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§0. Introduction. The purpose of this paper is to present the results of two
announcements [ l ] , [2] and to generalize the results of two other papers
[3], [4]. The results of §1 are applicable to any general algebraic system,
i.e., nonempty set on which there is defined a nonempty index set of closed
binary composition laws. For the sake of concreteness some applications
to group and ring theories are given in §2 and §3, respectively. Some ap-
plications of the general theory to elementary number theory are given else-
where [5], [6]. Applications in the context of the algebra and logic of re-
lations of abstract mathematical biology are also given elsewhere [4].

§1. General Theory. Recall [6] that a (λ, T)-mutant set of an algebraic
system (S, *) is a subset M of S that satisfies the condition M1 • M2 * . . .*
Mχ C M n T, where M = Mi for all i, λ is an integer > 2 and T together with
* forms an algebraic subsystem of (S, *). A (λ, T)-mutant set M of a system
(S, *) is said to be a maximal (λ, T)-mutant set of (S, *) provided there is
no (λ, T)-mutant set of (S, *) which properly contains M.

Theorem 1.1. Every subset of a (λ, T)-mutant set M of (B, *) is a (λ,
T)-mutant set of (B, *).

Proof: Put A = A{ and M = Λif. for all i. Then A1 * . . . * Aχ C Mx * . . . •
Mχ C M n T C A n T for every ACM.

Theorem 1.2. Let φ be a homomorphism from (A, *) into (B, o). Let M
be a (λ, T)-mutant set of (Λ, •). If φ(M Π T) C φ(M) π S then φ(M) is a
(λ, 5>mutant set of (B, o).
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Proof: Put M = M. for all i. Then ^(Mχ) o. . . o φ(Mχ ) = φ(Mχ * . . . *
Mλ) C *>(ΛΪ n T) C <p(M) ή 5.

Theorem 1.3. Let φ be a homomorphism from (A, *) onto (B, o). Let
M be a (λ, SJ-mutant set of (B, o). Let C be the inverse image of M under
^ . Then (under no hypotheses) C is a (λ, A)-mutant set of (A, *).

Proof: Clearly C is a nonempty set. Let β. ΘC. Then ^ ( ^ * . . . * <Z\)
= ^(α χ) °. . . ° φ(aχ) e M n S. Hence aχ * . . .* aχ £ C, for otherwise,
φ(aγ * . . . * aχ) GiM a contradiction.

Theorem 1.4* Let <p be an isomorphism from (A, *) onto (B, o). Then
each (λ, A)-mutant set of (A, *) induces a (λ, B)-mutant set of (B, o) and
each (λ, B)-mutant set of (B, o) induces a (λ, A)-mutant set of (A, *).

Proof: Apply theorems 1.2 and 1.3, observing that the condition φ(M
Π Λ) C ^(M) Π B holds since φ is a one-to-one mapping.

Lemma 1.1. If Λ/ is a proper subset of a (λ, T)-mutant set of (B, °) then
N is not a maximal (λ, T)-mutant set of (B, °).

Proof: Assuming the contrary contradicts the definition of a maximal
(λ, T)-mutant set.

Theorem 1.5. Let φ be a homomorphism from (A, *) onto (B, °). Let
M be a maximal (λ, A)-mutant set of (A, *). If φ(M n Λ) C ̂ (M) n 5 then
φ(M) is a maximal (λ, SO-mutant set of (B, o).

Proof: By putting T = A in theorem 1.2 ^(M) becomes a (λ, 5)-mutant
set. Suppose φ(M) is not a maximal (λ, 5)-mutant set of (B, o). Then there
exists a (λ, S)-mutant set P of (B, o) such that P D ̂ (M). By the-definition
of a mapping {# € A : <p(x) € P\D M. But by theorem 1.3 and lemma 1.1 there
is a contradiction.

Theorem 1.6. Let Ψ be an isomorphism from (A, *) onto (B, °). Then
each maximal (λ, Λ)-mutant set of (A, *) induces a maximal (λ, B)-mutant
set of (B, o) and conversely.

Proof: By theorem 1.5 and the one-to-one nature of φ each maximal
(λ, Λ)-mutant set of (A, *) gives a maximal (λ, B)-mutant set of (B, o). Let
M be a maximal (λ, B)-mutant set of (B, o). Suppose {x €: A : φ(x) ΘM} = N
is not a maximal (λ, Annuitant set of (A, *). Then there exists a (λ, A)-
mutant set V of (A, *) such that V D N. Since ^ is one-to-one ̂ (V) 3 M,
and by theorem 1.2 and the one-to-one nature of φ, φ(V) is a (λ, B)-mutant
set. But by lemma 1.1 there is a contradiction.

Theorem 1.7. There exists a unique minimal subsystem (called the
closed hull) (S, o) of (B, o) containing a nonempty (λ, T)-mutant set of a
system (B, o).

Proof: Consider the {(S^ o) : i £ /} of all systems containing M. This
set is nonempty, since (B, o) is one of its elements. Put S - π S^ Clear-
l y SoSQ S. i € I
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§2. Groups. In this case we assume that systems have the algebraic struc-
ture of groups. E.g., in the additive group of all integers the set E of all
even integers is a subgroup and the set of all odd integers is a maximal
(λ, E)-mutant set for all strictly positive even integers λ.

Theorem 2.1. Let (G, o) be a group. Then every left coset ao\\ (modulo
abnormal subgroup (H, o)), with the exception of H and (λ, H o cΓ )-mutant
cosets, is a (λ + 2, G)-mutant set; in addition a similar theorem exists for
right cosets.

Proof: Let a £• G. Put a ~ ai for all i. If there exist hi 6H such that
(aχ o&x) °. . .° (<z^+2 °^χ+2) = a°hQ, then cancelling the left-hand and right-
hand ends of the left-hand side of the equality (# oh^) o. . .o (a\ °hχ ) =
h ocΓ1. Thus, by normality of (H, o) which makes the composition of co-
sets yield a coset, it follows that (<22°H) o. . . o (aχ+1 °H) = HocΓ1. Now
generate the contrapositive sequence of implications from the above
implications and use the hypotheses that a°H 4 H and that (#2oH)
o. . .o (aχ+1 oH) ̂  H °β""1 to arrive at the conclusion that aoH is a (λ + 2,
(ϊ)-mutant set. The proof is similar for the case of right cosets.

Corollary 2.1. Let (G, o) be a group. Then every left (right or two-
sided) coset (modulo a normal subgroup (H, o)), except H and (λ, H)-mutant
cosets, is a (λ + 1, G)-mutant set.

Proof: In the proof of theorem 2.1, putting a = ai for all i, observe that
(βχ oH) o. . .o (^χ+1 °H) = H. Then apply the hypotheses of the present
corollary to the contrapositive sequence of implications of the proof of the-
orem 2.1.

Corollary 2.2. Let (G, o) be a group. Then every coset (modulo a sub-
group (H, o)) except H is a (2, G)-mutant set.

Proof: First note that (H, o) need not be a normal subgroup. If there
exist hi &\i such that (αo^) o (aohj = aohQ, then cancelling, a - kΓ1 ohQ

ô J*1 or βoH = H.

Corollary 2.3. Let (G, o) be a group. Then the only idempotent element
of (G, o) is its identity element.

Proof: Consider the quotient group (G, o)/(ί, o) and apply corollary
2.2.

Theorem 2.2. Let (G, o) be a group with identity 1. Then every (λ, T)-
mutant set M has a closed hull H.,.

Proof: If M is nonempty apply theorem 1.7 to (G, o). If M is empty put
Hw = {]} and apply corollary 2.3.

§3. Rings. In this section we will consider an arbitrary skew field, (R, +, .).

Theorem 3.1. Consider a skew field (R, +, •)• Let I be an ideal of
(R, +, •)• Consider a coset decomposition of I viewed as an additive group.
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Define addition of cosets in the usual manner so that it coincides with ad-
dition + of the elements of R. Define multiplication * of cosets by the rela-
tion (a + I) * (b + I) = (a b) + I for a 6 R, b Θ R. Then every coset with the
exception of I and 1 + I is a doubly (2, R)-mutant set.

Proof: We may and do apply theorem 2.1 to the additive abelian group
of the field, since all of its subgroups are normal ones. Then we apply
corollary 2.2 to the group (\a + I : a Θ R}, *) which is not necessarily an
abelian one.

Corollary 3Λ. The only doubly idempotent element of a skew field is
the additive identity element. The only other idempotent element is the
multiplicative identity element.

Proof: Consider (R, +, *)/(0, +, •), where 0 is the additive identity.
Then apply theorem 3.1.
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