SIX NEW SETS OF INDEPENDENT AXIOMS FOR DISTRIBUTIVE LATTICES WITH O AND I

BOLESKAW SOBOCIŃSKI

```
In [4] Grau defined and discussed the following ternary Boolean functor*
```

$A \quad \phi(a b c)=(a \cap b) \cup(b \cap c) \cup(c \cap a)$
which, since the formula
$B \quad(a \cap b) \cup(b \cap c) \cup(c \cap a)=(a \cup b) \cap(b \cup c) \cap(c \cup a)$
holds in Boolean algebra, is, obviously, the self-dual operation.
In [1] Birkhoff and Kiss have shown that, if this connective of Grau is considered as lattice operation (called the median of a, b, c), then a distributive lattice with O and I can be defined in terms of this single functor. This result is formulated in [2], pp. 137-138, theorem 4, as follows

Let \mathbf{A} be any algebric system with a ternary operation $\phi\left(\begin{array}{lll}a & b & c\end{array}\right)$ and elements O and I such that it satisfies
(i) $\quad \phi(O a I)=a$
(ii) $\quad \phi\left(\begin{array}{ll}a b & a\end{array}\right)=a$
(iii) $\quad \phi(a b c)=\phi(b a c)=\phi(b c a)$
(ïv) $\quad \phi(\phi(a b c) d e)=\phi(\phi(a d e) b \phi(c d e))$
identically. Then if we define

$$
\begin{equation*}
a \cup b=\phi(a I b) \quad \text { and } \quad a \cap b=\phi(a O b) \tag{ї}
\end{equation*}
$$

A is a distributive lattice in which A bolds.
As problem 64, in [2], p. 138, Birkhoff put the question whether at least part of (iii) can be dispensed with, if a suitable permutation of (i \ddot{v}) is

[^0]used. The various solutions to this problem are already published by several authors. Namely:
a) In [7] Vassiliou has proved that conditions (i) - (ï̈) of Birkhoff follow from (i), (ii) and the following formula
\[

$$
\begin{equation*}
\phi(d \phi(a b c) e)=\phi(\phi(e d c) b \phi(e d a)) \tag{vii}
\end{equation*}
$$

\]

b) In [3], pp. 24-25, Croisot has proved that (i), (ii) and
(vii$) \quad \phi(d \phi(a b c) e)=\phi(b \phi(c d e) \phi(a d e))$
imply (iii) and (iü).
c) In [5], p. 49, Hashimito has shown that we can deduce (iii) and (ï̈) from (i), (ii) and
(viii$) \quad \phi(d \phi(a b c) e)=\phi(\phi(e b d) a \phi(e c d))$
d) In [6], p. 30, Sholander announced without proof that conditions (i) - (iiv) follow from the following two formulas
(ï) $\quad \phi(O a \phi(I b I))=a$
and
(ї) $\quad \phi(d \phi(a b c) e)=\phi\left(\phi\left(\begin{array}{ll}d & e\end{array}\right) c \phi(a d e)\right)$
Many other axiom-systems satisfying Birkhoff's problem for distributive lattices with O and I can be established and added in this list. I present here six such sets of postulates. These axiom-systems possess a certain common feature, since the same permutation of (ïr) is involved in their construction. Namely, I shall show that
a) Conditions (iii) and (ivi) follow from (i), (ii) and
($\mathbf{\text { xi }}) \quad \phi(d \phi(a b c) e)=\phi(\phi(d c e) \phi(d a e) b)$
b) Each of the following formulas
(xii$) \quad \phi\left(\begin{array}{lll}O & \phi(b a l & a\end{array}\right)=a$
($\mathrm{xi} i \mathrm{i}) \quad \phi\left(O \phi\left(\begin{array}{ll}a & a\end{array}\right) I\right)=a$
and
(̈̈ī) $\quad \phi\left(O \phi\left(\begin{array}{ll}a b a) I)=a\end{array}\right.\right.$
together with ($\mathbf{x i}$) implies (i) and (ii).
c) Conditions (i) and (æ̈i) follow from (ii) and either
(艾 $\ddot{\mathrm{V}}) \quad \phi(O \phi(d \phi(a b c) e) I)=\phi(\phi(d c e) \phi(d a e) b)$
or
($\ddot{\mathrm{x}} \mathrm{V} \mathrm{i}) \quad \phi\left(d \phi\left(\begin{array}{ll}a b c) & e)=\phi(O \phi(\phi(d c e) \phi(d a e) b) I)\end{array}\right.\right.$

Proof:
Since, obviously, conditions (vi$)$ - ($\ddot{\mathrm{x}} \mathrm{i} \mathrm{i})$ follow from (i) - (i i_{V}) at once, it is sufficient to prove that the latter formulas follow from the respective sets of postulates mentioned in a) - c). Hence:
§1. Assume conditions (i), (ii) and ($\ddot{\mathrm{x}}$), i.e. the formulas
A1 $\quad \phi\left(\begin{array}{ll}O & a\end{array}\right)=a$
A2 $\quad \phi\left(\begin{array}{ll}a & b\end{array}\right)=a$
A3 $\quad \phi\left(d \phi\left(\begin{array}{ll}a b c\end{array}\right) e\right)=\phi(\phi(d c e) \phi(d a e) b)$
Then:

A4	$\phi(a b c)=\phi(c a b) \quad[A 3, d / O, e / I ; A 1, a / \phi(a b c) ; A 1, a / c ; A 1]$
A5	$\phi(a b c)=\phi(b c a) \quad[A 4 ; A 4, a / c, b / a, c / b]$
A6	$\phi\left(\begin{array}{l}\text { a } a b)\end{array}\right)=a \quad[A 2 ; A 4, c / a]$
A7	$\phi\left(\begin{array}{ll}\text { a } & a\end{array}\right)=a \quad[A 2 ; A 5, c / a]$
A8	$\phi(a b c)=\phi(b a c)$
Dem.:	$\phi(a b c)=\phi(a \phi(b b a) c)=\phi(\phi(a a c) \phi(a b c) b)=\phi(a \phi(a b c) b)$ $=\phi(\phi(a c b) \phi(a a b) b)=\phi(\phi(a c b) a b)=\phi(b \phi(a c b) a)=$ $\phi(\phi(b b a) \phi(b a a) c)=\phi(b a c)$ [A6, $a / b, b / a ; A 3, a / b, c / a, d / a, e / c ; A 6, b / c ; A 3, d / a, c / b ; A 6 ;$ $A 4, a / \phi(a c b), b / a, c / b ; A 3, b / c, c / b, d / b, e / a ; A 6, a / b, b / a ; A 7]$
A9	$\phi(\phi(a b c) d e)=\phi(\phi(a d e) b \phi(c d e))$
Dem.:	

Since $A 8, A 5$ and $A 9$ constitute conditions (iii) and (iv̈), the proof is completed. The following modification of Croisot's argumentation, given in [3], pp. 24-25, shows that the axioms A1-A3 are mutually independent:
α) Assume that both O and I are Boolean 0 and 1 respectively and that $\phi\left(\begin{array}{ll}a b & c\end{array}\right)$ is the Boolean formula such that $\phi\left(\begin{array}{ll}a b c\end{array}\right)=a$. Then A2 and $A 3$ are verified, but $A 1$ becomes a false formula.
β) Assume that both O and I are Boolean 0 and that $\phi(a b c)$ is the Boolean formula: $a \cup b \cup c$. Then $A 1$ and $A 3$ are verified, but $A 2$ is falsified.
γ) Assume that both O and I are Boolean 0 and 1 respectively and that $\phi(a b c)$ is the Boolean formula: $(a \cup b) \cap c$. Then A1 and A2 are verified, but $A 3$ is a false Boolean formula.
§2. Assume conditions ($\mathrm{x} i)$ and ($\mathrm{xi} i$), i.e. the formulas
B1

$$
\phi(d \phi(a b c) e)=\phi(\phi(d c e) \phi(d a c) b)
$$

and
$B 2 \quad \phi(O \phi(b a a) I)=a$

Then:

B3 $\quad \phi(b a a)=\phi(a c \phi(b a a))$
Dem.: $\left.\quad \phi\left(\begin{array}{ll}b & a\end{array}\right)=\phi\left(O \phi\left(\phi(b c c) \phi\left(\begin{array}{ll}b & a\end{array}\right) \phi\left(\begin{array}{ll}b & a\end{array}\right)\right) I\right)=\phi\left(\begin{array}{l}(O \phi(b a a\end{array}\right) I\right)$ $\phi(O \phi(b c c) I) \phi(b a a))=\phi(a c \phi(b a a))$
[B2; $a / \phi(b a a), b / \phi(b \subset c) ; B 1, a / \phi(b c c), b / \phi(b a a), c / \phi(b a a)$, $d / O, e / I ; B 2 ; B 2, a / c]$

B4 $\left.\quad \phi(b a a)=\phi\left(\begin{array}{lll}b & b & a\end{array} a\right) a c\right)$
Dem.: $\phi\left(\begin{array}{ll}b & a\end{array}\right)=\phi(O \phi(b \phi(b a a) \phi(b a a)) I)=\phi(O \phi(\phi(b a a) c \phi(b \phi$ $\left.\left.\left.\left(\begin{array}{ll}b & a\end{array}\right) \phi(b a a)\right)\right) I\right)=\phi(\phi(O \phi(b \phi(b a a) \phi(b a a)) I) \phi(O \phi(b a a)$ I) c) $=\phi\left(\begin{array}{l}(b a a) a c)\end{array}\right.$
[B2, $a / \phi\left(\begin{array}{ll}b & a\end{array}\right)$) $B 3, a / \phi\left(\begin{array}{ll}b & a\end{array}\right) ; B 1, a / \phi(b a a), b / c, c / \phi(b \phi(b a a)$ $\phi(b a a)), d / O, e / I ; B 2, a / \phi\left(\begin{array}{ll}b & a\end{array}\right)$; B2]

B5 $\quad a=\phi\left(\begin{array}{ll}b & a\end{array}\right)$
Dem.: $\quad a=\phi(O \phi(b a a) I)=\phi(O \phi(\phi(b a a) a \phi(b b b)) I)=\phi(\phi(O \phi(b b b)$ I) $\phi(O \phi(b a a) I) a)=\phi(b a a)$
[B2; B4, c/申 $\left(\begin{array}{ll}b & b\end{array}\right)$; B1, $a / \phi(b a a), b / a, c / \phi(b b b), d / O, e / I ; B 2$, $a / b ; B 2]$

B6 $\quad \phi\left(\begin{array}{ll}O & a\end{array}\right)=a$
[B2; B5]
B7 $\quad a=\phi\left(\begin{array}{ll}a & b\end{array}\right)$
Dem.: $\quad a=\phi(O \phi(b a a) I)=\phi(\phi(O a I) \phi(O b I) a)=\phi\left(\begin{array}{ll}a b a\end{array}\right)$
[B2; B1, a/b, b/a, c/a, d/O, e/I; B6; B6, a/b]
Since we obtained $B 6$ and $B 7$, i.e. conditions (i) and (ii), the present set of postulates implies the axiom-system discussed in §1. Hence, the proof is given. The first and the third interpretations given in §1 show that B1 and $B 2$ are mutually independent.
§3. Assume now conditions ($\ddot{\mathrm{x}}$) and ($\mathrm{x}_{\mathrm{x} i i}$), i.e. the formulas
$C 1 \quad \phi(d \phi(a b c) e)=\phi(\phi(d c e) \phi(d a e) b)$
and
C2 $\quad \phi(O \phi(a a b) I)=a$
Then:

```
C3 \(\quad \phi(a a b)=\phi(c a \phi(a a b))\)
Dem.: \(\phi(a a b)=\phi(O \phi(\phi(a a b) \phi(a a b) \phi(c c b)) I)=\phi(\phi(O \phi(c c b) I)\)
    \(\phi(O \phi(a a b) I) \phi(a a b))=\phi(c a \phi(a a b))\)
    [C2, \(a / \phi\left(\begin{array}{ll}a & a b), b / \phi(c c b) ; C 1, a / \phi(a a b), b / \phi(a a b), c / \phi(c c b), ~\end{array}\right.\)
        \(d / O, e / I ; C 2, a / c ; C 2]\).
```

C4

$$
a=\phi(a b a)
$$

Dem.: $\quad a=\phi(O \phi(a a b) I)=\phi(O \phi(b b b) a \phi(a a b)) I)=\phi(\phi(O \phi(a a b) I)$ $\phi(O \phi(b b b) I) a)=\phi(a b a)$
[C2; C3, c/ $\phi\left(\begin{array}{ll}b & b \\ b\end{array}\right) ; C 1, a / \phi(b b b), b / a, c / \phi(a a b), d / O, e / I ; C 2 ;$ $C 2, a / b]$

C5 $\quad a=\phi\left(\begin{array}{ll}a & a b)\end{array}\right.$
Dem.: $\quad a=\phi(a \phi(b b b) a)=\phi(\phi(\phi(a b a) \phi(a b a) b))=\phi(a a b)$
[C4, $\left.b / \phi\left(\begin{array}{ll}b & b \\ b\end{array}\right) ; C 1, a / b, c / b, d / a, e / a ; C 4 ; C 4\right]$
C6 $\quad \phi\left(\begin{array}{ll}O & a\end{array}\right)=a$
[C2; C5]
Since C6, C4 and C1 constitute the axiom-system given in $\S 1$, the proof is completed. The first interpretation presented in $\S 1$ proves that $C 2$ does not follow from C1. Assume now that
δ) Both O and I are Boolean 0 and 1 respectively and $\phi\left(\begin{array}{ll}a & b\end{array}\right)$ is the Boolean formula such that $\phi(a b c)=b$.

This interpretation shows that C2 does not imply C1.
§4. Assume now conditions ($\ddot{\mathrm{x} i})$ and ($\ddot{\mathrm{x}} \mathrm{i})$), i.e. the formulas
$D 1 \quad \phi(d \phi(a b c) e)=\phi(\phi(d c e) \phi(d a e) b)$
and
D2 $\quad \phi(O \phi(a b a) I)=a$
Then:
D3

$$
\phi(a b a)=\phi(a a b)
$$

Dem.: $\phi(a b a)=\phi(O \phi(\phi(a b a) b \phi(a b a)) I)=\phi(\phi(O \phi(a b a) I) \phi(O$ $\phi(a b a) I) b)=\phi(a a b)$
[D2, $a / \phi\left(\begin{array}{ll}a b a) \\ b & D 1, a / \phi(a b a), c / \phi(a b a), d / O, C / I ; D 2: D 2]\end{array}\right.$
D4 $\quad \phi\left(0 \phi\left(\begin{array}{ll}a & a\end{array}\right) I\right)=a$
[D2; D3]
Since we obtained D4, we have the axiom-system presented in §3, and, therefore, the proof is given. The first and the third interpretations from $\S 1$ show that $D 1$ and $D 2$ are mutually independent.
§5. Assume conditions (ii) and ("̈̈), i.e. the formulas
E1 $\quad \phi\left(\begin{array}{ll}a b & a\end{array}\right)=a$
and
E2

$$
\phi(O \phi(d \phi(a b c) e) I)=\phi(\phi(d c e) \phi(d a e) b)
$$

Then:
E3 $\quad \phi(O a I)=a$

Dem.: $\left.\phi(O a I)=\phi\left(O \phi\left(\begin{array}{ll}a\end{array}\right)\left(\begin{array}{ll}a & a\end{array}\right) a\right) I\right)=\phi\left(\phi\left(\begin{array}{ll}a & a\end{array}\right) \phi\left(\begin{array}{ll}a & a\end{array}\right) a\right)=\phi\left(\begin{array}{ll}a & a\end{array}\right)$ $=a$ $\left[E 1, b / \phi\left(\begin{array}{ll}a & a\end{array}\right) ; E 2, b / a, c / a, d / a, e / a ; E 1, b / a ; E 1, b / a ; E 1, b / a\right]$

E4 $\quad \phi(d \phi(a b c) e)=\phi(\phi(d c e) \phi(d a e) b) \quad[E 2 ; E 3, a / \phi(d \phi(a b c) e)]$
Since we proved E3 and E4, we obtained the set of postulates given in §1. Hence, the proof is completed. The first and the second interpretations rom $\S 1$ show that $E 1$ and $E 2$ are mutually independent.
§6. Assume conditions (ii) and ($\ddot{\mathrm{x}} \mathrm{vi}$), i.e. the formulas
F1 $\quad \phi\left(\begin{array}{lll}a & b & a\end{array}\right)=a$
and
$F 2 \quad \phi(d \phi(a b c) e)=\phi(O \phi(\phi(d c e) \phi(d a e) b) I)$
Then:
F3 $a=\left(\begin{array}{ll}O & a\end{array}\right)$
Dem.: $\quad a=\phi(a \phi(a a a) a)=\phi\left(O \phi\left(\phi\left(\begin{array}{ll}a & a\end{array}\right) \phi\left(\begin{array}{ll}a & a\end{array} a\right) a\right) I\right)=\phi(O \phi(a a a)$ I) $=\phi(O$ a $I)$
$\left[F 1, b / \phi\left(\begin{array}{ll}a & a\end{array} a\right) ; F 2, b / a, c / a, d / a, e / a ; F 1, b / a ; F 1, b / a ; F 1, b / a\right]$
$F 4 \quad \phi(d \phi(a b c) e)=\phi(\phi(d c e) \phi(d a e) b)$
[F2; F3, $a / \phi(\phi(d \subset e) \phi(d a e) b)]$
Since $F 3$ and $F 4$ are obtained, we have the axiom-system given in $\S 1$. Therefore, the proof is completed. The same interpretations which are used in $\S 5$ show that $F 1$ and $F 2$ are also mutually independent.

BIBLIOGRAPHY

[1] Garret Birkhoff and S. A. Kiss: A ternary operation in distributive lattices. Bulletin of the American Mathematical Society, v. 53 (1947), pp. 749-752.
[2] Garrett Birkhoff: Lattice Theory. Revised Edition. American Mathematical Society Colloquium Publications, v. XXV. New York City, 1948.
[3] R. Croisot: Axiomatique des lattices distributives. Canadian Journal of Mathematics, v. III (1951), pp. 24-27.
[4] A. A. Grau: Ternary Boolean algebra. Bulletin of the American Mathematical Society, v. 53 (1947), pp. 567-572.
[5] Junji Hashimoto: A Ternary Operation in Lattices. Mathematica Japonicae, v. II (1950-1952), pp. 49-52.
[6] Marlow Sholander: Postulates for distributive lattices. Canadian Journal of Mathematics, v. III (1951), pp. 28-30.
[7] Ph. Vassiliou: A set of postulates for distributive lattices. Publication de l' Université technique nationale d'Athènes, No 5 (1950).

[^0]: *Instead of Birkhoff's notation for this ternary operation: ($\begin{aligned} & a b c\end{aligned}$), cf. e.g. [2], p. 137, I use the symbol: $\phi(a b c$) throughout this paper.

