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THREE SET-THEORETICAL FORMULAS

BOLESfcAW SOBOCINSKI

The set—theoretical formula which says that:

31. If VClis a cardinal number which is not finite, then there exists no
cardinal number tt such thatΊKi<Ά < 2**\

is called the generalized continuum hypothesis. It is known1 that 31 is
inferentially equivalent to:

33 . The axiom of choice

taken in conjunction with

(S. Cantor1s hypothesis on alephs

which says that

For any ordinal number a : 2 = K α , ,

Moreover, it is known that (£ is inferentially equivalent to:

3). If α is an arbitrary aleph, then there exists no cardinal number
such that α < tl< 2 α .

The aim of this note is to show that the following three set—theoretical
formulas:

A. For any cardinal numbers m and ή which are not finite, if XI < 2™,
then n <τn.3

B. For any cardinal numbers TTt and it which are not finite, if Π < 2 ,
then either Xt ̂  mor m< tl.

C. For any cardinal number tl which is not finite and any cardinal
number &, if a is an aleph and Π < 2^, then Π1^ ft.

are such that formula A is equivalent to 21, formula B—to S3 and formula C—
to &. It seems to me that this fact, which as far as I know has not been
noticed, is of some interest, because the formulas A, B, and C having very
similar structure elucidate the mutual connections among the fundamental
laws&, Sβand (£.
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Besides, it will be proved that K is inferentially equivalent to the

conjunction of the following two formulas:

Ej. For any cardinal numbers α and b , if Ct and b are alephs and B < 2 ,

then b ^ α.

E~ For any cardinal numbers a and b, if G and b are alephs and b < z ,

then b< 2 a .

Proof:4

(i) Formula 21 implies A. We know that formulas 33 and © follow from

31. Assume the conditions of A, viz. that m and tl are arbitrary car-

dinal numbers which are not finite and that Π < 2*H Hence, in virtue

of the axiom of choice (33), ΠX, It and 2 m are alephs. Therefore,

there are ordinal numbers α, β, and γ such that

1. m = * α t t = ^ j Q ; 2 m = κ y

Since Π < 2 m , then, in virtue of 2, we have H β < K y Hence:

2. β<γ

On the other hand it follows from 1 and Cantor's hypothesis on alephs

(ίf) that:

3 . κ y = 2*t = 2

κ« = * α + 2

and, therefore, that γ = α +• 2, i.e. that y is the next ordinal number too*.

This fact and point 2 allow us to establish that it is not true that a < β, be-

cause β < γ = a + 1. Hence:

4. It is not true that X < X β

Since, obviously, for alephs we have either Xn ^ Xa or R^ < X o,

then points 4 and 1 at once imply that

n < m

and, therefore, that formula A is a consequence of %.

(ii) Formula 33 implies B. This is obvious, since the axiom of choice

is equivalent to the law of trichotomy for cardinals and B is nothing

else than a weak formulation of this law, obtainable by simple appli-

cation of the propositional calculus.

(iii) Formula @ implies C. Assume the conditions of C, viz. that tt is

an arbitrary cardinal number which is not finite, α is an aleph and

that ΐl< 2 α . Since Q is an aleph, then there is an ordinal number

α such that

5. α - κ α

Since It < 2a, then in virtue of 5 and (£ we have:

6. n < 2 α = 2 a - κ β + I
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which shows that tt and 2 are alephs and, moreover, that 2a is the next

aleph to Ct . Hence, from the law of trichotomy for alephs and 6 it follows

that the case Ct < ίl< 2^ is impossible, and that we must have

Thus, formula C follows from © .

(iv) Formula @ implies^). Assume the condition of®, viz. that (X is an

arbitrary aleph. Hence, there is an ordinal number a such that α = Xα

which in virtue of © gives

7. 2 α = 2 R « = X α + J

It shows that 2 α is the next aleph to α and, therefore,

there exists no cardinal number Π such that Ct < tl< 2^,

Thus, formula © i s a consequence of ©.

(v) Formula 3) implies E ̂  and E2* Assume the conditions of Ej,, viz.

that Ct and b are arbitrary alephs and that b < 2°. Since the law of

trichotomy holds for any aleph, we have either b ^ 0. or Ct < b. But,

the case that Ct < b is impossible, since in connection with the fact

that b < 2 α it yields Ct < b < 2a, which is excluded by®. There-

fore, it must be that

b4 a

which proves that E. follows from®.

The proof of E^ requires the following lemma:

Lemma I. For any cardinal numbers ct and b, if & and b are alephs,

b<22 and a< b , then b = 2 α .

In order to prove that this lemma follows from 35 assume its conditions,

viz. that α and b are arbitrary alephs, b < 2 and that Ct < b . The con-

dition α < b at once implies (without the use of %, SB, @ ot $£)) that 2 α •$ 2&.

But the case 2 = 2& is impossible, because together with our assump-

that Ct is an aleph and ft < b, and general formula b < 2b it give Ct < b < 2 b

= 2** which i s excluded by 2). Hence, it must be that

8. 2a<2h.

Since b is an aleph, obviously, we have 2& = 2 ^ + 1 = 2® + 2^. There-

fore, it follows from 8 and the general formula b < 2» that:

9. 2 α + b<2b + 2 b - 2 * .

In virtue of the well known theorem , which says that

δ . For any cardinal number TΠ such that tΠ^.K 0 : 2 T n ~ " m = 2 t n

and which is provable without the aid of the axiom of choice, and the ob-

vious fact that b ^> Ko, we can establish that there exists one and only
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one cardinal number p such that b + p = 2^, namely: p = 2 . This ex-
cludes the case 2 α + b = 2" of 9, since the possibility that 2a = 2& is
already rejected. Hence, it must be that 2 α + b < 2 , which at once im-
plies that

10. b$2a + b < 2 b

But, in virtue of ©and the fact that b is an aleph, the case that b < 2^
+ b < 2& is excluded. Hence, it must be that b = 2a +$, which shows that

11. 2a4b.

Hence, the assumptions that b is an aleph and b < 2 , and the point

11 imply that 2 ζ b < 2 and, moreover, that 2 is an aleph. From this

last conclusion and 3) it follows immediately that the case 2 < b < 2 is
excluded. Therefore, we have:

b=2a

which shows that Lemma I follows from®.
Now, assume the conditions of E^, viz. that α and b are arbitrary

alephs and that b < 2Γ . Since due to the law of trichotomy for alephs we
have either b •$ α or α < b, then our assumptions and Lemma I allow us
to establish the following alternative:

12. either b4 a or b = 2 α

which in virtue of the general formula Ct < 2 gives

b^2a

Thus, E2 is a consequence of ©.

(vi) Formula A implies 51. Assume the condition of 31, viz. that TΠ is
a cardinal number which is not finite, and let us suppose that there is a
cardinal number Π such that m < Π < 2 m . Since TΠ < ΐt and TΠis not finite
by the assumption, IX must be not finite. Hence, in virtue of A,our sup-
position yields that Π ̂  rπ, which shows that it implies a contradiction.
Therefore, its negation is true, viz.:

There exists no cardinal number rt such that TΠ< Π < 2 .

which shows that Si follows from A.

(vii) Formula B implies 33. In order to prove that the axiom of choice (5g)
follows from B, it is, evidently, sufficient to show that B implies
that any arbitrary cardinal number which is not finite is an aleph.
Assume, therefore, that Πt is an arbitrary cardinal number which is
not finite* It is well known , that without the aid of the axiom of
choice we can associate with TΠ a certain so-called Hartogs* aieph,
viz. K(τn), which possesses the following properties:

2 m

13. K Cm) is the least aleph such that X (nt) is not 4 m and K (m) < 22 .
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The case K (itl) = 2Z gives at once H (nt) >nt, i.e. that mis an aleph.

2 2 ί n ?tn

Assume, therefore, that K (TΠ) < 2 . Since m is not finite, 2 is not

finite either. Hence, in virtue of B (TIX = 22 and n = N (ttl)) we obtain

14. ezϊ£er K (tn)^ 2 2 t U or 22™< K (m)

But, the cases X (nt) = 22 and 22 < H (Ttt) of 14 imply that K (nt) >
Ttl, i.e. that nt is an aleph. Hence, it remains to investigate the third case,

viz. that Hi (tn) < 22 . From the fact that m is not finite it follows that
2*** possesses the same property. Hence, in virtue of B (m = 2**1 and Tt = K
(TΠ)) we conclude that

15. either g (TTt) ̂  2 m o r 2m< K <TTt)

Since the cases K (m) = 2 m and 2 m < K (Ttl) give K (m) >TΠ, i.e. that
nt, is an aleph, only the third case, viz. N (Ttl) < 2m

9 has to be analyzed.
But this case and B (tl = K (Ttl)) imply that

16. either K (Ttl) < XΠor Ttt < K (tπ)

But th« first possibility of 16 is excluded by the properties of Hartogs*
alephs given in 13. Therefore, we have K (m) >m, i.e. thattΠ is an aleph.
This concludes the proof, since the points 14, 15 and 16 show that in virtue
of B our arbitrary cardinal number nt which is not finite is an aleph.

Thus, 58 follows from B.

(viii) Formula C implies^). Assume the condition o f ® , viz. that CL is an
arbitrary aleph, and let us suppose that there is a cardinal number
n such that α < n < 2**. Since α is an aleph and Ct < n, then n is
not finite. Therefore, our supposition and C give a contradiction,
since they imply n ^ Ct. Hence:

there exists no cardinal number XI such that a < Xl< 2&.

which shows that 3) follows from C.

(ix) Formulas E. and E2 imply ®. Assume the condition of (S, viz. that
a is an arbitrary ordinal number. Hence, the aleph Ha exists and
since K a is, obviously, a cardinal number which is not finite, we can
associate with it a Hartogs' aleph K (ttα)> i.e. an aleph which pos-
sesses the following properties:^

17. *(χa) is the least aleph such that R (H a) is not4*a and Kα (K α )

<22*«

and this can be established without the aid of the axiom of choice. It is
known that the least Hartogs* aleph for any K o is H o ^. Hence, we have
K (K α ) = K +1 and since K^ = K^ , we can conclude from 17 that
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2

18. K α + i < 2 2 = 2 2

2*a . . . . . K«
The case Kα * = 2 oί 18 is excluded, since it implies X α < 2

< K α + ί , which is impossible. Hence, the formula K α + ί < 2 holds,

which in virtue of E^ ( α = N α and ί) = N α + ί ) gives

g

The case K ^ < 2 is impossible, since in virtue of Ê  ( Ct = Xα

and b = 8 α + ί ) it implies N α + ί ^ Kα . Hence, the second case of 19 is

true, viz. that

*a+l ~2

Thus, © follows from Ê  and E^

This concludes the required proofs, since*. 1) (i) and (vi) show that

{21} ? {AJ; 2) (ii) and (vii) - that {33} i {B}; 3) (in), (iv) and (v) - that {g}

- {C}; {g} -• {®T ând ί©{ -• {E^ E2J; 4) (viii) and (ix) - that {C} ̂  |2)} and

l E l 5 E 2 }^{(g}. Therefore, evidently: 5) {Si 2 {C}; 6) {(S} ί {E2; E2\ and,

incidentally, an already known fact, viz. that 7) {(£} £ {©}, is confirmed.

It has to be noted that a simple inspection of the proofs given in (i),

(vi), (ii) and (vii) shows that A is inferentially equivalent to:

A*. For any cardinal number TΠ which is not finite and any cardinal

number α, if Ct is an aleph and Ct < 2™ thend-ζvίl.

and that B is inferentially equivalent to:

B*. For any cardinal number TΠ which is not finite and any cardinal

number a, if Cl is an aleph and Cl < 2^\ then either α *^ttt or ΐtt< α.

Applying the reasonings of (vii) to B* we obtain S3 and, therefore, B.

Each formula A and A* implies B and under this condition there is no dif-

ficulty to show that A follows from A*.

It is worth — while to note the similarity of the formulas A* and C. I

do not know whether E2 (or Ep taken alone implies © . It is easy to show

that {SB Ejl t {A} and, therefore, {%; Ej$ ? { «} .

NOTES

1. This was announced without proof by Lindenbaum and Tarski, cf. [3],

pp. 313 — 314, theorem 95. Sierpiriski published a proof in [4], pp. 434 —

437. Cf. also his [7] and [6], pp. 166 - 167 and pp. 193 - 197. Cf. also

[2], pp. 245 - 247. In [3], [6] and [7] the condition of 21 is stronger,

viz. Ttl is assumed to be a transfinite cardinal, i.e. Πt ̂ K o This as-

sumption is superfluous, cf. [4], pp. 434 — 437.
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2. This was announced without proof by the authors in [3], p. 314, theorem
96. As far as I know the proof was never published. The deductions
presented in this paper prove by the way that © i s equivalent to 5D.

3. In [3], p. 314, the authors announced the following definitions:
85. Le nombre cardinal Πt jouit de la propriete P, lorsque aucun nombre

r ne satisfait a la formule TΠ< V < 2m.
and theorem (without proof):
87. Si m jouit de la propriete P et Π < 2 m , on a n ^ΐΐt.
Perhaps, the authors had noticed that §1 implies A.

4. The proofs which are given below are established within the general set
theory, i.e. the set theory from which the assumptions SI, 33, (£ and all
their consequences otherwise improvable have been removed. It is well
known that if we base so defined a general set theory on an axiomatic
system in which the notions of the cardinal and ordinal numbers cannot
be defined, we have to introduce these concepts into the system by means
of special axioms.

5. This theorem is announced without proof by Tarski in [3], p. 307, theorem
56. Cf. also Annales de la Society Polonaise de Mathe'matique, v. 5
(1926), p. 101. A proof is given by Sierpinski in [7] and [4], pp. 168 —
170. Cf. also [2], p. 118. Concerning the definition of the difference of
two cardinal numbers, cf. e.g. [3], p. 305, definition 47 and [4], p. 156.

6. In [ l ] , Hartogs proved that with any cardinal number Tΐt which is not fi-
nite we can associate an aleph K (m) such that K (tπ) is not^ltΐ. Later,
it was established that if X (iΐl) is the least such aleph in respect toTΓl,

2m 2
then: 1) X (m) ^ 22 and in the same time K (m) $ 22 2) if m = N o,
then X (TΠ) = K β + r Cf. [3l, pp. 311 - 312, [4], p. 407 - 409 and [ 2 ,
pp. 220 — 221. The existence of Hartogs' aleph and its properties are
provable without the aid of the axiom of choice.

7. The symbols Z and -> mean: *is inferentially equivalent" and ^implies"
respectively.
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