AN AXIOM-SYSTEM FOR {K;N}-PROPOSITIONAL CALCULUS RELATED TO SIMONS' AXIOMATIZATION OF S3

BOLESŁAW SOBOCIŃSKI

In [4] Simons has shown that Lewis' system S3 can be axiomatized with six mutually independent axiom schemata and the rule of detachment for material implication. As I mentioned in [5], p. 52, it is clear that this formalization of Simons can be reformulated in such a way that instead of axiom schemata the analogous proper axioms

- Α1 ΝΜΚ_pNK_pp
- A2 NMKKpqNq
 - A3 NMKKKrpNKqrNKpNq
 - A4 NKNMpNNp
 - A5 NMKpNMp
 - A6 NMKNMKpNqNNMKNMqNNMp

are adopted together with the following two rules of procedure

I. The rule of substitution ordinarily used in the propositional calculus, but adjusted to the primitive functors K^{n} , N^{n} and M^{n} .

II. The rule of detachment adjusted to the primitive functors "K" and "N", viz.:

If the formulas "NK α N β " and " α " are theses of the system, then formula " β " is also a thesis of this system.

In this note I like to stress a rather interesting fact that the following four theses

- B1 NKpNKpp
- B2 NKKpqNq
- B3 NKKKrpNKqrNKpNq
- B4 NKNKpNqNNKNqNNp

i.e. the formulas which we can obtain by deleting the modal functor M in the axioms A1, A2, A3 and A6 of Simons, taken together with the rules of procedure I and II constitute an axiom-system for the complete classical $\{K; N\}$ -

Received August 19, 1961

propositional calculus. It should be noted that this axiomatization which possesses a certain peculiar property does not appear on the list assembled by Porte in [2] of the known axiom-systems for $\{K; N\}$ -propositional calculus.

In order to prove that the discussed axiomatization constitute the complete classical $\{K; N\}$ -propositional calculus we proceed as follows:

METARULE OF PROCEDURE SI

SI If $\vdash \alpha$ and $\vdash NK\alpha NNK\beta Ny$, then $\vdash NKNyNN\beta$

Proof:

α)	$\vdash \alpha$	[The assumption]
b)	– ΝΚαΝΝΚβΝγ	[The assumption]
c)	μ ΝΚβΝγ	[b; a]
b)	$\vdash NKNYNN\beta$	$[B4, p/\beta, q/\gamma; c]$
		Q. E. D.
B5	NKNKpNqNNKKrpNKqr	[B4, p/KKrpNKqr, q/KpNq; B3]
B6	NKNpp	[B5, q/Kpp, r/Np; B1; SI; B2, q/p]
B 7	NKNKprNNKrNNp	[B5, p/NNp, q/p; B6, p/Np; SI]
B8	NKpNNNp	[B7, p/Np, r/p; B6]
B9	ΝΚΝΚρρΝΝρ	[B7, r/NKpp; B1]
B10	NKKrpNKNNpr	[<i>B5</i> , <i>q/NNp</i> ; <i>B8</i>]
B11	NKNKNNprNNKrp	[B7, p/Krp, r/NKNNpr; B10]
B12	NKNNpNKNNpp [B5, p/NK	NNpp, q/NKpp, r/NNp; B11, r/p; SI; B9]
B13	NKNpNNp [B5, p/NNp, q/	<pre>(KNNpp, r/Np; B12; SI; B2, p/NNp, q/p]</pre>
B14	NKpNp	[B5, p/Np, q/Np, r/p; B13; SI; B6]
B15	ΝΚΚρqΝΚqp	[B5, p/q, r/p; B14, p/q]
B16	ΝΚΝΚϥϷΝΝΚϷϥ	[B4, p/Kpq, q/Kqp; B15]

METARULE OF PROCEDURE SII

SII If \vdash NK α N β and \vdash NK β Ny, then \vdash NK α Ny

Proof:

a) b) c) b)	⊢ ΝΚαΝβ ⊢ ΝΚβΝγ ⊢ ΝΚΝγα ⊢ ΝΚαΝγ	[The assumption] [The assumption] [B5, p/α , q/β , r/Ny ; α ; SI ; b] [B16, p/α , q/Ny ; c] Q. E. D.
B17	NKNKpqNNKpNNq	[B16, p/q, q/p; B7, p/q, r/p; SII]
B18	NKNKpNNqNNKpq	[B16, p/NNq, q/p; B11, p/q, r/p; SII]
B19	NKNKqpNNKpNNq	[B16; B17; SII]
B20	NKNKqpKpNNq	[B18, p/NKqp, q/KpNNq; B19]
B21	NKK pNNqNKqp	[B16, p/KpNNq, q/NKqp; B20]
B22	NKKpqNp	[B15; B2, p/q, q/p; SII]
B23	NKKNKqrNNKrpNKpNq	[B21, p/NKqr, q/Krp; B3; SII]
B24	NKNKpNqNNKNKqrNNKrp	[B4, p/KNKqrNNKrp, q/KpNq; B23]

Thus, we have the theses B1, B22, and B24, and, therefore, we obtained Rosser's axiom-system of $\{K;N\}$ -propositional calculus, cf. [3], p. 12 and pp. 54-76. Hence, the proof is completed.

The argumentations concerning the independence of the formulas H1, H2 and H3 given by Simons, [4], pp. 314-315, show also that each of the axioms B1, B2 and B3 does not follow from the remaining postulates of our axiom-system. It is evident that B4 is independent of the other axioms, since B1-B3 and the rules of procedure I and II are such that they allow only: a) if α is one of the mentioned axioms, to deduce $K\alpha\alpha$ (by B1) and b) if $K\beta\beta$ is a formula already proved, to deduce either β (by B2) or $KK\beta\beta K\beta\beta$ (by B1). And, since no thesis being a consequence of B1-B3 can have a form $K\alpha N\beta$, axiom B3 cannot be used at all. Hence, our axioms are mutually independent.

As it was mentioned above the discussed axiom-system possesses a certain peculiar property. Namely, instead of B4 we can adopt, obviously, as an axiom, the following simpler thesis

B4* NKNKpqNNKqNNp

since B4 follows from B4* by a direct substitution $(B4^*, q/Nq)$. Thus, we obtain two inferentially equivalent axiom-systems, viz. {B1; B2; B3; B4} and {B1; B2; B3; B4*}, such that the former implies B4* in a rather complicated way, while no use of B1-B3 is needed in order to deduce B4 in the latter system. This situation resembles the cases of the, so called, "generalizing deduction" analyzed by Eukasiewicz in [1].

BIBLIOGRAPHY

- Jan Łukasiewicz: Uwagi o aksjomacie Nicoda i o "dedukcji uogólniającej" (Remarks on Nocod's axiom and on "generalizing deduction"). Published in "Księga pamiątkowa Polskiego Towarzystwa Filozoficznego we Lwowie." Lwów, 1931. Republished in Jan Łukasiewicz: Z zagadnień logiki i filozofii. Pisma wybrane. Warszawa, 1961. Pp. 164-177.
- [2] Jean Porte: Schémas pour le calcul des propositions fondé sur la conjonction et la négation. The Journal of Symbolic Logic, v. 23 (1958), pp. 421-431.
- [3] J. Barkley Rosser: Logic for mathematicians. McGraw-Hill Book Company, Inc. 1953.
- [4] Leo Simons: New axiomatization of S3 and S4. The Journal of Symbolic Logic, v. 18 (1953), pp. 309-315.
- [5] Bolesław Sobociński: A contribution to the axiomatization of Lewis' system S5. Notre Dame Journal of Formal Logic, v. III, pp. 51-60.

University of Notre Dame Notre Dame, Indiana