Notre Dame Journal of Formal Logic
Volume III, Number 3, July 1962

AN AXIOM-SYSTEM FOR $\{K ; N\}$-PROPOSITIONAL CALCULUS RELATED TO SIMONS' AXIOMATIZATION OF S3

BOLESŁAW SOBOCIŃSKI

In [4] Simons has shown that Lewis' system S3 can be axiomatized with six mutually independent axiom schemata and the rule of detachment for material implication. As I mentioned in [5], p. 52, it is clear that this formalization of Simons can be reformulated in such a way that instead of axiom schemata the analogous proper axioms

A1 \quad NМКрNK p р
-A2 NMKKpqNq
A3 NMKKKrpNKqrNKpNq
A4 NKNMpNNp
A5 NMKрNM
A6 NMKNMKpNqNNMKNMqNNMp
are adopted together with the following two rules of procedure
I. The rule of substitution ordinarily used in the propositional calculus, but adjusted to the primitive functors " K ", " N " and " M ".
II. The rule of detachment adjusted to the primitive functors " K " and " N ", viz.:

If the formulas " $N K \alpha N \beta$ " and " α " are theses of the system, then formula " β " is also a thesis of this system.

In this note I like to stress a rather interesting fact that the following four theses

B1 NKрNKpp
B2 $N K K p q N q$
B3 NKKKrpNKqrNKpNq
B4 NKNKpNqNNKNqNNp
i.e. the formulas which we can obtain by deleting the modal functor M in the axioms $A 1, A 2, A 3$ and $A 6$ of Simons, taken together with the rules of procedure I and II constitute an axiom-system for the complete classical $\{K ; N\}-$
propositional calculus. It should be noted that this axiomatization which possesses a certain peculiar property does not appear on the list assembled by Porte in [2] of the known axiom-systems for $\{K ; N\}$-propositional calculus.

In order to prove that the discussed axiomatization constitute the complete classical $\{K ; N\}$-propositional calculus we proceed as follows:

METARULE OF PROCEDURE SI

Proof:

a)	- ${ }^{\text {a }}$	[The assumption]
b)	\vdash - NK $\alpha N N K \beta N \gamma$	[The assumption]
c)	$\vdash \mathrm{NK} \beta$ Ny	$[b ; a]$
b)	\vdash -	[B4, p/ $\beta, q / \gamma ; \mathrm{c}]$
		Q. E. D.
B5	NKNKpNqNNKKrpNKqr	[B4, p/KKrpNKqr, q/KpNq; B3]
B6	NKNpp	[B5, q/Kpp, r/Np; B1; SI; B2, q/p]
B7	NKNKprNiNKrNNp	[$B 5, p / N N p, q / p ; B 6, p / N p ; \mathrm{SI}]$
B8	NKpNNNp	[B7, $p / N p, r / p ; B 6]$
B9	NKNKppNNp	[B7, r/NKpp; B 1]
B10	NKKrpNKNNpr	[B5, q/NNp; B8]
B11	NKNKNNprNNKrp	[$B 7, p / K r p, r / N K N N p r ; B 10]$
B12	NKNNpNKNNpp	, q/NK \quad p , r/NNp; B11, r/p; SI; B9]
B13	NKNpNNp [B5, p/	Npp, r/Np; B12; SI; B2, p/NNp, q/p]
B14	$N K p N p$	[B5, p/Np, q/Np, r/p; B13; SI; B6]
B15	NKKpqNKqp	[$B 5, p / q, r / p ; B 14, p / q]$
B16	NKNKqpNNKpq	[B4, p/Kpq, q/Kqp; B15]

METARULE OF PROCEDURE SII

SII If $\vdash N K \alpha N \beta$ and $\vdash N K \beta N y$, then $\vdash N K \boldsymbol{\alpha N y}$
Proof:

a)	- $N K \alpha N \beta$	[The assumption]
b)	- $N K \beta N \gamma$	[The a ssumption]
c)	- NKNy ${ }^{\text {d }}$	[B5, p/ $\alpha, q / \beta, r / N \gamma ; a ; S I ; 6]$
D)	- $N K \alpha N \gamma$	$[B 16, p / \alpha, q / N \gamma ; c]$

B17	NKNKpqNNKpNNq	[B16, p/q, q/p; B7, p/q, r/p;SII]
B18	NKNKpNNqNNKpq	[B16, $p / N N q, q / p ; B 11, p / q, r / p ;$ SII]
B19	NKNKqp N NKpNNq	[B16; B17; SII]
B 20		[$B 18, p / N K q p, q / K p N N q ; B 19]$
B21	NKKpNNqNKqp	[B16, p/KpNNq, q/NKqp; B20]
B22	$N K K p q N p$	[B15; B2, $p / q, q / p$; SII]
B23	NKKNKqrNNKrpNKpNq	[B21, p/NKqr, q/Krp; B3; SII]
B24	NKNKpNqNNKNKqrNNKrp	[B4, p/KNKqrNNKrp, q/KpNq; B23]

Thus, we have the theses $B 1, B 22$, and $B 24$, and, therefore, we obtained Rosser's axiom-system of $\{K ; N\}$-propositional calculus, cf. [3], p. 12 and pp. 54-76. Hence, the proof is completed.

The argumentations concerning the independence of the formulas $H 1$, H2 and H3 given by Simons, [4], pp. 314-315, show also that each of the axioms $B 1, B 2$ and $B 3$ does not follow from the remaining postulates of our axiom-system. It is evident that $B 4$ is independent of the other axioms, since $B 1-B 3$ and the rules of procedure I and II are such that they allow only: a) if α is one of the mentioned axioms, to deduce $K \alpha \alpha$ (by B1) and b) if $K \beta \beta$ is a formula already proved, to deduce either β (by $B 2$) or $K K \beta \beta K \beta \beta$ (by $B 1$). And, since no thesis being a consequence of $B 1-B 3$ can have a form $K \alpha N \beta$, axiom $B 3$ cannot be used at all. Hence, our axioms are mutually independent.

As it was mentioned above the discussed axiom-system possesses a certain peculiar property. Namely, instead of $B 4$ we can adopt, obviously, as an axiom, the following simpler thesis

B4* NKNKpqNNKqNNp

since $B 4$ follows from $B 4^{*}$ by a direct substitution ($B 4^{*}, q / N q$). Thus, we obtain two inferentially equivalent axiom-systems, viz. $\{B 1 ; B 2 ; B 3 ; B 4\}$ and $\left\{B 1 ; B 2 ; B 3 ; B 4^{*}\right\}$, such that the former implies $B 4^{*}$ in a rather complicated way, while no use of $B 1-B 3$ is needed in order to deduce $B 4$ in the latter system. This situation resembles the cases of the, so called, "generalizing deduction" analyzed by Łukasiewicz in [1].

BIBLIOGRAPHY

[1] Jan Łukasiewicz: Uwagi o aksjomacie Nicoda i o "dedukcji uogólniajacej" (Remarks on Nocod's axiom and on "generalizing deduction"). Published in "Ksigga pamigtkowa Polskiego Towarzystwa Filozoficznego we Lwowie." Lwów, 1931. Republished in Jan Kukasiewicz: Z zagadnień logiki i filozofii. Pisma wybrane. Warszawa, 1961. Pp. 164-177.
[2] Jean Porte: Schémas pour le calcul des propositions fondé sur la conjonction et la négation. The Journal of Symbolic Logic, v. 23 (1958), pp. 421-431.
[3] J. Barkley Rosser: Logic for mathematicians. McGraw-Hill Book Company, Inc. 1953.
[4] Leo Simons: New axiomatization of S3 and S4. The Journal of Symbolic Logic, v. 18 (1953), pp. 309-315.
[5] Bolesław Sobociński: A contribution to the axiomatization of Lewis' system S5. Notre Dame Journal of Formal Logic, v. III, pp. 51-60.

University of Notre Dame
Notre Dame, Indiana

