A CONTRIBUTION TO THE AXIOMATIZATION OF
 LEWIS' SYSTEM S5

BOLESKAW SOBOCIŃSKI

In [7] Simons has shown that the following six axiom schemata: ${ }^{1}$

```
H1 \(\vdash[\alpha \leftrightarrow(\alpha \wedge \alpha)]\).
\(H 2-[(\alpha \wedge \beta) \leftrightarrow \beta]\).
H3 \(-\{[(\gamma \wedge \alpha) \wedge \sim(\beta \wedge \gamma)] \leftrightarrow(\alpha \wedge \sim \beta)\}\).
H4 \(\vdash(\sim \nabla \alpha \rightarrow \sim \alpha)\).
H5 \(\vdash(\boldsymbol{\alpha} \leftrightarrow \diamond \boldsymbol{\alpha})\).
\(H 6 \quad-[(\alpha \multimap \beta) \leftrightarrow(\sim \diamond \beta \leftrightarrow \sim \diamond \alpha)]\).
```

(in which " $\alpha \rightarrow \beta^{\prime \prime}$ and " $\alpha \hookleftarrow \beta$ " are used as the abbreviations of " $\sim(\alpha \wedge \sim \beta$)" and " $\sim \diamond(\alpha \wedge \sim \beta)$ " respectively) together with the rule of inference:
if α is provable and $(\alpha \rightarrow \beta)$ is provable, then β is provable,
constitute a modal system inferentially equivalent to Lewis' system S3. Moreover, he also proved that by adding the schematic analogue of Lewis' C 10.1, viz.
$H 7 \vdash(\diamond \diamond \alpha \mapsto \diamond \alpha)$
to H1-H6 we obtain an axiomatization inferentially equivalent to S4, and that the axiom schemata $\mathrm{H} 1-\mathrm{H} 7$ are mutually independent. On the other hand he remarked that although, obviously, one can get an axiomatization of S 5 by adding to $H 1-H 6$ the schematic analogue of C 11 , viz.

H8 $\vdash(\delta \alpha \leftrightarrow \sim \diamond \sim \Delta \alpha)$
he was unable to prove the mutual independence of $H 1-H 6$ and $H 8$. In [1] Anderson has shown that an addition of the following axiom schema
S

$$
f[(\sim \nabla \sim \alpha \leftrightarrow \diamond \alpha) \leftrightarrow(\alpha \leftrightarrow \sim \diamond \sim \Delta \alpha)]
$$

to Simons' H1-H6 gives a set of mutually independent axiom schemata for S 5 .

In this paper I shall show that:

1) the Simons' formulas $H 1, H 2, H 3, H 4, H 6$ and $H 8$ imply $H 5$.
2) the same holds, if instead of $H 8$ we adopt the schematic analogue of the, so called, Brouwerian axiom, i.e. C 12 of Lewis, namely
$\vdash(\alpha \sim \sim \diamond \sim \Delta \alpha)$
the addition of C 12 to Lewis' axioms A 1, A 2, A 3, A 4, A 6, and A 8 gives A 7, i.e. system S5.
3) the same holds, if we add C 11 to system $\mathrm{S} 1^{\circ}$ of Feys.
4) the addition of C 12 to Sl° gives a system which contains $\mathrm{S}_{2}{ }^{\circ}$ of Feys .

Some minor problems will also be discussed.
It is clear that the formalization used by Simons and Anderson, i.e. the axiom schemata $H 1$ - H8 and S with the, above mentioned, single rule of inference, is inferentially equivalent to the formalization in which, instead of axiom schemata, the analogous proper axioms are adopted together with two rules of procedure, namely substitution and detachment. Since personally I dislike the use of axiom schemata when the finite axiom-system can be adopted, and the occurence of defined terms in the axioms, I use here the following formalization: 1) Instead of the original symbols of Lewis I adopt a modification of Łukasiewicz symbolism in which " C ", " K " and " N " possess the ordinary meaning and " $M^{n}, ~ " ~ L ", ~ "(\mathbb{S})^{\prime}$ and " (E)" mean " \bigcirc ", " $\sim \bigcirc \sim$ ", $"-3$ " and " $=$ " respectively. 2) All formulas discussed here are expressed in the primitive terms of Lewis. Thus, instead of "(Spq" I shall write always " $N M K p N q^{\prime}$. 3) Instead of axiom schemata the proper axioms are given. In the systems connected with the results of Simons and Anderson the following two primitive rules of procedure are adopted:
I) The rule of substitution ordinarily used in the propositional calculus, but adjusted to the primitive functors " K ", " N " and " M ".
II) The rule of detachment adjusted to the primitive functors " K " and " N ", viz.:

If the formulas " $N K \alpha N \beta$ " and " α " are the theses of the system, then formula " $\beta^{\prime \prime}$ is also a thesis of this system.

In the systems connected with Sl° of Feys the four, well-known, Lewis' rules of procedure are used. 4) In the deductions presented below all substitutions and detachments are indicated carefully. In order to present the proofs in more compact way, in the course of the deductions several metarules of procedure will be established and put to use.
§1. In [3] Feys distinguishes the following two subsystems of S1 and S2. Namely, the following five axioms:

taken together with four Lewis' rules of procedure constitute system Sl°. The addition of a new axiom:

to $\mathrm{S1}^{\circ}$ gives Feys' system $\mathrm{S} 2^{\circ}$. By addition of the following new axiom:
L1 NMKNMKpNqNNMKMpMq
(i.e. Sispq(SMpMq)
to $\mathrm{S} 1^{\circ}$ we obtain a subsystem of S 3 which I call $\mathrm{S} 3^{\circ}$. And the addition of:
M1 $N M K M M p N M p$
(i.e. (S $M M P M p$)
to $\mathrm{S} 1^{\circ}$ constructs a system which I call $\mathrm{S} 4^{\circ}$, and which is, obviously, a subsystem of S4. These systems, i.e. $\mathrm{S} 3^{\circ}$ and $\mathrm{S} 4^{\circ}$, are not considered by Feys.

A modal system based on the following five axioms which are analogous to axiom schemata H1,H2,H3,H6 and H4 of Simons:

Z1	$N M K p N K p p$	(i.e. $(p K \beta p p)$
$Z 2$	$N M K p q N q$	(i.e. $(S k q q)$
$Z 3$	$N M K K K r p N K q r N K p N q$	(i.e. $(K K r p N K q r K p N q)$
$Z 4$	$N M K N M K p N q N N M K N M q N N M p$	(i.e. (Spq (SNMqNMp)
$Z 5$	$N K N M p N N p$	(i.e. CNMpNp)

taken together with the, above mentioned, rules I and II constitutes a subsystem of S3 which I call S3*.

It is clear that $\mathrm{S} 4^{\circ}$ contains $\mathrm{S} 3^{\circ}$ which in its turn implies $\mathrm{S} 2^{\circ}$. Obviously, $\mathrm{S1}^{\circ}$ is included in each of these systems. Also, evidently, the addition of an analogue of Simons' H5:

G1 $N M K p N M p$ (i.e. (SpMp)
to each of the systems $\mathrm{S1}^{\circ}, \mathrm{S} 2^{\circ}, \mathrm{S3}^{\circ}, \mathrm{S} 3^{*}, \mathrm{~S} 4$ gives $\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3, \mathrm{~S} 3$ and S 4 respectively.

I have to note here that I was unable to establish a relationship between $\mathrm{S} 3^{\circ}$ and $\mathrm{S} 3^{*}$, since it is not known whether $\mathrm{S} 3^{\circ}$ implies or not Z 5 , and whether F5 follows or not from S3*. Also, I do not know how many modalities the systems $\mathrm{S} 3^{\circ}, \mathrm{S} 3^{*}$ and $\mathrm{S} 4^{\circ}$ have. These questions remain open.
§2. In this paragraph I shall show that S3* implies the theses and metarules of procedure which we will need later. For this end as the axiom system of S3* we assume

Z1 NMKpNKpp
Z2 NMKKpqNq
Z3 NMKKKrpNKqrNKpNq
Z4 NMKNMKpNqNNMKNMqNNMp
Z5 NKNMpNNp
and then adjust the rules of procedure I and II to them. Then, we can proceed as follows: ${ }^{2}$

METARULES OF PROCEDURE RI and RII
RI If $\vdash \alpha$ and $\vdash N M K \alpha N \beta$, then $\vdash \beta$.
Proof:
a) $f \alpha$ [The assumption]
b) $\vdash N M K \alpha N \beta$
[The assumption]
c) $\vdash N K \boldsymbol{\alpha} N \beta$
$[Z 5, p / K \alpha N \beta ; 6]$
b) $\quad-\beta$
$[c ; a]$
Q. E. D.

RII If $\vdash \boldsymbol{\alpha}$ and $\vdash N M K \boldsymbol{\alpha} N N M K \beta N y$, then $\vdash N M K N M y N N M \beta$
Proof:
a) $f \alpha$
[The assumption]
b) $\vdash N M K \alpha N N M K \beta N \gamma$
[The assumption]
c) $\vdash N M K \beta N \gamma$
$[b ; a ; \mathbf{R I}]$
d) $\vdash \operatorname{~DMKNMyNNM~} \beta$
$[Z 4, p / \beta, q / \gamma ; c ; \mathrm{RI}]$
Q. E. D.

Z6 NMKNMKpNqNNMKKrpNKqr
[Z4, $p / K K r p N K q r, q / K p N q ; Z 3 ;$ RI]

Z7 NMKNpp
Z8 NMKNMKprNNMKrNNp
Z9 NMKpNNNp
Z10 NMKNKppNNp
Z11 NMKKrpNKNNpr
Z12 NMKNKNNprNNKrp
Z13 NMKNN $p N K N N p p$
[Z6, NKNNpp, q/NKpp, r/NNp; Z12, r/p; RII; Z10; RI]
Z14 NMKNpNNp [Z6, p/NNp, q/KNNpp, r/Np; Z13; RII; Z2, p/NNp, q/p; RI]
Z15 NMKpNp [Z6, p/Np, q/Np,r/p; Z14; RII; Z7; RI]
Z16 NMKKpqNKqp
[Z6, p/q, r/p; Z15, p/q; RI]
Z17 NMKNMKqpNNMKpq [Z4, p/Kpq, q/Kqp; Z16; RI]
Z18 NMKNMqNNMKpq
[Z4, p/Kpq; Z2; RI]
Z19 NMKNMNNpNNMp
Z2O NMKNMpNNMNNp
[Z4, q/NNp; Z9; RI]
[Z4, p/NNp, q/p; Z7, p/Np; RI]

METARULES OF PROCEDURE RIII, RIV and RV.

Proof:
a) $\vdash N M K \alpha N \beta$ [The assumption]
b) $\vdash N M K \beta N \gamma$ [The assumption]
c) $\vdash-N M K N \gamma \boldsymbol{\alpha} \quad[Z 6, p / \boldsymbol{\alpha}, q / \beta, r / N \gamma ; a ; \mathbf{R I I} ; b ; \mathbf{R I}]$
b) $\vdash N M K \boldsymbol{\alpha} N \gamma \quad[Z 17, p / \boldsymbol{\alpha}, q / N \gamma ; c ;$ RII]
Q. E. D.

RIV If \vdash - $M K \alpha N \beta$, then $\vdash N M K M \boldsymbol{\alpha} N M \beta$
Proof:
a) $\vdash N M K \alpha N \beta$ [The assumption]
b) \vdash - $\operatorname{LMKNM} \beta N N M \boldsymbol{\alpha}$ $[Z 4, p / \alpha, q / \beta ; a ; \mathrm{RI}]$
c) $\vdash N M K M \alpha N M \beta$ [Z6, $p / N M \beta, q / N M \boldsymbol{\alpha}, r / M \boldsymbol{\alpha} ; b ;$ RII; Z7, $p / M \boldsymbol{\alpha} ;$ RI]
Q. E. D.

RV If $\vdash N M K \boldsymbol{\alpha} N \beta$ and $\vdash N M K \boldsymbol{\alpha} N \gamma$, then $\vdash N M K \boldsymbol{\alpha} N K \beta \gamma$
Proof:
a) $\vdash N M K \alpha N \beta$
[The assumption]
b) $\vdash \mathrm{FMK} \alpha \mathrm{N} \gamma$
[The assumption]
c) $\vdash N M K K \boldsymbol{\alpha} \boldsymbol{\alpha} N K \beta \boldsymbol{\alpha}$
$[Z 6, p / \boldsymbol{\alpha}, q / \beta, r / \alpha ; \alpha ; \mathbf{R I}]$
b) $\vdash N M K K \beta \alpha N K \gamma \beta$
e) $\vdash N M K K \alpha \alpha N K \gamma \beta$
†) $\vdash N M K \alpha N K \gamma \beta$
g) $\vdash N M K \alpha N K \beta \gamma$

Z21 NMKKpqNp
Z22 NMKMKpqNM p
Z23 NMKMKpqNMq
Z24 NMKMKpqNKMpMq
Z25 NMKKrpNKrNNp
Z26 NMKNMKrNNpNNMKrp
Z27 NMKKrKpqNp
Z28 NMKKrKpqNq
Z29 NMKKrKpqNKrp
Z30 NMKKrKpqNKrpq
Z31 NMKKpqrNKKrpq
Z32 NMKNMKKrpqNNMKKpqr
Z33 NMKKrKpqNKrq
Z34 NMKKrKpqNKpKrq
Z35 NMKNMKpKrqNNMKrKpq
Z36 NMKNMKpNqNNMKNMNpNNMNq
Z37 NMKNMNqNNMKNMNpNNMNq
$[Z 6, p / \alpha, q / \gamma, r / \beta ; b ; R I]$
[c; b; RIII]
[Z1, p/ $\alpha ; e ;$ RIII]
$[\uparrow ; Z 16, p / \gamma, q / \beta ;$ RIII $]$
Q. E. D.
[Z16; Z2, p/q, q/p; RIII]
[Z21; RIV]
[Z2; RIV]
[Z22; Z23; RV]
[Z11; Z16, p/NNp, q/r; RIII]
[Z4, $p / K r p, q / K r N N p ; Z 25 ;$ RI]
$[Z 2, p / r, q / K p q ; Z 21 ;$ RIII $]$
[Z2, p/r, q/Kpq; Z2; RIII] [Z21, $p / r, q / K p q ; Z 27 ;$ RV]
[Z29; Z28; RV]
[Z16, p/Kpq, q/r; Z30; RIII]
[Z4, p/KKpqr, q/KKrpq; Z31; RI]
[Z21, p/r, q/Kpq; Z28; RV]
[Z27; Z33; RV]
[Z4, p/KrKpq, q/KpKrq; Z34; RI]
$[Z 8, r / N q ; Z 4, p / N q, q / N p ;$ RIII $]$
$[Z 18, q / N q ; Z 36 ;$ RIII $]$
Z38 NMKNMNNMNqNNMNNMKNMNpNNMNq
[Z36, p/NMNq, q/NMKNMNpNNMNq; Z37; RI]
Z39 NMKNMNNMNqNNMMKNMNpNNMNq
[Z38; Z19, p/MKNMNpNNMNq; RIII]
Z40 NMKNMNqNNMKNMNNMNpNNMNNMNq
[Z37; Z36, p/NMNp, q/NMNq; RIII]
Z41 NMKMNMNqNMNMKNMNNMNpNNMNNMNq
[Z40; RIV]

Z42 NMKNMKrpNNMKrNNp
[Z17, q/r; Z8; RIII]

METARULE OF PROCEDURE RVI.

RVI If $\vdash N M K \alpha N \beta$ and $\vdash N M K \beta \gamma$, then $\vdash N M K \alpha \gamma$
Proof:
a) $\vdash N M K \alpha N \beta$ [The assumption]
b) $-N M K \beta \gamma$
c) $\vdash N M K \beta N N \gamma$
b) $\vdash N M K \alpha N N \gamma$
e) $\vdash N M K \alpha \gamma$
$[a ; c ; R I I I]$
[Z26, $p / \gamma, r / \alpha ; \mathrm{D} ; \mathrm{RI}]$
Q. E. D.
§3. In our formalization we can express the theses C 11 (H8) and C 12 (H9) of Lewis ${ }^{3}$ as follows:
V1 NMKMpMNMp
and

W1 NMKpMNMp
Since in S3* we have Z42 and Z26, the addition of V1 or W1 to S3* gives at once:
V1 \quad NMKM $p N N M N M p=\cdot(S M p L M p=\cdot(S M p N M N M p=\mathrm{C} 11$
and
W1 $\quad N M K p N N M N M p=/ S p L M p=1 S N M N M p=C 12$
Hence we can use V1 and W1 in our proof that the addition of C 11 or C 12 to S3* gives S5.
3.1 The addition of V1 to S3* implies thesis G1 (H5). We assume system S3* and its consequences already proved in §2. And, we add to this system a new axiom.

V1 NMKMрMNMр

Then:
V2 $\operatorname{NMKKrMpMNMp}$
[Z2, $p / r, q / M p ; V 1 ; \mathrm{RVI}]$
V3 NMKКМрМNMpr [Z32; $p / M p, q / M N M p ; V 2 ; \mathbf{R I}]$
V4 NМКМКрNMpr [Z24, q/NM $p ; V 3 ;$ RVI]
V5 NMKrNNMKpNMp [Z8, p/MKpNMp; V4; RI]
G1 NMKрNMр
[V5, r/NMKNpp; Z7; RI]
Thus, we have a proof that the axiom-system $Z 1-Z 5$ and $V 1$ together with the rules of procedure I and II constitute system S5 of Lewis. An argumentation given by Simons shows that these axioms are mutually independent. ${ }^{4}$
3.2 The addition of $W 1$ to S3* implies thesis $V 1$, and, therefore, gives S5. ${ }^{5}$ We assume system S3* and its consequences already proved in §2. And, we add to this system a new axiom:
W1 NMKрMNMp
Then:

W2	NMKKrpMNM p	2, $p / r, q / p ;$ w $1 ; \mathrm{RVI}]$
W3	NMKKрМ NMpr $^{\text {r }}$	[Z32, q/MNMp; W2; RI]
W4	NMKMKрNMMpr	[Z24, q/NMMp; W3, $p / M p$; RVI]
W5	NMKrNNMKpNMM ${ }^{\text {¢ }}$	[Z8, p/MKрNMMp; W4; RI]
W6	NMKр NMM $^{\text {p }}$	[$W 5, r / N M K N p p ; Z 7 ; \mathrm{RI}]$
W7	NMKMNM p p	[Z17, p/MNMp, q/p; W1; RI]
W8	NMKNMMpp	[Z17, $p / N M M p, q / p ; W 6 ; \mathbf{R I}]$
W9	NMKpNNMNM	[Z42, p/MNMp; r/p; W1; RI]
W10	NMKNMNpNNMNNMNM p	[Z36, q/NMNMp; W9; RI]
W11	NMNNMNMNKNpp	[Z20, p/KNpp; w10, p/NKNpp; RIII; Z7; RI]
W12 NMKNMNNMNpNNMNNMNNMNMp		
W13	NMNNMNNMNMMNKNpp	[W12, p/MNKNpp; W11; RI]
W14	NMKNMNNMNqKNMNpNNMNq	$q \quad[Z 39 ;$ W8, $p / K N M N p N N M N q ;$ RVI]
W15	NMKNMNpKNMNNMNqNNMNq	
	[Z35,	p/NMNNMNq, q/NNMNq, r/NMNp; W14; RI]

W16 NMKNMNpNNKNMNNMNqNNMNq
[Z42, $p / K N M N N M N q N N M N q, r / N M N p ;$ W15; RI]
W17 NMNNKNMNNMNpNNMNp
[Z36, p/NMNMNKNpp, q/NKNMNNMNpNNMNp; w16, p/MNKNpp,
$q / p ; \mathbf{R I} ;$ W11; RI]
W18 NMKNMNNMNpNNMNp
[Z19, p/KNMNNMNpNNMNp; W17; RI]
W19 NMKMNMNqKNMNNMNpNNMNNMNq
[Z41; W7, p/KNMNNMNpNNMNNMNq; RVI]
W20 NMKNMNNMNpKMNMNqNNMNNMNq
[Z35, p/MNMN $q, q / N N M N N M N q, r / N M N N M N p ;$ W19; RI]
W21 NMKNMNNMNpNNKMNMNqNNMNNMNq
[Z42, p/KMNMNqNNMNNMN $q, r /$ NMNNMN p; W20; RI]
W22 NMNNKMNMNpNNMNNMNp
[Z36, p/NMNNMNMMNKNpp, q/NKMNMNpNNMNNMNp; W21, p/MMNKNpp, q/p; RI; W13; RI]
W23 NMKMNMNpNNMNNMNp [Z19, p/KMNMNpNNMNNMNp; W22; RI]
W24 NMKMNMNpNNMNp [W23; W18; RIII]
W25 NMKMpNMNMNMp
[W9; RIV]
W26 NMKMpNNMNM p
[W25; W24, $p / M p$; RIII]
V1 NMKMрMNMp
[Z26, p/MNM $p, r / M p$; W26; RI]
Since it was already proved that $\mathrm{S3}^{*}$ and $V 1$ constitute system S 5 , we showed here that the axiom-system $Z 1-Z 5$ and $W 1$ together with the rules of procedure I and II is also inferentially equivalent to $S 5$. The, above mentioned, argumentation of Simons proves again that the axioms $Z 1-Z 5$ and W1 are mutually independent.
§4. In this paragraph I shall investigate some questions arising by the addition of $V 1$ or $W 1$ to the systems $S 1^{\circ}-\mathrm{S} 4^{\circ}$. In order to present the subsequent deductions in a more compact way and at the same time to elucidate the idea of proofs given in $\S 3$ in the here discussed formulas symbols C, L, ${ }^{S}$, and \mathbb{E} will be used as the abbreviations and the theses clearly belonging to $\mathrm{S} 1^{\circ}$ will be given without the proofs. Since we will discuss here exclusively the systems containing Sl° and having Lewis' rules of procedure, the following known metatheorems about $S 1^{0}{ }^{6}$
FI If $\vdash \alpha$ and $\vdash C \alpha \beta$ in $\mathrm{S1}^{\circ}$, then $\vdash \beta$ in S°
FII If \vdash L $\boldsymbol{\alpha}$ in $\mathrm{S1}^{\circ}$, then $\vdash \boldsymbol{\alpha}$ in $\mathrm{S1}^{\circ}$
FIII If $\boldsymbol{\alpha}$ is a thesis of the classical propositional calculus, then $\vdash L \boldsymbol{\alpha}$ in Si°
FIV If $\mid \mathbb{G} \alpha \beta$ in S°, then $+\mathbb{C} L \alpha L \beta$ in $\mathrm{S} 1^{\circ}$
will be valid for the systems under consideration. Moreover, we have to note that, obviously, our rule I is the second rule of substitution of Lewis, and that metatheorem FI shows that our rule II is also valid. Hence, the deductions given in $\S 3$ can be repeated in the systems containing $S 1^{\circ}$, if the involved initial theses are available in the investigated theory.
4.1 An inspection of the proofs given in $\S 3.2$ shows that in order to obtain G1 from $Z 1-Z 5$ and $W 1$ we used the theses $Z 2, Z 7, Z 8, Z 17, Z 19$,

Z20, Z24, Z26, Z32, Z35, Z36, Z39, Z41, Z42, and metarules RI, RIII, RIV and RVI. Evidently, metarule RI is the rule of detachment of Lewis, and due to $F 5$ and Lewis' rule of adjunction we have RIII. Also, elementary reasoning shows that metarule RVI and the theses $Z 2, Z 7, Z 8, Z 17, Z 19$, Z20, Z26, Z32, Z35 and Z42 hold in S1 ${ }^{\circ}$. On the other hand, Z24 and RIV (Becker's rule) are not provable in $S 1^{\circ}$, but we can easily obtain them in $\mathrm{S} 2^{\circ}$, and, a fortiori, in $\mathrm{S} 3^{\circ}$, since $K 1$ follows from $F 1$ and $L 1$ at once. Because in $\mathrm{S} 1^{\circ}$ the following thesis
F6 (S) SpqCLpLq
is provable, in $S 4^{\circ}$ due to $M 1$ we can obtain L1. Hence, each of the systems $\mathrm{S} 3^{\circ}$ and $\mathrm{S} 4^{\circ}$ contains Z 36 (due to L 1), Z24, RIV, Z39 and Z41.

Therefore, this analysis shows immediately that an addition of W1 (i.e. Brouwerian axiom C 12) to $\mathrm{S} 3^{\circ}$ (or to Lewis' axioms A 1, A 2, A 3, A 4, A 6 and A 8) or to $S 4^{\circ}$ (or to A 1 - A 4, A 6 and C 10) gives S5.

Group II of Lewis-Langford shows that W1 (C 12) is not deductible from $\mathrm{S} 3^{\circ}$ or $\mathrm{S} 4^{\circ}$. On the other hand I have no proof that in so constructed axiom-systems of S 5 the axioms $L 1$ or $M 1$ are superfluous.
4.2 Now, we shall prove that an addition of C 11 to $\mathrm{S} 1^{\circ}$ gives S 5 . We assume system Sl°, and add to it $V 1$ (i.e. Lewis' C 11) as a new axiom. In accordance with the convention given above we can express here $V 1$ in the form of C 11, i. e.:

N1 (SMpLMp

Since we have $S 1^{\circ}$, not only the theses $F 1-F 6$, but also:

```
F7 (S.SpqCMpMq
F8 \Kpqq
F9 (SCpqCCprCpKqr
F10 S(pqqCNqNp
F11 (S CpNqNKpq
```

are at our disposal. Hence, we can proceed as follows:

$F 12$	$C M K p q M p$	$[F 7, p / K p q, q / p ; F I]$
$F 13$	$C M K p q M q$	$[F 7, p / K p q ; F 8]$
$F 14$	$C M K p q K M p M q$	$[F 9, p / M K p q, q / M p, r / M q ; F 12 ; F 13 ; F I I, F 1]$
$F 15$	$C N K M p M q N M K p q$	$[F 10, p / M K p q, q / K M p M q ; F 14]$
$N 2$	$C M p L M p$	$[N 1 ;$ FII]
$N 3$	$N K M p M N M p$	$[F 11, p / M p, q / M N M p ; N 2]$
$G 1$	$N M K p N M p$	$[F 15, q / N M p ; N 3 ; F I]$

Since we have G1, we have completed a proof that the addition of V1 (C 11) to Sl° gives S 5 . It shows that in the customary axiomatization of Lewis' system S 5 one axiom (A 7 or $B 7$) is superfluous. ${ }^{7}$

It is evident that the above deductions can be repeated in the axiomatization of S5 given by Gödel, ${ }^{8}$ but although G1 can be obtained there without the use of Gödel's axiom

G1* CLpp
the latter thesis is not deductible, since in that system a counterpart of FII can only be established with the aid of G1*.
4.3 Now, I shall prove that the addition of $W 1$ (i.e. C 12) to Sl° constitutes a system which I call $\mathrm{S1}^{+}$, and which contains $\mathrm{S2}^{\circ}$. Thus, we assume $S 1^{\circ}$, and we add to it $W 1$ as a new axiom. Obviously, using a notation adopted in this paragraph we can express W1 in the form of $C 12$, i.e.:

Pl SpLMp

Due to Sl° we have not only $\operatorname{F1-F15\text {,butalso:}}$
F16 (SpCqp
and
F17 ©LCpq(Spq
It allows us to proceed as follows:

F18	$C L p$ (Sqp	[F6, q/Cqp; F16; F17]
F19	(SrCKpqp	[F18, p/CKpqp, q/r, F17; FI]
F20		[F17; FIV]
F21	SLSpqM ${ }^{\text {S }}$ MpMq	[F6, p//Spq, q/CMpMq; F7; F17]
P2	CLpLLM p	$[F 6, q / L M p ; P 1]$
P3	LLMCpCqp	[P2, p/CpCqp; F16; FI; F17]
P4	LMCpCqp	[P3; FII]
P5	(SrMCpCqp	[F18, p/MCpCqp, q/r; P4; FI]
P6	\&мСрСqрСКрqр	[F19, r/MCpCqp; P $5, r / C$ ¢pqp]
P7	(\&LM CpCqpLCKpqp	[P6; FIV]
P8	(sLLMCpCqpLLCKpqp	[P7; FIV]
P9	LLCKpqp	[F1; P8; P3]
P10	L (SKpqp	[F1; F20, p/Kpq, q/p; P9]
K1	(SMKpqMp	[F21, p/Kpq, q/p; P10; FI]

Thus, the proper axiom of S° is obtained, and, therefore, $\mathrm{S1}^{+}$contains $S 2^{\circ}$. On the other hand I do not know whether Si^{+}implies Gl or, eventually, C 11. This open question is rather important, since Sl^{+}possesses an interesting property. Namely, it is known ${ }^{9}$ that an addition of an arbitrary formula which has a form $L L \alpha$ and is such that $L \alpha$ is a thesis of S1, to S1 gives system T of Feys-von Wright. ${ }^{10}$ An inspection of the proofs given above, especially P1-P9, indicates clearly that an addition of an arbitrary formula $L L \alpha$ to Sl° gives the following metarule:
PI If formula α is a thesis of this system, then also $L \alpha$ is provable in this system.
Hence, the above considerations not only prove a result more strong than previously known about generation of $\mathbf{P I}$ by the formulas of the form $L L \alpha$, but also show that: 1) If S1+ contains G1, it contains also system T. 2) If Sl^{+}does not contain G 1 , an addition of Gl to Sl^{+}gives a system, say T^{+}, which, obviously, is stronger than T . The questions concerning systems Sl^{+}and T^{+}, as e.g. whether $\mathrm{S1}^{+}$is weaker than T^{+}, their relationship to S 5 , the number of modalities which they have, remain open.

NOTES

1. In this paper: 1) the symbol " $-\alpha$ " means: α is provable in a system under consideration. 2) the term "thesis": a formula which is true in a system under consideration.
2. The proofs of several theorems and metarules given in this paragraph are analogous to the deductions of Simons. $C f$. [7], pp. 310-314.
3. $C f .[5]$, p. 497.
4. $C f .[7], \mathrm{pp} .314-315$.
5. In [6], pp. 151-152, Parry has proved that an addition of C 12 to S3 gives system S5. The deductions given below differ in several points from that proof, since the result of Parry depends on the use of Lewis' axiom A 7.
6. $C f .[3], \mathrm{pp} .485-488$, the theorems $6.13,6.2,6.11$ and 6.641 .
7. Cf. [5], p. 501.
8. $C f$. [4], pp. 39-40.
9. $C f .[10]$, p. 45.
10. System T was proposed by Feys in 1937, cf. [2], No. 25 and No. 28.1, also cf. [3], p. 500, note 1. In [9], appendix II, pp. 85-90, von Wright constructed a modal system which he called system M. In [8] I have proved that the systems T and M are inferentially equivalent.

BIBLIOGRAPHY

[1] A. R. Anderson: Independent axiom schemata for S5. The Journal of Symbolic Logic, v. 21 (1956), pp. 255-256.
[2] R. Feys: Les logiques nouvelles des modalités. Revue Néo - scholastique de Pbilosophy, v. XL (1937), pp. 517-553 and v. XLI (1938), pp. 217-252.
[3] R. Feys: Les systèmes formalisés des modalités aristotéliciennes. Revus Philosophique de Louvain, v. XLVIII (1950), pp. 478-509.
[4] K. Gödel: Eine Interpretation des intuitinistischen Aussagenkalküls. Ergebnisse eines mathematischen Kolloquiums. Heft 4 (1933), pp. 3440.
[5] C. L. Lewis and C. H. Langford: Symbolic Logic. Second edition, 1959. New York, Dover.
[6] W. T. Parry: Modalities in the Survey system of strict implication. The Journal of Symbolic Logic, v. 4 (1939), pp. 137-154.
[7] L. Simons: New axiomatization of S3 and S4. The Journal of Symbolic Logic, v. 18 (1953), pp. 309-316.
[8] B. Sobociński: Note on a modal system of Feys-von Wright. The Journal of Computing Systems, v. 1 (1953), pp. 171-178.
[9] G. H. von Wright: An essay in modal logic. Amsterdam, 1951.
[10] Naoto Yonemitsu: A note on modal systems, von Wright M and Lewis's S1. Memoirs of the Osaka University of the Liberal Arts and Education, B. Natural Science, No. 4 (1955), p. 45.
University of Notre Dame
Notre Dame, Indiana

