ADDENDUM TO MY ARTICLE
 "PROOF OF SOME THEOREMS ON RECURSIVELY ENUMERABLE SETS"

TH. SKOLEM

In the mentioned previous paper I proved the theorem that every recursively enumerable set could already be enumerated by a lower elementary function (see Df. 1 on p. 65 in [3]). On pp. 71-72 in the same paper I gave a hint of another possible proof of this statement. I have found later a version of this second proof which is particularly simple and which I should like to present here.

It follows from a result of E. L. Post that it will be sufficient to prove that every canonical set in a normal system (see [1], p. 287 and [2], p. 170) can be lower elementary enumerated. This can be done as follows. In a normal language we are dealing with strings of the two symbols 1 and b. One axiom is given, say the string γ. Further there are say m rules of production of the form

$$
\sigma_{1, r} \boldsymbol{\alpha} \rightarrow \boldsymbol{\alpha} \sigma_{2, r}, \quad r=1, \ldots, m
$$

where α is an arbitrary string, the $\sigma_{1, r}, \sigma_{2, r}$ given strings. To any string β with n symbols we now let correspond the integer

$$
p_{0}^{\epsilon_{0}} p_{1}^{\epsilon_{1}} \ldots p_{n}^{\epsilon_{n}}
$$

where $\epsilon_{r}=1$ or 2 according as the $r^{t h}$ symbol in β is 1 or b, with p_{0}, p_{1}, p_{2}, \ldots being the sequence of natural primes. Obviously this yields a one to one correspondence \mathcal{F} between the strings and the subset of the natural numbers consisting of the cubefree integers.

Let a correspond to the axiom γ. Further let us consider a production rule

$$
\sigma_{1} \alpha \rightarrow \alpha \sigma_{2}
$$

while a_{1} and a_{2} correspond to σ_{1} and σ_{2} respectively, say

$$
a_{1}=p_{0}{ }^{\epsilon_{0}} p_{1}^{\epsilon_{1}} \cdots p_{c}^{\epsilon_{c}}, \quad a_{2}=p_{0}^{\tau_{0}} p_{1}^{\tau_{1}} \cdots p_{d}^{\tau_{d}}
$$

Then the x corresponding to $\sigma_{1} \alpha$ will for any α possess the form

$$
x=a_{1} z, \text { where } z=p_{c+1}^{\epsilon_{c+1}} \cdots p_{n}^{\epsilon_{n}} \text { corresponds to } \alpha .
$$

Further, the y corresponding to $\alpha \sigma_{2}$ will be

$$
y=u v,
$$

where

$$
u=p_{0}{ }^{\epsilon}{ }_{c+1} \cdots p_{n-c-1}^{\epsilon}, \quad v=p_{n-c}^{{ }^{c}}, \ldots p_{n-c+d}^{\tau_{n}} .
$$

Now u is a lower elementary function of z. Indeed n is such a function of z, because $n-c$ is the number of different primefactors of z and c a given constant. The number of different primefactors of z is namely

$$
\chi(z)=\sum_{r=0}^{z}(1-\mathbf{P}(r)) \mathrm{d}(r, z)
$$

where $\mathbf{P}(r)$ is the l.el. function which is 0 or 1 according as r is a prime or not, while $\mathrm{d}(r, s)$ is 1 or 0 according as r divides s or not (see the previous paper p . 67). Then it is seen that

$$
u=\sum_{s=0}^{z} s\left(1-\sum_{t=n-c}^{z} \mathbf{e}(s, t)\right)\left(1-\sum_{r=c+1}^{n} \bar{\delta}(\mathbf{e}(s, r-c-1), \mathbf{e}(z, r))\right) .
$$

Further v is obviously a l.el. function of n and therefore of z. Finally $z=\left[\frac{x}{a_{1}}\right]$. Thus y is a lower elementary function of x.

To each of the m rules of production

$$
\sigma_{1, r} \alpha=\alpha \sigma_{2, r}
$$

we obtain in this way a lower elementary function l_{r} such that $y=l_{r}(x)$ corresponds to $\alpha \sigma_{2, r}$ as often as x corresponds to $\sigma_{1, r} \alpha$. Then it is clear that the set S of numbers corresponding to the set of strings generated from γ by use of the production rules will consist of a and the numbers we get by repeated insertions of already obtained numbers into the functions l_{r}, that is

$$
a, l_{1}(a), \ldots, l_{m}(a), l_{1} l_{1}(a), l_{2} l_{1}(a), \ldots, l_{m} l_{1}(a), l_{1} l_{2}(a), \ldots, l_{m} l_{2}(a), \ldots
$$

However, this set S will be just the values of the following function ϕ :

$$
\phi(0)=a, \quad \phi(n+1)=\sum_{r=1}^{m} l_{r}\left(\phi\left[\frac{n}{m}\right]\right) \delta(\mathbf{r} \mathbf{m}(n+1, m), r),
$$

where $\mathbf{r m}(x, m)$ is the least positive remainder of x divided by m. This is a recursive definition of ϕ of the kind considered in Theorem 1 in my previous paper. Thus according to this theorem the set S can be enumerated by some lower elementary function.

Lemma. The intersection of two l.el. enumerable sets S_{1} and S_{2} is l.el. enumerable if it is not empty.
Proof: Let S_{1} and S_{2} be the set of values of the l.el. functions $f_{1}(t)$ and $f_{2}(t)$ respectively and let c belong to $S_{1} \cap S_{2}$ so that for certain c_{1} and c_{2}

$$
f_{1}\left(c_{1}\right)=f_{2}\left(c_{2}\right)=c
$$

Then the l.el. function

$$
g(x, y)=f_{1}(x) \delta\left(f_{1}(x), f_{2}(y)\right)+c \bar{\delta}\left(f_{1}(x), f_{2}(y)\right)
$$

takes the value $f_{1}(x)$ for every x, y such that $f_{1}(x)=f_{2}(y)$ and otherwise the value c. Therefore it is clear that $g\left(\varepsilon_{1}^{(2)}(z), r_{2}^{(2)}(z)\right)$ which is a l.el. function of z takes for $z=0,1,2, \ldots$ successively all the values of $f_{1}(x)$ which are also values of $f_{2}(y)$.

Now let $\mathrm{q}(n)$ be the $n^{t h}$ squarefree number, that is an integer not divisible by the square of any number >1. It is seen at once that the l.el. function

$$
\kappa(a)=\sum_{r=0}^{a} \mathrm{~d}\left((r+1)^{2}, a\right)
$$

is 0 or >0 according as a is squarefree or not. Since every prime is squarefree, we have

$$
\mathbf{q}(n) \leqq \mathbf{p}_{n}<(n+1)^{2},(\text { 1.c.p. } 67)
$$

whence

$$
\mathbf{q}(n)=\sum_{r=0}^{(n+1)^{2}} r(1-\kappa(r)) \delta\left(\sum_{s=0}^{n-1}(1 \dot{-} \kappa(s)), n-1\right)
$$

so that $\mathbf{q}(n)$ is l.el. Since both S and the set K of squarefree numbers are l.el. enum., we have according to the lemma that $S \cap K$ is l.el. enum., if it is not empty. Now according to Post every recursively enumerable set of integers may be obtained as the integers represented by the strings, of symbols 1 only, existing in one of the diverse normal languages. The integers corresponding by \mathfrak{F} to these strings are just the elements of $S \cap K$ when S by \mathfrak{F} corresponds to the strings altogether in the normal system. The elements of $S \cap K$ are the diverse values of the l.el. function $\psi(t)$ say. Now if N corresponds to the string with n symbols $1, n$ is the number of different primes dividing N, that is

$$
n=\chi(N)
$$

Since the integers N are the diverse values of $\psi(t)$, we obtain, putting

$$
n=\chi \psi(t),
$$

all n represented by the strings built up of symbols 1 only in our arbitrarily chosen normal system by putting successively $t=0,1,2, \ldots$ into the
l.el. function $\chi \psi(t)$. Thus we have got a second proof of our theorem, that every recursively enumerable set is already lower elementary enumerable.

REFERENCES

[1] E. L. Post: Recursively enumerable sets of positive integers and their decision problems. Bulletin of the American Mathematical Society, v. 50, (1944) pp. 284-316.
[2] Paul C. Rosenbloom: The elements of mathematical logic. Dover Publications, 1950.
[3] Th. Skolem: Proof of some theorems on recursively enumerable sets. Notre Dame Journal of Formal Logic, v. III (1962), pp. 65-74.

University of Oslo
Oslo, Norway

