serve as the
primitive connectives of PC; let ‘A’, ‘B’, ‘C’, and ‘D’ be elected to range
over the well-formed formulas (wffs) of PC; let a metastatement of the form
A, Ay A l B, called for short a T-statement, be rated valid if, in
case n = 0, B is satisfied by any assignment of truth-values to the propo-
sitional variables occurring in B, or, in case n > 0, B is satisfied by any
assignment of truth-values to the propositional variables occurring in A,
A, ...,A,, and B which simultaneously satisfies A, A,,...,and A
let a T-statement be rated provable if it is the last entry in a finite column
of T-statements each one of which is of the form R in Table I or follows
from one or more previous T-statements in the column by application of one
of the remaining rules in Table I; and, finally, let a T-statement be rated
provable by means of the structural rules in Table I (to be collectively re-
ferred to as §) and zero or more of the intelim rules in Table I if it is the
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last entry in a finite column of T-statements each one of which is of the
form R or follows from one or more previous T-statements in the column by
application of E, P, or one of the intelim rules in question.

TABLE 1
Structural rules:
R: A} 4
E: I/Al,Az,...,Anl-B,tbenAl,Az,...,An_H}—B;

P: I/'A n_‘_zi—B then A, Ay oo o A s Ajs Ay Apys - v s
A }- B wberez<n+1
Intelim rules for ‘~’ O, ‘&’, *V’, and ‘=":
N If (1) 4, A Ay b Band (A, Ay ... A, | ~B, then

AI,A,,...,An|-~A

n+1’

NE: IfA,A,...,A, b~ ~B,thenA, A, ...,A } B;

HI: IfA,A ﬂ+‘|-B then A,, Az,...,Aﬂ}—ArH_lDB;

HE: If (1) A, 4, ...,A B> Cand(2) A, A, ...,A, - (B>D)D B,
then A, A,, . .., A, } C;

Cl: If (DA, A,...,A, b Band @A, A, ...,A, F C, then A,
Ay ... A FB&G

2

CE: If(DA, 4, ...,4, - B& Cand (2) A, A,,...,A,, B, C} D,
then A,, A,, . .. ,A |- D;

DI: IfA, Az,...,An}—B, then (1) A, A,,...,Ani— B v C and (2) A,,
A,...,A,F CvB;

2

DE: If (1) A, Az,...,A FBvC (4, A
BG4, 4,...,4 I—DtbenAl,Az,...,Anl—D

B } D, and

n’
n’
Bl: If(1)A,A,...,A,B | Cand (2 A, A,...,A, C| B, then

A A, ... A |-B§c

.o

n

BE: If(DA,A,...,4, |—Band(2)eztberA Ay ...,A,F(D=B)=
(D=CorA,Ay...,A, b (D=C)=(D=B), then 4, A, ...,A

- C.

It is easily shown that:

n

TI: IfA, A, ...,A, | Bisprovable, then A, A,, . . .,A, |- B is valid.

I shall accordingly leave this matter to the reader and restrict myself to
proving—as announced before—the following theorem:

T2: If A, A, - ..,A, | Bisvalid, then A, A,, ..., A, k- B is provable
by means of S and the intelim rules for such of the connectives ‘., O,
‘&', V', and ‘=’ as occurin A, A,, . . ., A, |- B,
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from which the converse of T1, namely:

T3: If A, A, ...,A, | Bisvalid, then A}, A, ...,A, | B is provable,

trivially follows. 2

Of theorems T2 and T3, the second still holds when the elimination
rules for D’ and ‘=’ are phrased in the more traditional fashion:

HE" If VA, 4, ..., A, | B and ) A,, A, ...,A, - BD C, then
A, Ay .. ALk G,

and

BE': If (1) A, A,, ...,A, | B and (2) either A, A,,...,A, | B=Cor
Ay Ay - yA - C=B, then A, A, ..., A | C.

The first, however, fails, as I shall establish in Section v.3

II

I address myself in this section to the cases where A, 4,, . . ., An }-— B
exhibits no connective (Case 1) and to the 15 cases, reduced by various in-
ductions to Case 1, where A, 4,,...,4, I B exhibits any one, any two,
any three, or all four of the connectives O’, ‘&’, *v’, and ‘=’. The condi-
tions under which a wff of PC is said in the proof of Case 6 to be in con-
junctive normal form and the routine employed to put a wff of PC in con-
junctive normal form need no rehearsing here. As for the conditions under
which an occurrence of a connective in a wff of PC is said in the proofs of
Cases 2-3 and Cases 7-10 to be either nested or unnested, they read: Let
A be a wff of PC of one of the four forms B> C, B& C, Bv C, and B = C;
then (1) every occurrence (if any) of D', ‘&, *v’, or ‘=’ in B or in Cis a
nested occurrence of that connective, and (2) every occurrence (if any) of
O, &, 'V, or ‘=’ in A that is not nested is unnested.

Case 1: No connective occurs in A, A,, . . ., An [— B.

Proof: Suppose A,, A,,...,A |- B is valid. Then there is bound
to be an i such that 4; is B,* in which case A, A,...,A, |- B follows
from B |- B (= R) by means of E and P. Hence T2.

Case 2: The only connective that occurs in A, A,, . .. ,A, | Bis O

Proof: (a) by induction on p, the number of occurrences of O’ in B,
(b) when p = 0, by induction on g, the number of nested occurrences of O’

in A, A,, ..., and A , and (c) when g = 0, by induction on the number of
unnested occurrences of O’ in A, A,, . .., and A4 .
Step 1: p=0.

Step 1.1: g = 0. Suppose A, A,,...,A, | B is valid. Then (1) there is
bound to be an i such that A, is B, in which case

Ap Ay ooy A Ay oo AL B, (2.1)

2 ]'__,1 ’
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where A, (j < i or j> i) is the left-most one of A, 4,,...,and An to ex-
hibit an occurrence of *D’, is valid and hence—in view of Case 1 or of the
hypothesis of induction—provable by means of S, HI, and HE, or (2) there
is bound to be an i and there is bound to be a j (j <ior j> i) such that A;
is A]. D Aiz’ in which case

AL, A,...,A A, A ...,AnI—B (2.2)

’ =17 12 ’ 1‘+1 ’

is valid and hence—in view of Case 1 or of the hypothesis of induction—
ptovable by means of §, HI, and HE.?> But A, A,...,A, | B follows
from (2.1), in one case, by means of § and from (2.2), in the other, by means

of §, Hl, and HE. Hence T2.

Step 1.2: g > 0. Then there is bound to be an i such that A; is of one of the
two forms (A; D A;)D A; and A; D(A; D A;). Now suppose 4, 4,, ...,
1 2 3 1 2 3

A, I B is valid and A, is of the form (A; D A;)D A; . Then both
1 2 3

A oo ey Ay Ay A DAy Ay ooy A, 1 B (2.3)

17 “Ta ? =y
and

A, A,

12 “hg7 ° ”Ai—l’

Ay Ay - A b B (2.4)

R4
3
are bound to be valid and hence—in view of the hypothesis of induction—
provable by means of S, HI, and HE.® Or suppose A, Ay, ...,A, F Bis
valid and A; is of the form A; D (A; D A;). Then both

1 2 3

AL A, . ..,A,

17 "2 -~

o AL DA A s AL B (2.5)

and

A

19 g ? gy

A,...,A AiZDAZ.S,AiH,...,AnI—B (2.6)

are bound to be valid and hence—in view of the hypothesis of induction—
provable by means of S, HI, and HE.” But A, A,...,A, | B follows
from (2.3) - (2.4) in one case and from (2.5) - (2.6) in the other by means of
the said rules. Hence T2.

Step 22 p > 0. Then B is bound to be of the form B, D B,. Now suppose
AL A,..., A, I Bis valid. Then

Ay Ay ..., A, B, F B, (2.7)

is bound to be valid and hence—in view of Case 1 or of the hypothesis of
induction—provable by means of §, HI, and HE. But A, 4,,...,A, |- B
follows from (2.7) by means of the said rules. Hence T2.8

Case 3: The only two connectives that occur in A, A,, ...,A, - B are
O’ and ‘&’.

Proof: (a) by induction on p, the number of occurrences of O’ and ‘&’
in B, (b) when p = 0, by induction on g, the number of nested occurrences
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of O’ and ‘&’ in A, Ay ,and A, and (c) when g = 0, by induction on
the number of unnested occurrences of ‘&’ in A, A,, . . . ,and A,

Step 1: p=0.
Step 1.1: g = 0. Then there is bound to be an i such that A, is of the form
Az-1 & Aiz° Now suppose A, A,, . . . ,A |- B is valid. Then

Ap Ay .o A, A

VA Ay Ay Ay A B (3.1)

i 7y
is bound to be valid and hence—in view of Case 2 or of the hypothesis of
induction—provable by means of S, Hl,-HE, Cl, and CE. But 4, A4, ...,

A, | B follows from (3.1) by means of the said rules. Hence T2.

Step 1.2: g > 0. Then there is bound to be an i such that A; is of one of
the eight forms (Az-1 D Aiz) D Aia’ Ai; D (Ai2 D) Aia)’ (AZ-1 & Aiz) & Aia’ Ai1 &
(4 & A), (A; D A;) & A, 4 & (A D A;), (A; & 4;)0 A, and 4, O

(A; & A;), where in the last case A; is a propositional variable.?
2 3 1

Step 1.2.1: A; is of one of the first two forms listed. Proof similar to the

proof of Case 2, Step 1.2, but with S, HI, HE, Cl, and CE doing duty for S,
HI, and HE.

Step 1.2.2: A, is of one of the next four forms listed. Proof similar to the
proof of Step 1.1.

Step 1.2.3: A, is of the form (A; & A;) D A;. Suppose A, A, ... ,A, |
B is valid. Then both ! 2 :

Ap Ao s Ay Ay DA, Ay oo AL 1 B 3.2)

-1’
and

A, A,... A

17 Ay -1

Ay DAis A+ oA, B (3.3)

are bound to be valid and hence—in view of Case 2 or of the hypothesis of
induction—provable by means of S, HI, HE, Cl, and CE.!0 But A, Ay e,
A, | B follows from (3.2) - (3.3) by means of the said rules. Hence T2.

Step 1.2.4: A, is of the form A; D (A; & A; ), where A; is a propositional
1 2 3 1
variable. Suppose A, 4,,...,4, I B is valid. Then

Ap Ap ooy Ay A DA, A; D4, Ajpr - A, F B (3.9
is bound to be valid and hence—in view of Case 2 or of the hypothesis of
induction—provable by means of §, HI, HE, Cl, and CE.11 But A, AL ...,
A, - B follows from (3.4) by means of the said rules. Hence T2.

Step 2: p > 0. Then B is bound to be of one of the two forms B, D B, and
B, & B,
Step 2.1: B is of the form B, D B,. Proof similar to the proof of Case 2,

Step 2, but minus the reference to Case 1 and with S, Hl, HE, Cl, and CE
doing duty for S, HI, and HE.
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Step 2.2: B is of the form B, & B,. Suppose A,, 4,, ...,A, | B is valid.
Then both

Ay Ay .. A - B (3.5)

and

A, A,...,A, | B, (3.6)
are bound to be valid and hence—in view of Case 2 or of the hypothesis of
induction—provable by means of S, HI, HE, Cl, and CE. But 4, 4,,...,

A, I B follows from (3.5) - (3.6) by means of Cl. Hence T2.
Case 4: The only connective that occurs in A,, A,, . . . , A, |- B is ‘&’.

Proof by induction on the number of occurrences of ‘&’ in A, 4,, .. .,
A,, and B.

Step I: There is an i such that A; is of the form A; & A;. Proof similar
1 2

to the proof of Case 3, Step 1.1, but with Case 1 doing duty for Case 2 and
with S, Cl, and CE doing duty for S, Hl, HE, Cl, and CE. 12

Step 2: B is of the form B, & B,. Proof similar to the proof of Case 3,
Step 2.2, but with Case 1 doing duty for Case 2 and with S, Cl, and CE
doing duty for S, HI, HE, Cl, and CE.

Case 5: The only connective that occurs in A, A,, . . . , A, F Bis ‘v’

Proof by induction on p, the number of occurrences of ‘v’ in A, A, .. .,
and A, , and, when p = 0, by induction on the number of occurrences of ‘v’
in B.

Step I: p = 0. Then B is bound to be of the form B, v B,. Now suppose
A, Ay, A, }-— B is valid. Then (1) there is bound to be an i such that

A, is or occurs in B,, in which case

A, A, ...,A | B (5.1)

is valid and hence—in view of Case 1 or of the hypothesis of induction—
provable by means of S, DI, and DE, or (2) there is bound to be an 7 such
that A; is or occurs in B, in which case

Ay Ay ALl B, (5.2)

is valid and hence—in view of Case 1 or of the hypothesis of induction—
provable by means of §, DI, and DE.13 But 4, 4,, ... ,A, | B follows
from (5.1) in one case and from (5.2) in the other by means of DI. Hence

T2.

Step 2: p > 0. Then there is bound to be an i such that A; is of the form
A, v Aiz. Now suppose A, A,, . ..,A, |- B is valid. Then both

!

Ap A ooy Ay Ay Ay s AL B (5.3)

17
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and

Ay Ay oA A, Ay, A LB (5.4)

1’ i+1?
are bound to be valid and hence—in view of Case 1 or of the hypothesis of
induction—provable by means of §, DI, and DE. But A, A,,...,A | B
follows from (5.3) - (5.4) by means of the said rules. Hence T2.14

Case 6: The only two connectives that occur in A,, A,, ...,A, - B are
‘v’ and ‘&’.

Proof (a) by induction on p, the number of wffs among A, 4,, . . ., A,,
and B which fajl to be in conjunctive normal form, and (b) when p = 0, by
induction on the number of occurrences of ‘&’ in A, A, ...,A, and B.

Step I: p=0.

Step 1.1: There is an i such that A; is of the form A; & A; . Proof similar

1 2
to the proof of Case 3, Step 1.1, but with Case 5 doing duty for Case 2 and
with DI and DE doing duty for Hl and HE.

Step 1.2: B is of the form B, & B,. Proof similar to the proof of Case 3,
Step 2.2, but with Case 5 doing duty for Case 2 and with DI and DE doing
duty for Hl and HE.

Step 2: p> 0.
Step 2.1: There is an i such that A; fails to be in conjunctive normal form.
Suppose 4., 4,, - . . , 4, - B is valid. Then
Ap Ay oA, AL AL, ..., A B, (6.1)

where A: is any result of putting A; in conjunctive normal form, is bound to
be valid and hence—in view of Step 1 or of the hypothesis of induction—
provable by means of S, DI, DE, Cl, and CE. But A, A4,,...,A, | B
follows from (6.1) by means of the said rules. Hence T2.

Step 2.2: B fails to be in conjunctive normal form. Proof similar to the
proof of Step 2.1.

Case 7: The only connective that occurs in Ay, A, - . . A, | B is'=".

Proof (a) by induction on p, the number of occurrences of ‘=’ in B,
(b) when p = 0, by induction on ¢, the number of nested occurrences of ‘=’

in A, A,,...,and A, and (c) when g = 0, by induction on the number of
unnested occurrences of ‘=’ in A , A, ... ,and A .

Step 1: p=0.
Step 1.1: g=0. Suppose A, A,,...,A, | B is valid. Then (1) there is

bound to be an i such that A; is B, in which case

Ap Ay oo A Ary oo AL 1 B, (7.1)
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where Aj (j <iorj>i)is the left-most one of A}, 4,,...,and 4, to ex-
hibit an occurrence of ‘=’, is valid and hence—in view of Case 1 or of the
hypothesis of induction—provable by means of S, Bl, and BE, or (2) there
is bound to be an i and there is bound to be a j (j > I or j > ) such that 4;
is Aj = Aiz’ in which case

AL Ay, ..., A, A

» By

i Aigr - oAy b B (7.2)

is valid and hence—in view of Case 1 or of the hypothesis of induction—

provable by means of $, Bl, and BE, or (3) there is bound to be an 7 and

there is bound to be a j (j < i or j > 7) such that A; is A; = A]., in which
1

case

Ay by oo s A Ay Ay oA B (7.3)
is valid and hence—in view of Case 1 or of the hypothesis of induction—
provable by means of S, Bl, and BE.!> But 4,, A,...,A, | B follows
from (7.1) in the first case by means of §, from (7.2) in the second by means
of S, Bl, and BE, and from (7.3) in the third by means of S, Bl, and BE.
Hence T2.

Step 1.2: g > 0. Then there is bound to be an i such that A, is of one of
the two forms (A; = Ai )=A; and A; = (A; = A;). Now suppose A, A,
1 2 1 2 3

()

..-,A, | Bisvalid. Then all three of

A, Ay .- 7Ai-1’ Aix’ AI-2 = Ais’ Appr o v 4, - B, (7.4)

A, Ay e ’Ai—x’ Aiz’ AZ.1 = Aia' Ajr -+ A, - B, (7.5)
and

A, A, AL, Aia’ Ai1 = Ai:’ Apyy -+ -5 4, - B (7.6)

are bound to be valid and hence—in view of the hypothesis of induction—
provable by means of §, Bl, and BE.16 But A, A,...,A, | B follows
from (7.4) - (7.6) by means of the said rules. Hence T2.

Step 2: p > 0. Then B is bound to be of the form B, = B,. Now suppose
A, A, ...,A, I B is valid. Then both

A, Ay, ...,A, B | B, (7.7)

and

A1’ Az’ c et ’An’ Bz ’— Bl (7.8)
are bound to be valid and hence—in view of Case 1 or of the hypothesis of
induction—provable by means of S, Bl, and BE. But A, A,,...,A | B
follows from (7.7) - (7.8) by means of the said rules. Hence T2.

Case 8: The only two connectives that occur in A, Ay, ..., A, b B are
=’ and O’



PROOF ROUTINES FOR THE PROPOSITIONAL CALCULUS 89

Proof (a) by induction on p, the number of occurrences of ‘=’ and *O’
in B, (b) when p = 0, by induction on ¢, the number of nested occurrences

of ‘=" and O’ in A, A,,...,and A, and (c) when g = 0, by induction on
the number of unnested occurrences of >’ in A, 4,, . . . ,and A,.
Step I: p=0.
Step 1.1: g = 0. Then there is bound to be an i such that A; is of the form
Ai1 p) Aiz° Now suppose A, A,, . . . , A, |- B is valid. Then both
Ap Ay Ay Ay = Ay Ay A, | B (8.1)
and
A Ay oo Aip Ay Aps oAy | B (8.2)

are bound to be valid and hence—in view of Case 7 or of the hypothesis of
induction—provable by means of §, Bl, BE, Cl, and CE.!7 But A, A, ...,
A, I B follows from (8.1) - (8.2) by means of the said rules. Hence T2.

Step 1.2: g > 0. Then there is bound to be an i such that A; is of one of
the eight forms (4, = 4,) = A;, A; = (A; = A;), (4; D A4;)D 4,4, D
1 2 3 1 2 3 3 1

(4 D 4;), (4; D40 =4, 4; = (4; D 4,), (4; = 4, )0 4, o and 4; D

(Az. = A; ), where in the last case AZ. is a propositional vanable
2 3 1

Step 1.2.1: A; is of one of the first two forms listed. Proof similar to the
proof of Case 7, Step 1.2, but with S, Bl, BE, Hl, and HE doing duty for S,
Bl, and BE.

Step 1.2.2: A, is of one of the next two forms listed. Proof similar to the
proof of Case 2, Step 1.2, but with §, Bl, BE, Hl, and HE doing duty for §,
HI, and HE.

Step 1.2.3: A, is of the form (A > A ) A;. Suppose A, 4,,...,A
b B is valid. *Then both ?

n

Ay Ay ooy Apy Ay Ay = Ay Ay oo LA B (8.3)

and

A, A

1,

R Y L (8.4)

27 "0 1-1’ i+’

are bound to be valid and hence—in view of Case 7 or of the hypothesis of
induction—provable by means of §, Bl, BE, HI, and HE.!® But A, A, ...,
A, |- B follows from (8.3) - (8.4) by means of the said rules. Hence T2.

Step 1.2.4: A, is of the form A. = (A- DA ). Proof similar to the proof of
Step 1.2.3, but with A; doing duty for A Ai doing duty for A;, and A;
doing duty for A K ? ! ?

Sf(-‘)p 7.2:5: A; is of the form (Ai1 = Aiz) p) Aia. Suppose A, A,, ..., A, |-
B is valid. Then all three of
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AL A, ... y Ay Ai;’ Ai, D Aia’ Ai+1’ R - B, (8.5)
A, Ay oo s A, Aia’ Ai1 D Aia’ Appys - - y A, I B, (8.6)

and
AL, A, ... v A Aia’ Ay - or 4, - B (8.7)

are bound to be valid and hence—in view of Case 7 or of the hypothesis of
induction—provable by means of S, Bl, BE, HI, and HE.1° But A, A, ...,
A, |- B follows from (8.5) - (8.7) by means of the said rules. Hence T2.

Step 1.2.6: Ai1 D (AZ-2 = Ais)’ where Ai1 is a propositional variable. Suppose

A, A, ...,A, | Bisvalid. Then both
A Ay oo Ay Ay DA A DA Ay LA R B (B8)
and
A Ay oAy A = Ay Ay - oy A 1 B (8.9)
2

are bound to be valid and hence—in view of Case 7 or of the hypothesis of
induction—provable by means of §, Bl, BE, HIl, and HE.2% But AL, A, ...,
A, |- B follows from (8.8) - (8.9) by means of the said rules. Hence T2.

‘Step 2: p > 0. Then B is bound to be one of the two forms B, = B, and
B, D B,.

Step 2.1: B is of the form B, = B,. Proof similar to the proof of Case 7,
Step 2, but minus the reference to Case 1 and with S, Bl, BE, HI, and HE
doing duty for S, Bl, and BE.

Step 2.2: B is of the form B, D B,. Proof similar to the proof of Case 2,
Step 2, but with Case 7 doing duty for Case 1 and with S, Bl, BE, Hl, and
HE doing duty for S, Bl, and BE.

Case 9: The only two connectives that occur in A, A,, . . . » A, F B are
‘=’ and ‘&’. '

Proof (a) by induction on p, the number of occurrences of ‘=’ and ‘&’
in B, (b) when p = 0, by induction on ¢, the number of nested occurrences
of '=’ and ‘&’ in A}, A,, ... ,and A,, and (c) when g = 0, by induction on
the number of unnested occurrences of ‘&’ in A, A,, . . . ,and 4 .

Step I: p=0.

Step 1.1: g = 0. Then there is bound to be an i such that A; is of the form
A; & A;, in which case T2 by the same reasoning as in Case 3, Step 1.1,
1 2

but with Case 7 doing duty for Case 2 and with Bl and BE doing duty for
HI and HE.



PROOF ROUTINES FOR THE PROPOSITIONAL CALCULUS 91

Step 1.2: g > 0. Then there is bound to be an i such that A; is of one of

the eight forms (A; = A;) = A,, A, = (4; = 4,), (A, & A,) & 4;, A, &
11 zz 13 11 2 13 z]. 12 13 11

(A; 8 A, (A = 4) & A, A, & (A = 4;), (4; & A=A, and 4; =

1
(A; & A;), where A; in the seventh case and A; in the eighth case are
2 3 3 1

propositional variables.

Step 1.2.1: A, is of one of the first two forms listed. Proof similar to the
proof of Case 7, Step 1.2, but with §, Bl, BE, Cl, and CE doing duty for §,
Bl, and BE.

Step 1.2.2: A, is of one of the next four forms listed. Proof similar to the
proof of Step 1.1.

Step 1.2.3: A, is of the form (Ai1 & Aiz) = Ais’ where Ai3 is a propositional

variable. Suppose A, A,, ..., A, |- Bis valid. Then all three of
Ap Ay oo o By Ay = AL A A oA B, 9.1)
A Ay By A=Ay A Ay oA B, 9.2)
and
Ao Ao oA A=A A=A Ao LA B (93)

are bound to be valid and hence—in view of Case 7 or of the hypothesis of
induction—provable by means of S, Bl, BE, Cl, and CE. 21 But AL, A,...,
A, |- B follows from (9.1) - (9.3) by means of the said rules. Hence T2.

Step 1.2.4: A, is of the form A. = (A. & A; ), where A- is a propositional

variable. Proof similar to the proof of Step 1.2.3, but w1th A doing duty
for A y A domg duty for A; X and A; domg duty for A

Step 2: p > 0. Then B is bound to be of one of the two forms B, = B, and
B, & B,.
Step 2.1: B is of the form B, = B,. Proof similar to the proof of Case 7,
Step 2, but minus the reference to Case 1 and with S, Bl, BE, Cl, and CE
doing duty for S, Bl, and BE.

Step 2.2: B is of the form B, & B,. Proof similar to the proof of Case 3,
Step 2.2, but with Case 7 doing duty for Case 2 and with Bl and BE doing
duty for Hl and HE.

Case 10: The only two connectives that occur in A, A, . . ., A, b B are
QE’ and (v,

Proof (a) by induction on p, the number of occurrences of ‘=’ and ‘v’ in
B, (b) when p = 0, by induction on g, the number of nested occurrences of
‘=’ and ‘v’ in A, A, .- ,and A, , and (c) when g = 0, by induction on the
number of unnested occurrences of ‘v’ in Al, Ay evvs and A,
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Step 1: p=0.

Step 1.1: g = 0. Then there is bound to be an i such that A; is of the form

A; v A;, in which case T2 by the same reasoning as in Case 5, Step 2, but
1 2

with Case 7 doing duty for Case 1 and with S, Bl, BE, DI, and DE doing duty
for S, DI, and DE.

Step 1.2: g > 0. Then there is bound to be an i such that A, is of one of the
eight forms (A; = A;)=A;, A; =(A; =A4;),(4; vA)VA;, A v(A

1 2 3 1 2 3 1 2 3 1 2
v Aia)’ (Ail = Aiz) v Ais’ Ai1 v (Ai2 = Ais)’ (Ai1 v Aiz) = A., and Ai1 = (Ai2 v

A; ), where A; in the seventh case and A; in the eighth case are proposi-
3 3 1

;7 ?
13

tional variables.

Step 1.2.1: A; is of one of the first two forms listed. Proof similar to the
proof of Case 7, Step 1.2, but with S, Bl, BE, DI, and DE doing duty for S,
Bl, and BE.

Step 1.2.2: A; is of one of the next four forms listed. Proof similar to the
proof of Step 1.1.

Step 1.2.3: A; is of the form (A; v A;) = A;, where A; is a propositional
1 2 3 3
variable. Suppose A, 4,,...,A, | Bis valid. Then all three of

A,A,...,A

17 “h2

Ay Ajs Ay - A, - B, (10.1)

i—1?

Ap Ay e v Ay Ay Ay Ars 04, L B, (10.2)

and

LS
n
>
>
I}

Ay Ay s Ay = A, A=A Ay oo AR B (103)

are bound to be valid and hence—~in view of Case 7 or of the hypothesis of
induction—provable by means of S, Bl, BE, DI, and DE.21bis Byt A, A,
... 4A, |— B follows from (10.1) - (10.3) by means of the said rules. Hence
T2.

Step 1.2.4: A, is of the form Az.1 = (Aiz v Aia)’ where Ai1 is a propositional

variable. Proof similar to the proof of Step 1.2.3, but with A; doing duty
for Aia’ Ai2 doing duty for Aix’ and Ai3 doing duty for Aiz' '

Step 2: p > 0. Then B is bound to be of one of the forms B = B, and
B, v B,.

Step 2.1: B is of the form B, = B,. Proof similar to the proof of Case 7,
Step 2, but minus the reference to Case 1 and with S, Bl, BE, DI, and DE
doing duty for S, Bl, and BE.

Step 2.2: B is of the form B, v B,. Suppose A,, A,,...,A, | B is valid.
Then

Ay Ay ... A, B =B, | B, (10.4)

1?
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is bound to be valid and hence—in view of Case 7 or of the hypothesis of
induction—provable by means of S, Bl, BE, DI, and DE.21lter By A, A,
.. .,A, | B follows from (10.4) by means of the said rules. Hence T2.

Case 11: The only two connectives that occur in A, A,, ... ,A, B are
D’ and *v’.

Proof by induction on the number of occurrences of ‘v’ in A;, A,;, . . .,

A,, and B.

Step 1: B is of the form B, v B,, where B, does not exhibit any ‘v’. Sup-
pose A,, A,, . .., A, |- B is valid. Then

Ay A, ...,A (B, DB)DB, (11.1)

1? 2

is bound to be valid and hence—in view of Case 2 or of the hypothesis of
induction—provable by means of S, Hl, HE, DI, and DE.22 But AL A, ..,
A, | B follows from (11.1) by means of the said rules. Hence T2.

Step 22 B has a component of the form B; v B, where B, does not ex-
hibit any ‘v’. Suppose A, A,, ..., A, | Bis valid. Then

Ay Ay AL B, (11.2)

12 2

where B is like B except for exhibiting ((B; D B,) D B,) D B; where B ex-
hibits (B]- v By) D B; or for exhibiting B, D ((B]. D Bk) D B,) where B ex-
hibits B; > (B, v Bk)’ is bound to be valid and hence—in view of Case 2
or of the hypothesis of induction~provable by means of S, Hl, HE, DI, and
DE. But A, 4,,...,4, k- B follows from (11.2) by means of the said
rules. Hence T2.

Step 3: There is an i such that A; is of the form A; v A, , where A; does
1

2, 2
not exhibit any ‘v’. Proof similar to the proof of Step 1.

Step 4: There is an i such that A; has a component of the form A; v Az-le
]
where Aik does not exhibit any ‘v’. Proof similar to the proof of Step 2.

b

Cases 12-16 are provable along similar lines. Appended is a table
(Table IIb) of the various cases to which they reduce and of the transfor-
mations—effected for illustration’s sake on B, D B,, B, & B,, B, v B, and
B, = B,—which insure those reductions. A key to the abbreviations used in
Table IIb is supplied in Table Ila.
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TABLE Ila

T1: B, DB, > (B, & B)=B

B
. o R 23
T2: B, DB, ---> (B, v B,) =B,
T3: B, & B, --->((B, D B,) D Bz) =(B, =B,)
T4: B, & B, ---> (B, v Bz) = (B, = Bz)
T5: B, v B, ---> (B, D B,) D B,
Té: B, v B, ---> (B, & B,)=(B, = B))
T7: B, =B, -->(B, D B,) & (B,D B))
TABLE IIb
Cases Reducible to Cases By means of
12: O, ‘&', and ‘v’ 3 TS
3 T7
13: D%, ‘&’, and =’
8 T3
8 T5
14: D', *v’, and ‘=’
10 T2
9 T6
15: ‘&, ‘v’, and ‘=’
10 T4
3 T5 and T7
16: (D’ !&’, 3 ,
and =’ 8 T3 and T5
2 9 T1 and T6
10 T2 and T4
II1
I complete in this section the proof of T2 by solving the case where
A, A, ... A, I exhibits only ‘<’ (Case 17) and reducing to Case 17 the
15 cases whete A, Ay oA F B exhibits besides ‘~’ any one, any

two, any three, or all fout of ‘D’, ‘&’, ‘v’, and ‘=’.
Case 17: The only connective that occurs in A, A,, ... ,A, b B is '~

Proof by induction on p, the number of wffs among A, A,,...,4,
and B which consist of two or more occurrences of ‘~.’ followed by a propo-
sitional variable.

Step 1: p = 0. Suppose A,, A,, ... ,A, | B is valid. Then (1) there is
bound to be an i such that A; is B, in which case A, A, ... ,A, I B fol-
lows from B |- B (= R) by means of E and P, or (2) there is bound to be an
i and there is bound to be a j (j < Z or j > 7) such that A; is ~ A, in which
case A, 4,, A, | B follows from Aj = Aj and ~A b ~4; (= R) by
means ofE P Nl and NE.24 Hence T2.
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Step 2: p > 0. Then there is bound to be an 7 such that A; is of the form
~~. ..~ A* where k> 2 and A* is a propositional variable, or B is bound
\_,v~/ 1 - 1

k times
to be of the form~ ~ ... ~B*, where £ > 2 and B* is a propositional vari-
k times
able.

Step 2.1: A, is of the form~ ~. ..~ A}. Suppose A, A,,...,A, | Bis
N~

k times
valid and & is even. Then

Ay Ay A, AN Ay, o AL B (17.1)

is bound to be valid and hence—in view of Step 1 or of the hypothesis of
induction—provable by means of §, NI, and NE.?> Or suppose A, A,...,
A, | Bis valid and k is odd. Then

Ay Ay ooy Apyy ~AY Ay oo A B (17.2)

is bound to be valid and hence—in view of Step 1 or of the hypothesis of
induction—provable by means of §, NI, and NE.26 But A, A,...,A |- B
follows from (17.1) in one case and from (17.2) in the other by means of the
said rules. Hence T2.

Step 2.2: B is of the form~~ . . . ~B*. Proof similar to the proof of Step
N,
k times
2.1.

Case 18: The only two connectives that occur in A,, A,, ..., A, I B are
'~ and .

Proof by induction on the number of occurrences of O’ in A, A, .. .,
A,, and B.

Step 1: There is an 7 such that A; is of the form ~~. ..~ (4; D A;)
N, 1 12

k times
where &> 0.

Step 1.1: k equals O or k is even. Suppose A, A,,...,A, | B is valid.
Then both

Ap Ay oo A, A Ay, ..., A | B (18.1)

b ;. b
11 41
and

A, A,

Ay AL,

A, A

i Aiar - e A, B (18.2)
are bound to be valid and hence—in view of Case 17 or of the hypothesis of
induction—provable by means of S, NI, NE, HI, and HE.%7 But AL, A, ...,

A, I B follows from (18.1) - (18.2) by means of the said rules. Hence T2.
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Step 1.2: kis odd. Suppose A, A,,...,A |} Bisvalid. Then

Y Y I N (18.3)

is bound to be valid and hence—in view of Case 17 or of the hypothesis of
induction—provable by means of $, NI, NE, Hl, and HE.?8 But AL, A, ...,
A, |- B follows from (18.3) by means of the said rules. Hence T2.

Step 2: B is of the form~ ~. . .~ (B, D B,), where k> 0.
N
k times

Step 2.1: k equals 0 or k is even. Suppose A, A, ...,A, | B is valid.
Then

Ay Ay, .. .,A, B, } B, (18.4)

is bound to be valid and hence—in view of Case 17 or of the hypothesis of
induction—provable by means of S, NI, NE, HI, and HE.%% But A, Ay e
A, |- B follows from (18.4) by means of the said rules. Hence T2.

Step 2.2: k is odd. Suppose A, A,, .. .,A, | Bis valid. Then both
A, A, ... A, & B, (18.5)

and

A, A, ...,A | ~B, (18.6)

are bound to be valid and hence—in view of Case 17 or of the hypothesis of
induction—provable by means of S, NI, NE, HI, and HE.30 But AL, A, ...,
A, | B follows from (18.5) - (18.6) by means of the said rules. Hence T2.

Case 19: The only two connectives that occur in A, A,, ... ,A, - B are
t ’ ¢ ’
' and ‘&’.

Proof similar to the proof of Case 18, but with ‘&’ doing duty for O’
Cl and CE doing duty for Hl and HE,

Ay By ooy B Ayy Mgy Ay oo Ay b B

» Ay
doing duty for (18.1) - (18.2),

AL, Ay - AL~ Aix’ App o v 04, - B
and

AL Ay oA e Aiz, T - B
doing duty for (18.3),

A, A,...,A, } B,
and

A, A,...,A, } B,

2
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doing duty for (18.4), and
A, A, ...,A, B, F ~B,
doing duty for (18.5) - (18.6).

Case 20: The only two connectives that occur in A,, A, ... ,A, B are

) and 'v'.

Proof similar to the proof of Case 18, but with ‘v’ doing duty for O’
DI and DE doing duty for Hl and HE,

imir Ais Ay -2 A, - B

?

AL A,...,A
and

A, A A A

10 gy e e e 9 gy

doing duty for (18.1) - (18.2),

Ajyr -+ - A, F B

; 2
4

Ay A ooy By Ay A Ay o5 A1 B

=1
doing duty for (18.3),

A, A, ... A, ~B, F B,

2

doing duty for (18.4), and

Ay Ay ..o AR ~B

2

and
A, A, ... A, ~B,
doing duty for (18.5) - (18.6).

Case 21: The only two connectives that occur in A, A,, ... ,A, - B are
'~ and ‘=’.

Proof similar to the proof of Case 18, but with ‘=’ doing duty for O,
Bl and BE doing duty for Hl and HE,

Ay Ay oo oAy Ay Ay Ay o0 AL B B

’ =17
and

Ay Ay ey A

i—1?

~Ai1, "’Ai,’ Ajpys v oo Ay - B
doing duty for (18.1) - (18.2),

AL Ay oA, Ail,N Aiz’ Ajyp oo A, F B
and

A Ay ev s Ay Ay Agy Ay oo Ay b B
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doing duty for (18.3),

A, A,...,A,B | B,

2

and

Ay, A, ...,A, B, | B,

2

doing duty for (18.4), and

A, A, ..., A, ~B | B,
and

A, A,...,A, ~B, | B,
doing duty for (18.5) - (18.6).

Cases 22-32 are provable in the same manner as Case 11. Appended
is a table (Table IlIIb) of the various cases to which they reduce and of the
transformations—effected for illustration’s sake on B, D B,, B, & B,, B, v B,,
and B, = B,~which insure those reductions. A key to the abbreviations used
in Table IIIb is supplied in Table Illa.

TABLE Illa

T1: B, D B, >~ (B, & ~B,)
T2: B, DB, -->~B, v B,

T3: B, & B, =-->~ (B, > ~B,)
T4: B, & B, -->~ (~B, v ~B,)
TS: B, v B, >~ B, D B,

T6: B, v B, ~->~ (~B, & ~B,)

T7: B, = B, =->~ ((B, D B,) D ~(B, D B,))

T8: B, = B, >~ (B, & ~B,) & ~(B, & ~B,)

T9: B, = B, =-=->~ (~(~B, v B)) v~ (~B, v B)))
TABLE IIIb
Cases Reducible to Cases By means of
18 T3
22: ‘', D', and ‘&’
19 T1
18 TS5
23: ‘<, O and v’
20 T2
24: W', D’ and ‘=’ 18 T7
19 Té6
25: ‘<, &’ and ‘v’
20 T4
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TABLE IIIb (Continued)

Cases Reducible to Cases By means of
26: '), ‘&', and ‘=’ 19 T8
27: ‘<, V', and =’ 20 T9
18 T3 and TS5
28: QN’, (39’ (&’
and v’ { 19 T1and T6
20 T2 and T4
29: ', O, & {18 T3 and T7
and ‘=’ 19 T1and T8
30: '~ D W, { 18 TS and T7
and =’ 20 T2 and T9
31: <, &, VY, { 19 T6 and T8
and '=’ 20 T4 and T9
18 T3, T5, and T7
32: (Ni’ QD’, !&”
(v” and ‘=’ 19 TI, T6, and T8
20 T2, T4, and T9
v

My main theorem, T2, fails, as I remarked in Section II, when the elimi-
nation rules for O’ and ‘=’ are respectively made to read like HE' and BE'.
pDq (p D) D g} g, for example, though classically valid, is not intuition-
istically valid; R, E, P, Hl, and HE', on the other hand, are all intuition-
istically sound; p D g, (¢ D 1) D g |- g is therefore not provable by means of
R, E, P, HI, and HE'.31 Similarly, p, (r=p)=(r=q } gandp, (r=¢q) =
(r = p) | g, though classically valid, are not intitionistically valid; R, E,
P, Bl, and BE', on the other hand, are all intuitionistically sound; neither
p, r=p)=(r=¢9 F gnorp, (r=q) =(r=p) |} qis therefore provable by
means of R, E, P, Bl, and BE".

It should, nonetheless, be noted that HE follows from HE' by means of
R, E, P, HI, NI, and NE or by means of R, E, P, HI, Bl, and BE, and hence
may occasionally give way to HE'. Similarly, BE follows from BE' by means
of R, E, P, Bl, Hl, and HE or by means of R, E, P, BI, NI, and NE, and
hence may occasionally give way to BE'. Finally, NE follows from the in-

tuitionist elimination rule for ‘~’, namely:

NE' If (1) A, A, ..., A F Band (2 A, A, ...,A, F ~B, then A,
Ap . A F G

2
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by means of R, E, P, NI, HI, and HE or by means of R, E, P, NI, Bl, and
BE, and hence may occasionally give way to NE'.32

Now for my second conjecture. Suppose A, A,,...,A, | B exhibits
no connective or exhibits no connective other than ‘&’ and ‘v’. It follows
from T1 and T2 that if A}, 4,,...,4, - B is provable or, as I shall now
put it, classically provable, then A, 4,, ..., A, | B is provable by means
of R, E, P, Cl, CE, DI, and DE. But all seven of those rules-I just noted—
are intuitionistically sound. Hence if A, A, ... ,A, I B is classically
provable, then A, Az’ e ey Aﬂ |- B is intuitionistically provable as well.33
I conjectured that in view of this result one cannot convert a set of struc-
tural and intelim rules fit for pPCy, the intuitionist variant of PC, into one
fit for PC by altering the intelim rules for ‘&’ or y’.34 The surmise is of
some interest since we have long known how to bridge the gap between PC,
and PC by altering the intelim rules for ‘~’ and have recently learned how
to bridge that gap by altering the intelim rules for *D’ or those for ‘=’. Proof
of it is now available, but must be saved for another occasion.>’

NOTES

1. See “Etudes sur les Regles d’Inférence dites Regles de Gentzen, Pre-
mitére Partie,” Dialogue, vol. 1, no. 1, pp. 56-66, where I offered the
conjecture for a slightly different, but equivalent, set of structural and
intelim rules. Four cases of my conjecture (Cases 1, 4, 5, and 6) have
been studied independently by Nuel D. Belnap, Jr. and R. H. Thomason;
see footnote 2.

2. In view of T1 and T2 a T-statement T, when provable at all, is bound to
be provable by means of § and the intelim rules for such of the connec-
tives <’, ', ‘&', ‘v’, and ‘=’ as occur in T. Now let the following

structural rule:

C: If DA, Ay...,A, B Cand (DA, A,...,A & B, then
Ay Ay Ak C,

n

be appended in Table I to R, E, and P; let a T-statement T be rated
derivable from n (n2 0) T-statements T,, T,, . ..,and T, if T is the
last entry in a finite column of T-statements each one of which is a T,
or is of the form R in Table I, or follows from one or more previous T-
statements in the column by application of one of the remaining rules in
Table I; and let the same T-statement T be rated derivable from the same
T-statements T,, T,, . . .,and T, by means of § and zero or more of the
intelim rules in Table I if T is the last entry in a finite column of T-
statements each one of which is a T}, or is of the form R in Table I, or
follows from one or more previous T-statements in the column by appli-
cation of E, P, C, or one of the intelim rules in question. Belnap and
Thomason have recently proved of any n+l T-statements T, T, T,, . . .,
and T, which exhibit no connective or exhibit no connective other than
‘&’ and ‘v’ that T, when derivable at all from T,, T,, ... ,and T, is
derivable from them by means of $§ and the intelim rules for such of the
connectives ‘&’ and ‘v’ as occur in T, T, T,,...,and T, ; see A
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Rule-completeness Theorem,” Notre Dame Journal of Formal Logic, vol.
IV, no. 1 (1963), pp. 39-43. I would conjecture, to generalize upon this
result, that a T-statement T, when derivable at all from » T-statements
T,, Tyy ...,and T,, is derivable from them by means of § and the
intelim rules for such of the connectives ‘<), O, ‘&’, *v’, and ‘=’ as
occur in T, T,, T,, . .. ,and T,. Rule C, by the way, is redundant in
the presence of the intelim rules for any one of the connectives ',
(D,, (&” !v’, and 'E,.

Version HE of the elimination rule for 3’ was suggested to me by Pro-
fessor Stig Kanger.

Note that if there were no i such that A; is B, then A, A,, ... » A,
b B would come out false when the truth-value T is assigned to every

oneof A, A, ...,and A , and the truth-value F is assigned to B.

Note that if there were no i such that A; is B and there were no two 1
and | such that A; is A]. D) Aiz’ then A, A,,...,A, | B would come

out false when F is assigned to B, F is assigned to the left-hand com-
ponent of every conditional among A,, A,, ...,and A, whose right-
hand component is assigned F, and T is assigned to every other propo-
sitional variable that may occur in A, A, ... ,and A,. Note also
that (A]. & (A]. D Aiz)) = (Ai & Aiz) is valid

Note that ((Ai DA )D A; )= ((Ai & (Ai D Ai Nv A; ) is valid, a point
1 2 3 1 2 3 3
which was brought to my attention by Professor Henry Hiz and Professor
Belnap and proved crucial to the solution of Case 2.
Note that (Ai D) (Ai D Ai ) = ((Ai D Ai ) v (Ai D Ai )) is valid.
1 2 3 1 3 2 3

Case 2 could be proved somewhat more simply if I modified it to read:
“The only connective (if any) that occurs in A, A, ... ,An l— B is
2?,” and did not insist on reducing it to Case 1. The same holds true
of a few other cases in this section.

Note that when A; is a conditional, then the A; in question is of the
1
first form listed, and when A; is a conjunction, then the A; in question

1
is of the seventh form listed. That the eight forms listed (and like ones
in the proofs of Cases 8-10) are exhaustive was pointed out to me by
Professor Belnap and proved crucial to the solution of Case 3.

Note that (A; & A;)D A;) =((A; D A;) v (A; DA,;)) is valid.
1 2 3 1 3 2 3
Note that (Az- D (Ai & A; ) = ((Al. D Ai) & (A; D A )) is valid; note
1 2 3 1 2 1 3
also that, so long as A; is a propositional variable, A; D A; and A;
1 1 2 1

D> A; jointly exhibit one nested occurrence of O’ and ‘&’ less than
3

Al.1 D) (Aiz & Ais) does.
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12.

CE"

13.

14.

DE":

15.

16.

17.

18.

19.
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The above proof of Step 1, presupposing as it does rule C of footnote
2, no longer goes through when the elimination rule for ‘&’ is phrased
in the more traditional fashion:

If Ay Ay ooy A - B&C, then (1) A, A, ..., A | B and (2) A,,
Ay A FC,

2

since CE' does not yield C. Professor Belnap has obtained a proof of
Step 1 which eschews CE in favor of CE'. The proof, however, does
not suit my declared strategy of reducing all of Cases 2-16 to Case 1.
In view of the conjecture of footnote 2, I also prefer of two elimination
rules the one which yields C. CE was suggested to me as a substi-
tute for CE' by Professor Belnap.

Note that if there were no i such that A; is or occurs in B, or B,, then
AL Ay e o ey An }-— B would come out false when T is assigned to every
one of A, A,,...,and A , and F is assigned to every propositional
variable that occurs in B.

The above proof of Case 5 still goes through when the elimination rule
for *v’ is phrased in the more traditional fashion:

If (DA, A,y ...,A, B} Dand (A, A,...,A, Cl D, then
A, Ay ... A, BvCFED.

In view, however, of the conjecture of footnote 2, I prefer DE, which
yields rule C of that footnote, to DE', which does not. DE was sug-
gested to me as a substitute for DE' by Professor Belnap.

Note that if there were no i such that A; is B and there were no two
i and j such that 4; is Aj=A; orA; = A, then A, A, ...,A |- B

z 1

would come out false when F ;s assigned to B, F is assigned to the
left-hand (right-hand) component of every biconditional among A,
A, ...,and A whose right-hand (left-hand) component is assigned
F, and T is assigned to every other propositional variable that may
occur in A}, A,, . ..,and A . Note also that (A]. & (A]. = Aiz)) = (A]. &

A.) is valid.
12
Note that ((A; = A;)=4,)=(((4; &(4; =A;)) v(4; &(A; =A4,))
2 3 1 2 3 2 1 3
v (4; & (A; = A;))) is valid, a point which was brought to my atten-
3 1 2
tion by Professor Belnap and proved crucial to the solution of Case
7.
Note that (A; D A;) = ((A; = A;) v Ap) is valid.
1 2 1 2 2
Note that ((A; D A;)=A4,)=((4; &(A; =A,) v ((4; DA4;)&A;))
. . 1 2 3 1 2 3 it ) )
is valid.
Note that ((A; = A;)D 4;) =(((A; & (A; D A;)) v (A &(A; DA;)))
2 3 1 2 3 2 1 3

1
v A.) is valid.
13
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23.
24.

25.

26.

27.

28.

29.

30.

31.

32.
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Note that (A; D (A; = A;)) = (((4; D A; ) & (A; DA, ) v (Ai =A;))
is valid. ! 2 } ! 2 ! 3 2 :
Note that ((A; &A;)=A4,)=(4; = Az.)& Ai)v (A, EAi)&Ai )
1 2 3 1 3 2 2 3 1
v((A; =A;)&(A; = A ))) is valid.
1 3 2 3

b1 Note that (4, v A= A) = (A & A;) v (A, & A v (4 =
1 2 1

A; ) & (Ai =A; ))) is valid.
3 2 3

.tef Note that (B, v B,) = ((B, = B,) O B)) is valid.
22.

Note that (B, v Bz) = ((B,D Bz) D Bz) is valid. The need for the restric-
tion ‘where B, does not exhibit any *v’’ (and like ones in Steps 2-4) was
pointed out to me by Professor Belnap.

Or, less familiarly, (B, = B,) v B,.

Note that if there were no i such that A; is B and there were no two
i and j such that A; is ~Aj, then A, A,,...,A, | B would come
out false when F is assigned to every propositional variable that is
prefaced in A, A, . . ., and A, by '~*, T is assigned to every other
propositional variable that may occur in A,, A,, and A, and T or F is
assigned to the propositional variable that occurs in B according as
. . t
that variable is prefaced or not by ‘~’.
Note that, where k is even,  ~, . . .~ A} = A7 is valid.

N
k times

Note that, where kisodd, ~ ~. . . ~ A:f = ~A: is valid.
N~

k times

Note that, where & is 0 or even,~ ~ . .. ~(4; D 4;) =(~A; VA;)
1 2 1 2

N
k times
is valid.
Note that, where %k is odd, ~~... ~(4; D A;) =(4; & ~4;)is
N~ 1 2 1 2
k times
valid.

Note that, where k£ is 0 or even, ~ ~y. - - N(B1 DB, =(B D Bz) is
N~
k times

valid.

Note that, where & is 0dd, ~ &, - - <~ (B, D B,) =(B, & B,) is valid.
N

k times

HE, by the way, is nothing but a combined version of HE' and Peirce’s
Law.

For proofs of some of those results, see E. W. Beth and H. Leblanc,
“A Note on the Intuitionist and the Classical Propositional Calculus,”
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33.

34.
35.

HUGUES LEBLANC

Logique et Analyse, no. 11-12 (1960), pp. 174-176, H. Leblanc and Nuel
D. Belnap, Jr., “Intuitionism Reconsidered,” Notre Dame Journal of
Formal Logic, vol. 1II, no. 2 (1962), pp. 79-82, and H. Leblanc, “Etudes
sur les Regles d’'Inférence dites Regles de Gentzen, Premitre Partie.”

Similarly, A, A, ...,4, I B, when classically valid, is intuition-
istically valid as well, so long as A, A4,,...,4, I B exhibits no
connective or exhibits no connective other than ‘&’ and ‘v’.

See the last paper of mine mentioned in footnote 32.

See N. D. Belnap, Jr., H. Leblanc, and R. H. Thomason, “On not
strengthening intuitionistic logic,” forthcoming in this journal. R. E.
Vesley’s disproof of the conjecture in “On strengthening intuitionistic
logic,” this journal, vol. IV, no. 1 (1963), p. 80, uses an intelim rule
for ‘v’ which violates the requirements implicitly placed here upon an
intelim rule. Weak forms of the conjecture have already been proved by
D. H. J. de Jongh and by Belnap and Thomason; see in connection with
the latter two the paper mentioned in footnote 2.
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