Notre Dame Journal of Formal Logic Volume IV, Number 1, January 1963

ADDENDUM TO MY ARTICLE "PROOF OF SOME THEOREMS ON RECURSIVELY ENUMERABLE SETS"

TH. SKOLEM

In the mentioned previous paper I proved the theorem that every recursively enumerable set could already be enumerated by a lower elementary function (see Df. 1 on p. 65 in [3]). On pp. 71-72 in the same paper I gave a hint of another possible proof of this statement. I have found later a version of this second proof which is particularly simple and which I should like to present here.

It follows from a result of E. L. Post that it will be sufficient to prove that every canonical set in a normal system (see [1], p. 287 and [2], p. 170) can be lower elementary enumerated. This can be done as follows. In a normal language we are dealing with strings of the two symbols 1 and b. One axiom is given, say the string γ . Further there are say m rules of production of the form

$$\sigma_{1,r} \alpha \rightarrow \alpha \sigma_{2,r}, \quad r = 1, \ldots, m$$

where α is an arbitrary string, the $\sigma_{1,r}$, $\sigma_{2,r}$ given strings. To any string β with *n* symbols we now let correspond the integer

$$p_0^{\epsilon_0} p_1^{\epsilon_1} \cdots p_n^{\epsilon_n}$$
,

where $\epsilon_r = 1$ or 2 according as the r^{tb} symbol in β is 1 or b, with p_0 , p_1 , p_2 , ... being the sequence of natural primes. Obviously this yields a one to one correspondence \Im between the strings and the subset of the natural numbers consisting of the cubefree integers.

Let a correspond to the axiom γ . Further let us consider a production rule

$$\sigma, \alpha \rightarrow \alpha \sigma, ,$$

while a_1 and a_2 correspond to σ_1 and σ_2 respectively, say

$$a_1 = p_0^{\epsilon_0} p_1^{\epsilon_1} \dots p_c^{\epsilon_c}, \quad a_2 = p_0^{\tau_0} p_1^{\tau_1} \dots p_d^{\tau_d}$$

Received September 22, 1962

Then the x corresponding to $\sigma_1 \alpha$ will for any α possess the form

$$x = a_1 z$$
, where $z = p_{c+1}^{\epsilon_{c+1}} \dots p_n^{\epsilon_n}$ corresponds to α .

Further, the y corresponding to $\alpha \sigma_1$ will be

y = uv,

where

$$u = p_0^{\epsilon_{c+1}} \cdots p_{n-c-1}^{\epsilon_n}, \quad v = p_{n-c}^{\tau_c} \cdots p_{n-c+d}^{\tau_d}$$

Now u is a lower elementary function of z. Indeed n is such a function of z, because n-c is the number of different prime factors of z and c a given constant. The number of different prime factors of z is namely

$$\chi(z) = \sum_{r=0}^{z} (1 - \mathbf{P}(r)) \mathbf{d}(r, z) ,$$

where $\mathbf{P}(r)$ is the l.el. function which is 0 or 1 according as r is a prime or not, while $\mathbf{d}(r,s)$ is 1 or 0 according as r divides s or not (see the previous paper p. 67). Then it is seen that

$$u = \sum_{s=0}^{z} s \left(1 - \sum_{t=n-c}^{z} \mathbf{e}(s, t)\right) \left(1 \div \sum_{r=c+1}^{n} \overline{\delta}(\mathbf{e}(s, r-c-1), \mathbf{e}(z, r))\right).$$

Further v is obviously a l.el. function of n and therefore of z. Finally $z = \begin{bmatrix} x \\ a_1 \end{bmatrix}$. Thus y is a lower elementary function of x.

To each of the m rules of production

$$\sigma_{1,r} \alpha = \alpha \sigma_{2,r}$$

we obtain in this way a lower elementary function l_r such that $y = l_r(x)$ corresponds to $\alpha \sigma_{2,r}$ as often as x corresponds to $\sigma_{1,r}\alpha$. Then it is clear that the set S of numbers corresponding to the set of strings generated from γ by use of the production rules will consist of **a** and the numbers we get by repeated insertions of already obtained numbers into the functions l_r , that is

$$a, l_1(a), \ldots, l_m(a), l_1l_1(a), l_2l_1(a), \ldots, l_ml_1(a), l_1l_2(a), \ldots, l_ml_2(a), \ldots$$

However, this set S will be just the values of the following function ϕ :

$$\phi(0) = a, \quad \phi(n+1) = \sum_{r=1}^{m} l_r(\phi\left[\frac{n}{m}\right]) \,\delta(\mathbf{rm}\,(n+1,\,m),\,r) ,$$

where $\operatorname{rm}(x, m)$ is the least positive remainder of x divided by m. This is a recursive definition of ϕ of the kind considered in Theorem 1 in my previous paper. Thus according to this theorem the set S can be enumerated by some lower elementary function.

Lemma. The intersection of two l.el. enumerable sets S_1 and S_2 is l.el. enumerable if it is not empty.

Proof: Let S_1 and S_2 be the set of values of the l.el. functions $f_1(t)$ and $f_2(t)$ respectively and let c belong to $S_1 \cap S_2$ so that for certain c_1 and c_2

$$f_1(c_1) = f_2(c_2) = c$$
.

Then the l.el. function

$$g(x, y) = f_1(x) \,\delta(f_1(x), f_2(y)) + c \,\overline{\delta}(f_1(x), f_2(y))$$

takes the value $f_1(x)$ for every x, y such that $f_1(x) = f_2(y)$ and otherwise the value c. Therefore it is clear that $g(\boldsymbol{\epsilon}_1^{(2)}(z), \tau_2^{(2)}(z))$ which is a l.el. function of z takes for $z = 0, 1, 2, \ldots$ successively all the values of $f_1(x)$ which are also values of $f_2(y)$.

Now let q(n) be the n^{tb} squarefree number, that is an integer not divisible by the square of any number > 1. It is seen at once that the l.el. function

$$\kappa(a) = \sum_{r=0}^{a} d((r+1)^2, a)$$

is 0 or > 0 according as a is squarefree or not. Since every prime is squarefree, we have

$$q(n) \stackrel{\leq}{=} \mathbf{p}_n < (n+1)^2, (1.c.p. 67)$$

whence

$$\mathbf{q}(n) = \sum_{r=0}^{(n+1)^2} r(1 \div \kappa(r)) \, \delta\left(\sum_{s=0}^{r-1} (1 \div \kappa(s)), n-1\right)$$

so that q(n) is l.el. Since both S and the set K of squarefree numbers are l.el. enum., we have according to the lemma that $S \cap K$ is l.el. enum., if it is not empty. Now according to Post every recursively enumerable set of integers may be obtained as the integers represented by the strings, of symbols 1 only, existing in one of the diverse normal languages. The integers corresponding by \mathcal{F} to these strings are just the elements of $S \cap K$ when S by \mathcal{F} corresponds to the strings altogether in the normal system. The elements of $S \cap K$ are the diverse values of the l.el. function $\psi(t)$ say. Now if N corresponds to the string with n symbols 1, n is the number of different primes dividing N, that is

$$n=\chi(N).$$

Since the integers N are the diverse values of $\psi(t)$, we obtain, putting

$$n=\chi\psi(t),$$

all *n* represented by the strings built up of symbols 1 only in our arbitrarily chosen normal system by putting successively t = 0, 1, 2, ... into the

l.el. function $\chi \psi(t)$. Thus we have got a second proof of our theorem, that every recursively enumerable set is already lower elementary enumerable.

REFERENCES

- E. L. Post: Recursively enumerable sets of positive integers and their decision problems. Bulletin of the American Mathematical Society, v. 50, (1944) pp. 284-316.
- [2] Paul C. Rosenbloom: The elements of mathematical logic. Dover Publications, 1950.
- [3] Th. Skolem: Proof of some theorems on recursively enumerable sets. Notre Dame Journal of Formal Logic, v. III (1962), pp. 65-74.

University of Oslo Oslo, Norway