Notre Dame Journal of Formal Logic
Volume III, Number 3, July 1962

FINITE LIMITATIONS ON DUMMETT'S LC

IVO THOMAS

The propositional system LC of [1] can be based on axioms for \supset (implication), \wedge (conjunction), a constant f, and definitions for \vee (alternation) and 7 (negation), as hereunder. In primitive notation, elementary variables and f are wffs, and if α, β are wffs so are $(\alpha \supset \beta),(\alpha \wedge \beta)$. To restore primitive notation in the sequel, replace dots by left parentheses with right terminal mates; in a sequence of wffs separated only by implications, restore parentheses by left association; enclose the whole in parentheses. If S is a system, S_{c} is its implicational fragment, containing only variables and implications. If α is provable (not provable) in S, we write $\left.\right|_{\mathrm{S}} \alpha(\underset{\mathrm{S}}{-1} \alpha)$; if α is uniformly valued 0 (is not uniformly valued 0) by the matrix $川$, we write $\left.\right|_{M \pi} \alpha\left(\frac{\mid}{M} \alpha\right)$. As a basis for LC we take, with detachment and substitution, the axioms and definitions:

```
\(1 \quad p \supset \cdot q \supset p\)
\(2 p \supset(q \supset r) \supset \cdot p \supset q \supset \cdot p \supset r\)
\(3 p \supset q \supset r \supset \cdot q \supset p \supset r \supset r\)
4 f \(\supset p\)
\(5(p \wedge q) \supset p\)
\(6 \quad(p \wedge q) \supset q\)
\(7 \quad p \supset . q \supset(p \wedge q)\)
Def. \(\vee(\alpha \vee \beta)=(\alpha \supset \beta \supset \beta) \wedge(\beta \supset \alpha \supset \alpha)\)
Def. \(7 \quad\urcorner \alpha=\alpha \supset f\)
```

[2] shows that 1-3 suffice for $L C_{c}$, and it is well known that 1-2 suffice for IC_{c}, the positive logic. By [1] the infinite adequate matrix for LC is $\Re=$ $<M,\{0\}, \wedge, \supset, f>$ where $M=\{0,1,2, \ldots, \omega\}$ and

$$
\begin{aligned}
a \wedge b & =\max (a, b), \\
a \supset b & = \begin{cases}0 \text { if } a \geqq b, \\
b \text { if } a<b,\end{cases} \\
\boldsymbol{t} & =\omega .
\end{aligned}
$$

Axioms are now to be given for $\mathrm{LC} n$ and $\mathrm{LC} n_{c}$ with finite adequate matrix $\mathscr{M}_{n}=<\{0, \ldots, n\},\{0\}, \wedge, \supset, f>$ where n is a natural number，im－ plication and conjunction are valued as by $M, f=\max (0, \ldots, n)$ ．Taking variables＇p_{o}＇，p_{1}, \cdots, p_{n} we define：

$$
3_{n}\left\{\begin{array}{l}
3_{o}=p_{0} \\
3_{n+1}=p_{n} \supset p_{n+1} \supset p_{o} \supset 3_{n} .
\end{array}\right.
$$

Replacing 3 by 3_{n} we obtain the required axioms．To prove this it will be enough to consider $1-2,3_{n}, 4$ ，since conjunction is eliminable by the in－ ferential equivalences：

$$
\begin{aligned}
& (\alpha \wedge \beta) \supset \gamma \sim \alpha \supset \cdot \beta \supset \gamma \\
& \alpha \supset(\beta \wedge \gamma) \sim \alpha \supset \beta, \alpha \supset \gamma \\
& \alpha \wedge \beta \sim \alpha, \beta
\end{aligned}
$$

THEOREM I．LC n_{c} contains LC ${ }_{c}$ ．
Proof．In 3_{n} replace p_{o} by r, p_{i} by p if i is odd，by q if i is even．Then every antecedent is $p \supset q \supset r$ or $q \supset p \supset r$ except one which is $r \supset p \supset r$ ，and the consequent is r ．Where one or more of these antecedents is missing it may be added by $I C_{c}$ ，by which also these antecedents can by commuted and reduced so as to obtain：
${\overline{\text { LC }} n_{c}} p \supset q \supset r \supset \cdot q \supset p \supset r \supset \cdot r \supset p \supset r \supset r$
Further
$\stackrel{-}{1 C}_{c} \quad p \supset q \supset r \supset \cdot q \supset p \supset r \supset . r \supset p \supset r$, so that by IC_{c} and（1）we have

$$
\operatorname{L}_{\operatorname{LC}_{n_{c}}} 3
$$

THEOREM II．M n_{n} verifies LC n ．
Since 3_{n} alone involves an addition to LC，we need only consider this． Let $\overline{p_{i}}$ be the value of p_{i} ．Then for all $n, 3_{n}$－containing $n+1$ variables－ fails to obtain the value 0 if and only if $0<\overline{p_{o}}<\overline{p_{1}}<\ldots<\overline{p_{n}}$ ，i．e．if and only if it is valued by some $\Re ⿰ ⿱ ⿱ ㇒ 日 小_{m}$ with $m>n$ ．

$$
3_{n}^{\prime}\left\{\begin{array}{l}
3_{o}=p_{o} \\
3_{n+1}=p_{n+1} \supset p_{n} \supset \cdot p_{n} \supset p_{n+1} \supset p_{n+1} \supset 3_{n}^{\prime}
\end{array}\right.
$$

Proof．By induction on n ．From right to left there is required the LC $c_{\text {－thesis：}}$
$\overline{L C}_{c} \quad p \supset q \supset q \supset r \supset \cdot p \supset q \supset r \supset r$.
If a wff is of the form $\alpha \supset \beta \supset, \beta \supset \alpha \supset \alpha \supset \gamma$ we shall write $\alpha \rightarrow \beta \supset \cdot \gamma ;$ and where we have $\alpha_{n} \rightarrow \alpha_{n-1} \supset \ldots . \alpha_{1} \rightarrow \alpha_{0} \supset . \beta(n>0)$ we shall say that there is an n-length arrow chain to α_{0} among the antecedents. Using this terminology, for $n>0,3_{n}^{\prime}$ has an n-length arrow chain to p_{o}, and consequent p_{0}.

We now modify the normal forms of [2] for LC_{c}-wffs by adding the productions:
(A) $\pi \supset \rho \supset . \rho \supset \pi \supset \alpha \quad$ yields $\quad \alpha \pi / \rho$
(B) antecedents $\alpha \supset \beta, \beta \rightarrow \gamma \quad$ add antecedents $\quad \alpha \rightarrow \gamma$
(C) $\quad \ldots \quad \alpha \rightarrow \beta, \beta \supset \gamma \quad \cdots \rightarrow \gamma$
without loss of inferential equivalence. For the reader's information we note that any normal form not provable in L_{c} has all its antecedents $\tau \supset \nu \supset \nu$ or $\rho \supset \sigma$, and consequent ϕ, with $\rho, \sigma, \tau, \nu, \phi$ elementary variables. Not both $\tau \supset \nu \supset \nu, \tau \supset \nu$ are present, and if $\rho \supset \sigma, \sigma \supset \tau$ are both present, so is $\rho \supset \tau$. We can now state:

THEOREM IV. If α is an M_{M}-rejected normal form in LC ${ }_{6}$ with consequent π_{o}, and the longest arrow chain to π_{o} in α is of length $n \geqq 1$, rejection can be effected in the range of values $0, \ldots, n+1$ and α is inferentially equivalent by $L C_{c}$ to 3_{n}^{\prime}. If there is no arrow-chain to π_{o}, α is rejected in the values 0,1 and is inferentially equivalent to 3_{0}^{1}.

Proof. (Case 1) α has a tail $\pi_{n} \rightarrow \pi_{n-1}$ ว . . . ᄀ. $\pi_{1} \rightarrow \pi_{o}$ 〕. π_{o}. Associated with the antecedents by (B), (C) will be $\pi_{i} \rightarrow \pi_{j}$ for all i, j such that $n \geqq i>j \geqq 0$. By elementary combinatory considerations and the conditions on normal forms, all possible further antecedents are covered by the following six types:
$\rho_{1} \rightarrow \rho_{2}, \rho_{2} \rightarrow \rho_{3}, \ldots, \rho_{k} \rightarrow \pi_{i} ; i<n, k \leqq n-i$.

$\pi_{i} \rightarrow \tau_{1}, \tau_{1} \rightarrow \tau_{2}, \ldots, \tau_{m-1} \rightarrow \tau_{m} ; i \leqq n$, and not $\tau_{a} \supset \pi_{j}$ for any $a \leqq m, j \leqq n$.
$\nu \rightarrow \phi_{1}, \phi_{1} \rightarrow \phi_{2}, \ldots, \phi_{q-1} \rightarrow \phi_{q}$; and not $\pi_{i} \supset \nu$ or $\phi_{q} \supset \pi_{i}$ for $i \leqq n$.
$\pi_{i} \supset \psi \supset \psi$; and no syllogistic chain from ψ to π_{i}.
$\chi \supset \pi_{a}, \chi \supset \pi_{b}, \ldots ; a, b, \ldots \leqq n$, and not $\pi_{i} \supset \chi \supset \chi$ for $i \leqq n$.
Therein for all π, ϕ, ψ we can substitute $\pi \supset \pi$ to obtain antecedents valued 0 , while substitution of π_{j+s} for ρ_{s} and σ_{s}, of $\pi_{r}(r=\max (a, b, \ldots))$ for χ, produces antecedents already present in or associated with the n-length arrow chain to π_{o}. We thus obtain an expression LC c_{c}-equivalent to 3_{n}^{\prime}, and which, when π_{i} is valued $i+1$, reduces by M to the value 1 , having used only the values $0, \ldots, n+1$.
(Case 2) Where there is no arrow-chain to π_{o} the first two types of antecedent are not present. Remaining types can be verified as in Case 1 and we are left with an expression LC ${ }_{c}$-equivalent to 3_{o}^{\prime}, reducing by $M \Omega$ to the value 1 , having used only the values 0,1 .

THEOREM V. For all natural $n, \operatorname{LC} n_{c}$ is complete for M_{n}.
Proof. LC 0_{c} is obviously complete for M_{0}. If $\left.\right|_{M} \alpha$, then by [2] $\left.\right|_{L C} \alpha$ and so (Theorem I) $\vdash_{L C_{n+1}} \alpha$; while if $\underset{M}{-1} \alpha$ and $\left.\right|_{M_{n+1}} \alpha$, then by [2] and Theorem IV all normal forms of α are either L_{c}-provable or have arrow chains to the consequent of length at least $n+1$. But all such are $\mathbf{L C}_{c}-$ implied by 3_{n+1}^{\prime} and so (Theorem III) by 3_{n+1}.

Taking now f into account, we add to the reduction process of 2 :
(D) $\alpha \supset f \quad \sim \quad \alpha \supset \pi(\pi$ not in $\alpha)$,
(E) $\mathrm{f} \supset \boldsymbol{\alpha} \quad \sim \quad \mathrm{f} \supset . \boldsymbol{\alpha} \supset \boldsymbol{\alpha}$,
(F) f $\mathfrak{f} \mathfrak{\alpha} \supset \beta \supset \gamma \quad \sim \quad \beta \supset \gamma$,
(G) $f \supset \alpha \supset \beta \quad \sim \quad \beta$,
(H) $\alpha \supset \mathbf{f} \supset \mathbf{f} \supset \beta \quad \sim \quad \mathbf{f} \supset \boldsymbol{\alpha} \supset . \alpha \supset \mathbf{f} \supset \beta$,
(G) not to be used where $\alpha \supset \mathrm{f} \supset \mathrm{f}$ is present. Then in \mathfrak{M}-rejected normal forms f can only occur in the positions $\pi \supset f$ and $f \rightarrow \rho$ and in any arrow chain only as its opening member.

THEOREM VI. If α is as in Theorem IV with f occurring only as just stated, then etc. as in Theorem IV. Proof is exactly similar, giving f the value $n+1$.

THEOREM VII. LC n is complete for \Re_{n}. This follows from Theorem VI, as Theorem V from Theorem IV.

THEOREM VIII. If $3_{n}^{\prime \prime}$ is defined by means of $3_{n}^{\prime \prime}$ as below, then 3_{n} may replace 3_{n} in the axioms of LC n.

$$
3_{n}^{\prime \prime \prime}\left\{\begin{array}{l}
33_{0}^{\prime \prime}=p_{0} \\
3_{n+1}^{\prime \prime}=p_{n}
\end{array} \text { f } \supset p_{0} \supset 3_{n} .\right.
$$

MODAL CONSEQUENCES. Using the McKinsey-Tarski translation T of [3] to obtain $T\left(3_{n}\right)$ we have axioms for a denumerably infinite series of modal systems, S4 with $T\left(3_{n}\right)$, between S5 (i.e. S4 with $T\left(3_{1}\right)$) and S4.3 (i.e. S4 with $T(3)$), to use the numeration of [4]. It seems appropriate to call these systems $\mathrm{S} 4 \cdot 3_{n}$.

BIBLIOGRAPHY

[1] Michael Dummett: A propositional calculus with denumerable matrix. The Journal of Symbolic Logic, vol. 24 (1959), pp. 97-106.
[2] R. A. Bull: The implicational fragment of Dummett's LC. The Journal of Symbolic Logic, forthcoming.
[3] J. C. C. McKinsey and Alfred Tarski. Some theorems about the sentential calculi of Lewis and Heyting. The Journal of Symbolic Logic, vol. 13 (1948), pp. 1-15.
[4] M. A. E. Dummett and E. J. Lemmon. Modal Logics between S4 and S5. Zeitschr. f. math. Logik und Grundlagen d. Math. Bd. 5 (1959), pp. 250-264.

Blackfriars
Oxford, England

