Notre Dame Journal of Formal Logic Volume III, Number 3, July 1962

FINITE LIMITATIONS ON DUMMETT'S LC

IVO THOMAS

The propositional system **LC** of [1] can be based on axioms for \supset (implication), \land (conjunction), a constant **f**, and definitions for \lor (alternation) and \urcorner (negation), as hereunder. In primitive notation, elementary variables and **f** are wffs, and if α , β are wffs so are $(\alpha \supset \beta)$, $(\alpha \land \beta)$. To restore primitive notation in the sequel, replace dots by left parentheses with right terminal mates; in a sequence of wffs separated only by implications, restore parentheses by left association; enclose the whole in parentheses. If S is a system, S_c is its implicational fragment, containing only variables and implications. If α is provable (not provable) in S, we write $\begin{vmatrix} \alpha & (-\mid \alpha) \\ S & (\alpha \land \beta) \end{vmatrix}$ if α is uniformly valued 0 (is not uniformly valued 0) by the matrix \mathfrak{M} , we

write $\lim_{m} \alpha$ $(\prod_{m} \alpha)$. As a basis for **LC** we take, with detachment and substitution, the axioms and definitions:

 $p \supset q \supset p$ $p \supset (q \supset r) \supset p \supset q \supset p \supset r$ $p \supset q \supset r \supset q \supset p \supset r \supset r$ $\mathbf{f} \supset p$ $(p \land q) \supset p$ $(p \land q) \supset q$ $p \supset q \supset (p \land q)$ Def. $\mathbf{v} \quad (\mathbf{a} \lor \mathbf{\beta}) = (\mathbf{a} \supset \mathbf{\beta} \supset \mathbf{\beta}) \land (\mathbf{\beta} \supset \mathbf{a} \supset \mathbf{\beta})$

Def. v $(\alpha \lor \beta) = (\alpha \supset \beta \supset \beta) \land (\beta \supset \alpha \supset \alpha)$ Def. $\neg \alpha = \alpha \supset f$

[2] shows that 1-3 suffice for LC_c , and it is well known that 1-2 suffice for IC_c , the positive logic. By [1] the infinite adequate matrix for LC is $\mathfrak{M} = \langle M, \{0\}, \Lambda, \supset, \mathfrak{f} \rangle$ where $M = \{0, 1, 2, \ldots, \omega\}$ and

$$a \wedge b = \max (a, b),$$

$$a \supset b = \begin{cases} 0 \text{ if } a \ge b, \\ b \text{ if } a < b, \end{cases}$$

$$t = \omega.$$

Received November 14, 1961

Axioms are now to be given for LCn and LCn_c with finite adequate matrix $\mathfrak{M}_n = \langle \{0, \ldots, n\}, \{0\}, \wedge, \supset, \mathbf{f} \rangle$ where n is a natural number, implication and conjunction are valued as by $\mathfrak{M}, \mathbf{f} = \max(0, \ldots, n)$. Taking variables ' p_0 ', p_1, \ldots, p_n we define:

$$\beta_n \begin{cases} \beta_o = p_o \\ \beta_{n+1} = p_n \supset p_{n+1} \supset p_o \supset \beta_n \end{cases} .$$

Replacing 3 by 3_n we obtain the required axioms. To prove this it will be enough to consider 1-2, 3_n , 4, since conjunction is eliminable by the inferential equivalences:

$$(\alpha \land \beta) \supset \gamma \sim \alpha \supset \beta, \beta \supset \gamma;$$

$$\alpha \supset (\beta \land \gamma) \sim \alpha \supset \beta, \alpha \supset \gamma;$$

$$\alpha \land \beta \sim \alpha, \beta.$$

THEOREM I. LCn_c contains LC_c .

Proof. In \mathcal{Z}_n replace p_o by r, p_i by p if i is odd, by q if i is even. Then every antecedent is $p \supset q \supset r$ or $q \supset p \supset r$ except one which is $r \supset p \supset r$, and the consequent is r. Where one or more of these antecedents is missing it may be added by \mathbb{IC}_c , by which also these antecedents can by commuted and reduced so as to obtain:

Further

$$|_{\mathbf{IC}_{c}} \qquad p \supset q \supset r \supset . \ q \supset p \supset r \supset . \ r \supset p \supset r, \text{ so that by } \mathbf{IC}_{c} \text{ and (1) we have}$$

THEOREM II. \mathfrak{M}_n verifies **LC***n*.

Since β_n alone involves an addition to **LC**, we need only consider this. Let $\overline{p_i}$ be the value of p_i . Then for all n, β_n -containing n + 1 variables-fails to obtain the value 0 if and only if $0 < \overline{p_0} < \overline{p_1} < \ldots < \overline{p_n}$, i.e. if and only if it is valued by some \mathfrak{M}_m with m > n.

THEOREM III.
$$\begin{array}{c} & & \\ \Box \ C_{c} \end{array} \overset{3_{n}}{\rightarrow} \subset 3_{n}^{!}, \text{ with } 3_{n}^{!} \text{ defined:} \\ \\ & & \\ 3_{n}^{!} \end{array} \overset{3_{n}}{\left\{ \begin{array}{c} 3_{o} = p_{o} \\ 3_{n+1} = p_{n+1} \supset p_{n} \supset \cdot p_{n} \supset p_{n+1} \supset p_{n+1} \supset 3_{n}^{!} \end{array} \right. } \end{array}$$

Proof. By induction on n. From right to left there is required the **LC**_c-thesis:

$$|_{\mathbf{LC}_{c}} \quad p \supset q \supset q \supset r \supset . \ p \supset q \supset r \supset r .$$

If a wff is of the form $\alpha \supset \beta \supset . \beta \supset \alpha \supset \alpha \supset \gamma$ we shall write $\alpha \rightarrow \beta \supset . \gamma$; and where we have $\alpha_n \rightarrow \alpha_{n-1} \supset ... \supset .\alpha_1 \rightarrow \alpha_0 \supset . \beta \ (n > 0)$ we shall say that there is an *n*-length arrow chain to α_0 among the antecedents. Using this terminology, for n > 0, β_n^t has an *n*-length arrow chain to p_0 , and consequent p_0 .

We now modify the normal forms of [2] for LC_c -wffs by adding the productions:

(A) $\pi \supset \rho \supset . \rho \supset \pi \supset \alpha$ yields $\alpha \pi / \rho$ (B) antecedents $\alpha \supset \beta, \beta \rightarrow \gamma$ add antecedents $\alpha \rightarrow \gamma$ (C) $\alpha \rightarrow \beta, \beta \supset \gamma$ $\alpha \rightarrow \gamma$

without loss of inferential equivalence. For the reader's information we note that any normal form not provable in LC_c has all its antecedents $\tau \supset \nu \supset \nu$ or $\rho \supset \sigma$, and consequent ϕ , with ρ , σ , τ , ν , ϕ elementary variables. Not both $\tau \supset \nu \supset \nu$, $\tau \supset \nu$ are present, and if $\rho \supset \sigma$, $\sigma \supset \tau$ are both present, so is $\rho \supset \tau$. We can now state:

THEOREM IV. If α is an \mathfrak{M} -rejected normal form in LC_{c} with consequent π_{o} , and the longest arrow chain to π_{o} in α is of length $n \geq 1$, rejection can be effected in the range of values $0, \ldots, n + 1$ and α is inferentially equivalent by LC_{c} to $3'_{n}$. If there is no arrow-chain to π_{o} , α is rejected in the values 0, 1 and is inferentially equivalent to $3'_{o}$.

$$\rho_{1} \rightarrow \rho_{2}, \rho_{2} \rightarrow \rho_{3}, \dots, \rho_{k} \rightarrow \pi_{i}; i < n, k \ge n - i.$$

$$\pi_{i} \rightarrow \sigma_{l}, \sigma_{l} \rightarrow \sigma_{l-1}, \dots, \sigma_{2} \rightarrow \sigma_{1}, \sigma_{1} \rightarrow \pi_{j}; l \le i - j, n \ge i > j \ge 1.$$

$$\pi_{i} \rightarrow \tau_{1}, \tau_{1} \rightarrow \tau_{2}, \dots, \tau_{m-1} \rightarrow \tau_{m}; i \ge n, \text{ and not } \tau_{a} \supset \pi_{j} \text{ for any } a \le m, j \le n.$$

$$\nu \rightarrow \phi_{1}, \phi_{1} \rightarrow \phi_{2}, \dots, \phi_{q-1} \rightarrow \phi_{q}; \text{ and not } \pi_{i} \supset \nu \text{ or } \phi_{q} \supset \pi_{i} \text{ for } i \le n.$$

$$\pi_{i} \supset \psi \supset \psi; \text{ and no syllogistic chain from } \psi \text{ to } \pi_{i}.$$

$$\chi \supset \pi_{a}, \chi \supset \pi_{b}, \dots; a, b, \dots \le n, \text{ and not } \pi_{i} \supset \chi \supset \chi \text{ for } i \le n.$$

Therein for all τ , ϕ , ψ we can substitute $\pi \supset \pi$ to obtain antecedents valued 0, while substitution of π_{j+s} for ρ_s and σ_s , of π_r ($r = \max(a, b, \ldots)$) for χ , produces antecedents already present in or associated with the *n*-length arrow chain to π_o . We thus obtain an expression \mathbf{LC}_c -equivalent to β_n^i , and which, when π_i is valued i + 1, reduces by \mathfrak{M} to the value 1, having used only the values $0, \ldots, n+1$.

(Case 2) Where there is no arrow-chain to π_{o} the first two types of antecedent are not present. Remaining types can be verified as in Case 1 and we are left with an expression LC_c -equivalent to β_c^i , reducing by \mathbb{X} to the value 1, having used only the values 0, 1.

THEOREM V. For all natural n, LCn_c is complete for \mathfrak{M}_n .

Proof. LC0_c is obviously complete for \mathfrak{M}_{o} . If $\vdash_{\mathcal{M}} \alpha$, then by [2] $\vdash_{\mathcal{M}} \alpha$ and so (Theorem I) $\vdash_{\mathsf{LC}_{n+1}} \alpha$; while if $\stackrel{\rightarrow}{\underset{M}{\to}} \alpha$ and $\stackrel{\rightarrow}{\underset{M_{n+1}}{\to}} \alpha$, then by [2] and Theorem IV all normal forms of α are either **LC**_c-provable or have arrow chains to the consequent of length at least n + 1. But all such are LC_cimplied by β_{n+1}^{l} and so (Theorem III) by β_{n+1} .

Taking now f into account, we add to the reduction process of 2:

- (D) α⊃f $\alpha \supset \pi$ (π not in α),

- (b) $a \supset f$ $a \supset a$ $a \supset g$ (mothod $a \supset g$) (c) $f \supset a$ $a \supset \beta \supset \gamma$ $a \supset \alpha$, (c) $f \supset a \supset \beta \supset \gamma$ $a \supset \beta$, (c) $f \supset a \supset \beta$ $a \supset \beta$ $a \supset \beta$, (c) $f \supset a \supset \beta$ $a \supset \beta$ $a \supset \beta$, (c) $f \supset a \supset \beta$ $a \supset \beta$ $a \supset \beta$, (c) $f \supset a \supset \beta$ $a \supset \beta$ $a \supset \beta$, (c) $f \supset a \supset \beta$ $a \supset \beta$ $a \supset \beta$, (c) $f \supset a \supset \beta$ $a \supset \beta$ $a \supset \beta$, (c) $f \supset a \supset \beta$ $a \supset \beta$ $a \supset \beta$, (c) $f \supset a \supset \beta$ $a \supset \beta$ $a \supset \beta$, (c) $f \supset a \supset \beta$ $a \supset \beta$ $a \supset \beta$, (c) $f \supset a \supset \beta$ $a \supset \beta$ $a \supset \beta$, (c) $f \supset a \supset \beta$ $a \supset \beta$ $a \supset \beta$, (c) $f \supset a \supset \beta$ $a \supset \beta$ $a \supset \beta$, (c) $f \supset a \supset \beta$ $a \supset \beta$ $a \supset \beta$, (c) $f \supset a \supset \beta$ $a \supset \beta$ $a \supset \beta$, (c) $f \supset a \supset \beta$ $a \supset \beta$ $a \supset \beta$, (c) $f \supset a \supset \beta$ $a \supset \beta$ $a \supset \beta$, (c) $f \supset a \supset \beta$ $a \supset \beta$ $a \supset \beta$, (c) $f \supset a \supset \beta$ $a \supset \beta$ $a \supset \beta$, (c) $f \supset a \supset \beta$ $a \supset \beta$ $a \supset \beta$, (c) $f \supset a \supset \beta$ $a \supset \beta$, (c) $f \supset a \supset \beta$ $a \supset \beta$, (c) $f \supset a \supset \beta$ $a \supset \beta$, (c) $f \supset a \supset \beta$ $a \supset \beta$, (c) $f \supset$
- (G) not to be used where $\alpha \supset f \supset f$ is present. Then in \mathbb{R} -rejected normal forms f can only occur in the positions $\pi \supset f$ and $f \rightarrow \rho$ and in any arrow chain only as its opening member.

THEOREM VI. If α is as in Theorem IV with f occurring only as just stated, then etc. as in Theorem IV. Proof is exactly similar, giving f the value n + 1.

THEOREM VII. LCn is complete for \mathfrak{M}_n . This follows from Theorem VI, as Theorem V from Theorem IV.

THEOREM VIII. If $3_n^{"}$ is defined by means of $3_n^{"}$ as below, then 3_n may replace β_n in the axioms of **LC***n*.

$$\begin{array}{ccc}
3_{n}^{"} \\
3_{n+1}^{"} \\
\end{array} = p_{n} \supset \mathbf{f} \supset p_{o} \supset 3_{n}
\end{array}.$$

MODAL CONSEQUENCES. Using the McKinsey-Tarski translation T of [3] to obtain $T(3_n)$ we have axioms for a denumerably infinite series of modal systems, S4 with $T(3_n)$, between S5 (i.e. S4 with $T(3_1)$) and S4.3 (i.e. S4 with T(3)), to use the numeration of [4]. It seems appropriate to call these systems $S4 \cdot 3_n$.

BIBLIOGRAPHY

[1] Michael Dummett: A propositional calculus with denumerable matrix. The Journal of Symbolic Logic, vol. 24 (1959), pp. 97-106.

- [2] R. A. Bull: The implicational fragment of Dummett's LC. The Journal of Symbolic Logic, forthcoming.
- [3] J. C. C. McKinsey and Alfred Tarski. Some theorems about the sentential calculi of Lewis and Heyting. The Journal of Symbolic Logic, vol. 13 (1948), pp. 1-15.
- [4] M. A. E. Dummett and E. J. Lemmon. Modal Logics between S4 and S5. Zeitschr. f. math. Logik und Grundlagen d. Math. Bd. 5 (1959), pp. 250-264.

Blackfriars Oxford, England