ON CHARACTERIZATIONS OF THE FIRST-ORDER
FUNCTIONAL CALCULUS

JULIUSZ REICHBACH

In papers [5] and [7]1 I have presented some characterizations of theses
of the first-order functional calculus; in this paper I give a generalization of
two characterizations of one.

We consider the first-order functional calculus with the symbolism de-
scribed in [4]% and besides signs accepted in the logic literature we use
the following ones:

0, E, F, G, El’ FI’ G1 . . . — variables representing expressions,

(0,2) Sw {E} — the set of all symbols occurring in the expression E,

(0,3) Skt — the set of all formulas> of the form Eal ... Eal. ﬂai+1 ...
llg F,” where F is a quantifierless expression containing no free
variables and Ila; is the sign of the universal quantifier binding the
apparent variable @, and 2.4.G = (HajG’)’, forj=1,...,k.

(0,4) C(E) — the set of all significant parts of the formula E: F ¢ C(E) - =
- F = E or there exist such G, H that: (F=G)A(E=G)Vv[(F=G)v
(F=H)] A(E=G+H) v (@i){F = G(x,/a)} A (E = [1aG).?

0,5) w(E) — the number of different free variables occurring in the ex-
pression E,

(0,6) p(E) — the number of different apparent variables occurring in the
expression E,

©,7) i1, ce e, iw(E)’ or ]'1, e e, jw(E) or 11, ey lw(E) — different in-
dices of these and only these free variables which occur in the ex-
pression E,

(0,8) i (E)=max{is, ..., iy,

0,9) m (E) = w (E) +:p(E) ,

(0,11) E(x/y) — the expression resulting from E by the substitution of x for
each occurrence of y in E; if y is an apparent variable, then y does
not belong in E to the scope of the quantifier [ly; if x is an apparent
variable, then y does not belong to the scope of the quantifier Ilx,

(0,12) =(F) = 0, if F is a quantifierless formula; % (F + G) = max {2 (F),
3. (G)}; S (aF) = 3{F (x/a)}, where x & Sw{F}; 3 (2aF) = w(F) +:1, if
S{F(x/a)} = 0;° 3 (SaF) = S{F (x/@)}, if x  Sw(F) and S{F (x/a)} #0;
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If 3. (F) is not defined above, then:

3.(F) = max {3 (G)}, for each G ¢ C(E), where here if G = [IaH then
2(G) = w(H) + 1, and 3 (F’) = 2 (F), 2 (E + F) = max {2 (E), 2 (F)}

For example:

(I If E ¢ Sks and E = zal ... 2a; lMa, ;...la, F, for some F, then
S(E)=1.

(29 M E ={a;f] (x5, 5 5 5 Xtpmgr 37 + f11 (%)}, then Z(E) =r.

(3° X (E) £ m(E) < n(E).

(0,13) E* €P if and only if an arbitrary substitution for free variables in E
belong to P; we define also E* + F* = (E + F)*; we assume also that
if we write E*, F*, G*, ..., then we consider the same substitution
in all formulas E, F, G, . ..

0,14) M, My, My, . . . = arbitrary models,

0,15) T, T, T,, — arbitrary tables of the rank &,

0,16) Q, Q, - non-empty sets of tables of the rank &,

0,17) {Q } — the sequence of sets Q,, where Q, is defined in (0,16),

(0,18) ({Q }) — for every {Q,},

0,19) [M | Spre e Sk] - the truncated model of the rank &,

(0,20)FeA(E) -@F)...(@F){E=F;+...+F,_;+F+F,
+...+ F , where the atta.ngement of brackets 1s respecnvely}
(F) (Fp) (F A Fy+Fp,

Some notions which we introduced above are defined in the following
pages of the paper.

From [4] or [6] we obtain the following rules of constructions of formal
theorems of the first-order functional calculus:

III

(1,1) The formula F + F’ is a formal theorem.

(L)Y Fy+ Fy+...+ F, is a formal theorem and kiy .+, k, is an ar-
bitrary permutation of natural numbers <7, then Fg; + Fg,+ ...+ Fg,
is a formal theorem (the arrangement of brackets is here arbitrary).

(1,3) If F is a formal theorem and G a formula, then F + G is a formal the-
orem.

(1,4) If F+ G and F + G’ are formal theorems, then F is a formal theorem.

(1,5) If F + G is a formal theorem and the free variable x € Sw { F} then F +
[IaG (a/x) is a formal theorem.

(1,6) If F + lIaG is a formal theorem, then F + G(x/4) is a formal theorem.

D.1. The sequence of formulae E,, ..., E, is a formalized proof of the
formula E in the first-order functional calculus with added axioms U8
if and only if E = E_ and for each t < n the following conditions are
satisfied:

1. every E, is an alternative of significant parts of the formula E or

of some formulas which belong to U.

E, e U or there exists such F that E, = F+ F’, or

3. there exist such i, j < ¢ that E, results from E; and E; by applying
the rule (1,4), or

o
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4. there exist such i <t that E, results from E; by applying one of the
rules (1,2) - (1,3), (1,5) and (1,6).

D.2. The formula E is a thesis of the first-order functional calculus with
added axioms U if and only if there exists at least one formalized proof
of the formula E in the first-order functional calculus with added axi-
oms U.

D.3. The formula E is a thesis if and only if E is a thesis of the first-order
functional calculus with added axioms U and U is empty.

By the length of a formalized proof E;, . . . , E, we mean the number n.

We notice that because in the proof of Gédel’s theorem for E,10 see [4],
we may only consider the significant parts of E, therefore we may replace
(1,4) and (1,6) in D.3. by:

(1,4) If F+ G and F + G’ are formal theorems, G’ ¢ C(F) then F is a formal
theorem.

(1,6%) if F + [1aG is a formal theorem, w(G) <2 (F + [IaG) and [1aG € C (F),
then F + G(x/a) is a formal theorem.

It is known that if E ¢ Skt, then E is a thesis if and only if E may be
obtained by means of rules (1,2), (1,5) and the following:11

(1,79 If F + E + E is a thesis, then F + E is a thesis.
(1,8) If F + G(x/a) is a thesis, then F + X aF is a thesis.

It is easy to show:

L.0. If the length of the formalized proof of the formula E is n, then the
length of formalized proof of E* is also n.
L.1. For each formula E it may be written down such a formula F ¢ Skt that

E is a thesis if and only if F is a thesis; we may also assume that
F=2a1 ...2a;lla, G, for some G.

D.4. The sequence < B, {F;:} > is a model if and only if B is an arbitrary

i+1

non-empty set and {FZ} is such an arbitrary doubly infinite sequence
of relations that F;:l is a m-ary relation between elements of B.

In the further consideration we assume that the usual definition of
satisfiability is known, see [4] or [10].

D.5. M{E} =0 - = - E’ is true in the model M. )

D.6. M{E(s;, ..., s3)} =0 - = there exists such model < B, {F%} > that
M=<B,{F7’.}>,sl,. .+, S, €B, x; are the names of s;, i = 1, . . . ,k,
and s, . . ., 53 do not satisfy E in the model M.

The following theorem is known, see for example [4]:

T.1. A formula E is a thesis if and only if it is true.

D.7. The sequence < B, {F'} > is a table of the rank k if and only if it is a
model and B, has exactly k-elements which are numbers I, . . ., k.
D.8. [Mlsl, ..., 5] is a truncated model of the rank k with respect to
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Spreees S = briefly: a truncated model of the rank k£ — if and only
if there exists such model < B,{F%} > that M = < B, {F}} >, Sy eaSy
¢ B and there exists such table < B, {qﬁ} > of the rank k that: if
reBk,forz—I .., m, then

Sy (rpy vyt )= FY (Sppy e v vy 50,) -

We notice that [M|s;, ..., s,] is a submodel of the model M in the

meaning of homomorphism.

D.9.

N (Q,k) if and only if Q is an arbitrary non-empty set of tables of the

rank & and for an arbitrary sequence t , t;, of the natural num-

17
bers < k we have:

If TeQ, then [T|t,...,4leQ .

D.10. Q[M,E] - = - (T) {T ¢ Q (Hs )...(ds )(T—[M[sI,... ,sk])}

D.11. T? ¢ o|1,...,4 - (EIm) (HT) {(m 2 k) A (Q is a non-empty set
of tables of the ra.nk m) A(TeQA (1° = [T|1, , D3
13

It is easy to prove:

L.2. fM=<B,{Fi}>, Sgr++.,S, €B,t <k, then[[MlsI,...,
i ' {i4
sl tq]—[Mlst,...,stq,

L.3. If Q[M k] then N(Q, k).

L.4. If TI’ T are two tables of the rank & and TIPS NP
T 7, (¢t <k) is a sequence of different natural numbers < <
then if [T1[r1, NN A [T2|rl, cee, ri], then there exists sucb
table T3 of the rank % that
[T3|r1, RS TN 7T r].]=[T1|rI, e T T e e r-]
[T3|r1, Cee T Tige e rt] =[T2|r.1, ST Tapr e t]

L.5. Let N(Q°, k) and let

TeQ-=-@TH@EL),..., @IS, <RAGE=1,...,mnA
(T e QP AT =101, ...t 1
Then:
I. N(Q, m) .
II. k< m, theuQ [Qll )
II. Ifk> m, then O =[Q° |1, ..., ml .
D.12.10, 10+ -+ s Q=" R Ik S m) >(Q, =10, |1, ..., kD}.
Obviously:
L.6. 1fQ, M, 1,...,0,IM, ml, then Q [Q;, ..., 0, /1.
L.7. If Q Qg3+ o s Qpylythen Q [0, ..., 0 I
From 1.5. we obtain immediately:
L.8. If Qm[Ql’ e, m-—l]" N(Q,,, m), then for every k = 1, ..., m, we

have N(Q,, k).
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L9. If Q [QI, e e, Qm-—I]’ N(Q,,, m), then there exists such Q ., that
Q1@ - - -5 Qm] and N(Q, . ;» m+]).

L.10. If Qm[QI, coes 0, 1), N(Q,,s m), k <mand T € Oy, then for arbitrary
sequence i, ...,1%, t X k, of the natural numbers < k& we have
(T|i;, ..., ileQ,.

D.13. M is a biunique ¢#-model — in symbols M ¢ R, — if and only if there
exists such model < B, {F;} >, that M = < B, {F}} > and for arbitrary
Sys+++s Sy Sjy- -+, 5] € B we have: if [M|s},..., s] =[M|s’1,
ce.,8), thens; =5}, ...,s,=5}.

The example of M ¢ R, may be easily given, see [5] and [7].

By an extension of a model M; = < B, {Fi} > we understand here a model
M, =<B, {F;}, {Gé} >, where {GJ} is an infinite sequence of co-sets of B.

L.11. Each model M; may be extended to model M ¢ R;, and therefore to
Me R,, for every t.

Proof: —LetM;=<B, {F;} >, let
(0) (sl’ 52)1 (51’ 53)7 (52’ 53)7 .
be the sequence of all pairs of different elements of B and let
1 ¢l 1
Gy, G5, G3, v -
a sequence of relations with the following properties:

0,1 if[M|s,]1=[M,|s,], then GI(s)) and ~ G](s,) .
0,2 if (s, .s]-) is the m-th pair of the sequence (0) and [MI [Si] = [M1 |s]-],
then G, (s;) and ~ G, (s)).
Obviously that (0,1) and (0,2) give the construction of this sequence of
relation. _
Lec M=<B, IF},{G}}> .
It is obvious that M is an extension of M; and M ¢ R,, for every ¢.

D.14. N(r, Qpy oo, Q)+ =+ (SR A (i) ... (ig) (g (T (F<7)
A (ip---,i,ﬁ_] < k) A ([Tll',...,i*]‘e Q,})'\ ([Tli&'x}-I] € Ql).’
ET)) {([TI ligs oo iy 2 +11 € Oz, p) A (for each sequence j;,. . .,
i of natural numbers S£), if [T i}, .. ., ile Qg then [T|f}, ... ,j]
=[Tliy ..., i B Y

It is easy to show, see [71:

L.12. If M = < B, {F]-I} > 18 Q, M, 11,..., Qk[M, k], then for every t we

have N(t, Q;, . - -, Qp)-
L3 IEN(r, Qg v vy @), t <7, then N(Z, Qp, « -+, Q)
L.14. 1 Q,IM, 1, . . ., O [M, k], then:

1. if T is an arbitrary table of the rank k, [T|d ¢ Q,, [T|fl € 0, %,
j $k, then there exists such table T of the rank k that [T |4, ile
19
Q, 7 and

O B A 4 ] N s (1.1 Ay 8
(T, ... i1, j*1, oo ., Rl =[T|L, . ooy j=1, 41, . ., K]

16
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2. ifk2 2, then N(2, Qp, - - ., Q):

L5 X Qpp [0 ooy Qb N(Qpyypy A+D, NGy Qpye ooy Q) 7Sk
then N(r, Q) . . ., Q). 20

L.16.1f Qy [Q), - ., Qu_j)s N(r, Qps - -+, Q)), N(Qy, k), then there ex-
ists such Q, , that N(r, Q;, ..., Q. 1), Qrt1 [QI’ ey k] and

N(Q,, p» k+D).

L.17. If M e RI’ Q, M, ..., Q [M, k], then for each r we have N(r,
QI’ . Qk)

D.IS.R(T, Ty, Qpyvv vy Qprigpeverip, )= (mSRA(T|if, ... ,i]

=[1,li;, ...,z])A{(Ht)({1<t<m}'\{1~z})—>([T |11,...,iJ
eQ)}A{(t)({1<t<m} {z+z})->([T |11,... z,z]tQH)}

For an arbitrary sequence Q,, ..., Q,, where O, are non-empty sets
of tables of the rank i (i = I, ..., k), for an arbitrary table T of the rank
k and for an arbitrary formula E which indices of the free variables occurring
in it are <k, we introduce the following inductive definition of the function-
al V:

(1d) ViT, QI:---,Qk,fm(xrp---yxrm)}=1'5'F;”(Tp--~,7'm)7
(2d) VAT, Qppoevs Qp FPl=1-=-~VIT, Q,...,Q, Fl=1-=
=VIT, 0, ..., Q Fl=
(3d) V IT, QI,...,Qk,F+G}
vIiT, 0,, cees Qs G}_z

(4d) VAT, Ql, cee, Qk,IIaF} - (@) (TI){(.iS_k) AR(T, Ty, Q- - s
Qprippeves ‘w(F)’ i) » V{TI, Op oo vs Ops F(x./a)}:: 1}.22

D.16. E € P(Qp, ..., Q) - =+ (D {(H) {(He ALFH > BT, ...,
w(H)]eQw(H))}»ViT Ql,---,Qk, E} = 1}

D.I7.E € P(k, 1) - = - (Q) .+« - (Q) {Q L0, o .+, Qpy] A N(Q, k) A

N Qpee sy Q )—»(EeP{QI, ey QD)
D.18. EeP - =- E¢P |n(E), 2(E).

1.=-VI{T, Q,...,Q, Fi=1v

]

We explain the meaning of the above definitions:

1. The expression V {T, Ql’ e, Qk’ E} = 1 may be read: T satis-
fies E relatively to a sequence O, . .., Q;.

2. If M is a model and Q;[M, i1, i = 1,. .., k, then elements of Q;
are submodels of M (see D.8.), the number i in (4d) is a name of
an arbitrary element of the domain of M and in D.16. and D.17. we
assume that we consider only submodels of M; in D.18. we asso-
ciate to each formula a pair of numbers.

3. P is the set of all true formulas (see T.4.).

Obviously:

32 vV I{T, QI,...,Qk,F+G}=O-s-V{T, Qp-v-1 Qg FI=0
AVAT, Qp, - - -3 O, Gl =
(4d) VT, Qpp .-« , @ MaF} =0 - = - (@)AT) {G £k) A R(T, T,

Qp LR Qk, ilv AR ] iw(F),i) A V{TI’ QI’ e ooy Qk’ F(xi/a)}=0}.
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(5d) VIT, Qp..., Q ZaF}=1-=" @H@ET,) (i <k) A R(T, T,
IQ;I’zs' s Qi iy D A VAT, Qp ety Oy, Flx/a)} =

Gd) VAT, Qs oy Qs SaF}t =0 - = - GUT) (i £ k) A R(T, T,
Oprvvovs Qoigseeesiymyds VT, Qp -y O, Flx,/a)}=0}

(6d) ET P-=-(4Q) ... A0, p)@D {H)H € AE} - {T|iy. ..,
iy € Quand AN 1Q gy n(BX A Qg [0 -+, Oy (pyd
ANGE(E), Qpy - -+ s Quey A VIT, Q..o Q, gy EVb=0L

T.2. If E ¢ Skt, F ¢ C(E), M{E} =0, k 2 n(E), Q,IM, 1I,.. .., 0, M, &],
then:

LoQlos, .., 0 JLN(Q, i) fori=1,...,k N(2, Q.. ., Q).

2. fMe Ry, then N(r, Qf, - . ., Qp), for every r S k.

3. 1 M|sipy .. ., s,-w(F)] =[T|i; ..., iw(F)] and M {F (sj;, . - -,
s,-w(F)} =0, then VIT, Q,, ..., O, F} =0.

4. E' ¢ P(Qq, ..., Q) and ET P(k, 2).

5. HMeR,, then E€ P.

Proof: —From L.3, L.6, L.14. and L.17. we obtain I and 2; conclusions
4 and 5 follow from 1, 2, 3, M{E} =0, (54"), D.16, D.17. and D.18.

We shall proof (3) by induction on the number of quantifiers occurring in
F:

If F ¢ C(E) and F is a quantifierless formula, then 3 holds.

It is left for us to verify that if 3 holds for F(xi/a) € C(E), then it
holds also for the formulas belonging to C(E) of the form:

(I’) IlaF,
(2") 2 a4F.

In the case (I’) by virtue of the definition of satisfiability, of the as-
sumption, L.2. and (4d’) we obtain:

If MULaF(sip, - - .y iy, gy = 0, then (Fi)(Ts)) {x; T Sw {F}) A (i Sk)
A M {F(xi/a)(sip s sey Siw(F)’ Si)} = O}, then (Hi)(HSi)(HTI) {("i €
Sw {F}) A (l _<_k) A([M|si1v e s ey Siw(F), Si] = [T1|i17 LR | iw(F)’ 1]
€ W(F)+1) A(M {F(xl/a)(slly L ] slw(F)7 Sl)} = 0)}7 then (gi) (HTI)
x; € sdFY A GSRY AT i) e o vsiypy € Q) AT lip

N iw(F)] = [T‘il’ trt iw(F)]) AV {Tp Q17 L Qky F(xi/a)}
=0}, then (FNAT PGSR ARCT, Ty, Qpy v v s Qpoigs v+ - 5 iy, (my D)
AVAT,, Qpy e ooy @y F(x,/@)} =0 AVAT, Qg -« ., Q, [TaF} =0}

In the case (2’) by virtue of 3 aF ¢ C(E), E € Skt, of the definition of
satisfiability, M {E} = 0 and of the assumption we obtain that for an arbi-
trary i Sk and for each [T |i}, . . ., iy, gyl € O, gy if exists such7 <W(F),
that i = i, and for each [T |i}, ..., 7 gy @l € O gy We have viT,,

Qs+ -+ » Qs F (x;/@)} = 0 and therefore (54°) for considered tables.
The above give us the complete inductive proof of 3; q.e.d.

L.18. Let E° results from E by replacing free variables with indices i,...,
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i correspondingly by free variables with indices e e, ]
By = w(EOF;26 s D+ Tw(EOY

[Tlll, o .0y lw(E)] =[TO | ]1, « .oy ]w(EO)]27
Then:

VIT, Q) oo, Q, BY=1.=.VIT%, Q,, ..., Q,, E%}=1.

L.19. Let £ 2 n(E), T is a table of the rank k+I and T, = (T]1,...,k];
then:

V{T7Q17-"7Qk+17E}=1'E'V{TO’Q11""Qk,E}=1'

The proofs of L.18. and L. 19. are inductive on the length of the formula
E and are analogical to the proofs of L.12. and L. 14. respectively from [5].
It is easy to show:

L.20. (I’) F+ F’ € P(Qp, « + -, Qp)-

(I) F+F eP.

(YU F +...4F €P(Qp ..., Q) and &, ...,knisanarbi-
trary petmutauon of natural numbers < 7, then Fpi+.oo. .+ Fy,
fp(er"'rgk

@ F, +...+ Fn € P and kl’ cee ey kn is an arbitrary permuta-
tion of natural numbers < 7, then Fpo+... + Fp, €P.

G)YIUFeP(Q), ..., Q) then F+GeP(Qp, ..., Q)

(3) If FeP, then F+ GeP.

@)U F+ G, F+G eP(Q,...,0Q) and G’ ¢ C(F), then F eP
Q) -« s Q).

(4) fF+G,F+G ¢P and G’ ¢ C(F), then F ¢ P.%8

L.21. X F* + G* € P(Q;, - - -, Q), j Sk, % € SwiF*}, x. e Swi{G*}, k2 n
{F* + I aG* (a/x))}, N(Qk, k), (9 | Qg5 - - -5 Qp ;1 then F* + I aG*
(a/x)eP(QI, e Q)

Proof: —Let F* + G* € P(Qp, - ., Q), 1Sk, N(Q, 4), [0, | Of)-- -,
Qp—gls x] € Sw(G*), % Sw(F*), k> n {F* + O aG* (a/x N, VAT, 9, .. .,
Qs F* +I0 aG* (a/x)} = Oand[T\z cee, ]eQ , for each

j w(H) w(H)
H eA {F* + II aG* (a/x])}

Therefore in view of (34’) and (44’) we obtain: V {T, O e v« Qk’ F*}

-Oand there exist such i S & and T, that R(T, TI’ Qs - , 1,
{G*(a/x N i) andV{TI, Ql’ vy O G* (x/x) 0 hence[k T | fpenns

w{c*(a/x >§] =0T lip - o iyfer@are ) a“d[T lipp - e e ‘wiG*(a/x W

W G* (a/x )} and [T |"1’ cees w{G*(a/x])}’ il eQ wlG* (a/x )} + 1’lf
Wi tlw {G*(a/x].)}) SRR RS

We consider here two cases:

1. there exists such t Sw {G* (a/xi)} thati =i,
2.  for eacht < wi{G* (a/x].)}, ifi,

In the case 1 — for the shortest writing — we assume 7 = z'1.
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From the assumption we obtain: [TI ligseees iw{G*(a/x.)}] =[T| igyens

.w{G*(a/x’)}]‘ [Tlip s dufgras P € Qu WG (arx b ¥ w {G* (a/x))}

{G*(x”/x )%, vV {TI, Ql’ cee, Qk.’ G* (x,l/x N = 0 and it may be as-

sumed that the sequence 21, ey w{G'(a/x % and ST | WAG*(x; /5
1%

-

are identical. Therefore in view of L.18. we obtain: V {T, Ql’ e, Qk’
G* (x;;/x)} =0 and [T |7, . . ., iw{G,.(in/xi)}] € QW{G*(in/xj)}'

Hence by virtue of the assumption, (34’) and L.I0. we obtain: V {T,
Qs+« v s Qpy F* + G* (xil/xi)} = 0 and for each H ¢ A {F* + G* (xil/xj)},
[T|i1, ey iw(H)] € Qw(H); therefore F* + G* (x,-l/xj) ?P(Ql, ce ey Qk)’
which is inconsistent with the assumption.

Hence in the case I. we have F* + ]I aG*(a/x) € P(QI, e, Qk)

In the case 2. from the assumption we obtain: [T Lpyeees lw{G*(a/x %

= Tl g arpth T |’p---”wgc*<a/x]>} i] e Qw{c*<a/x %
+ 1, x; € Sw {G* (a/x.)} andV{TI, Qv v Qk’G (x/x)}
Let i< and let

{T ifi=j

TS =

1

IT,01, ooy iml it oy =1, 4 b, oo, R, if i <20
Hence and in view of L.2. we obtain: [T° |i1, e {G*(a/x Ny =

Ur,\1,...,5~1, j, i+, .. ., =1, i, j+1, . ,k]}il, ... {G,,(a/x N

il = [T1 |25 o vy lw{G*(a/x].)}’ il e Qw(G*) because w(G*) = w{G*(a/x].)}

. o . _ .

I; hence [TI iy e vs lw(G*)] = [T1 |11, e {G“(x /xl)}] € Qw(G*)’

where the order of sequences z'I, ey iw(G*) and 11, c ey lw{G*(x /x])}

are given above, w(G*) = w{G*(xi/xj)}, and [Tlolip e Zw{G*(a/x )}] =

[Tlil’ st iw{G*(a/x-)}]'

From the above and by virtue of L.18. we obtain: V{T7, Q;, ..., Q,,
G*} =0, [TY|igy .-, .w(G*)] € 0, (g+) and assuming that t,...,% are
all such dlfferent elements of sequences j;, ..., ]w P+ and 11’ e,

LG (a/x )} 0 which occur in both sequences we have [T7 (%, . . 1"] =

[T|#;,...,%]; therefore in view of L.4. there exists such T2 of the rank
k that [T |71,...,] (F*] = [T|71,...,7 (F*] and [T EFTIRI
i WG ] [T |z .. G*)] hence in view of L.18. we have 1% {Tz,
QI,...,Qk, F 20, V'f'T Q)+, Q,, G*} =0 and by virtue of (3d"),
the assumption and L.10. we have VAT, Qe o5 Qp F* + G*} =0 and
[T2|i1, e, iw(H)] € Q) for each H ¢ A {F* + G*}; .therefore F* + G*
?P(Ql, -+« Qp), which is inconsistent with the assumption.
Therefore in the second case we have also:

F* + 11 aG* (a/x].) €P(Q;, .-+, Q); ged
L2I’. If F* + G* ¢ P, x.?Sw {F*}, then F*+ I aG* (a/x].) eP.

Proof: —If % € Sw {G* (x /a)}, then L.21’, follows from D.20. and
from some simple considerations.
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Let x; € Sw {G* (x,./a)}, x; € Swi{F*}, t = n {F* + I aG* (a/xj)}, k=n
(F* + G*, 0, [0;, -+, 0, ;] N(Q, 1), NIS(F+II aG*(a/x)), Oy, - - - »
Qt§, (reli, .., iw(H)] € Q,(yyforeach He A {F* + 10 aG*f’, and V {T°,
Qy v+ vy Q F* + L aG* (a/x )} =0.

Because k = n {F* + G*}’Z n {F* + [ aG* (a/x )} =t,2(F*+G*) <3{F*
+ I aG*(a/x.)}, therefore by virtue of L.13., L.16. and L.19. we obtain:
Qk [QI, LR Qk_1]9 N(Qk.‘.]’ k+1),N{E(F* + G*)’ QI7 AR ] Qk} and V {T9
Qs -« v s Qs F* + 1 aG*(a/x)} = 0, where T° = [T|1,..., tl, and for
each H ¢ A { F* +.l'I a.G* (a/x.)} we have [T|i1, C e, zw(H)] € Oy

Hence and in view of D.18: F* +II aG* (a/x) € P(Qy ..., Q) and
by virtue of L.21. and the assumption F* + G* € P(Q;, .. ., Qk) and there-
fore F* + G* €P.

The above consideration prove L.21’.

L.22.31 1f F* + G* (x/@) € P(Qp, .« ., Q), k =N {F* + 3 aG*}, r =3 (F*
+ 2 aG*), N(T, Q11 LR Qk)r N(Qk9 k)9 Qk [Ql’ L ] Qk._]ly the“
F* +5aG* ¢ P(Qp, . - -, Q).

Proof: —We assume that the assumptions of L. 22, hold.

If x; € Sw {G*}, then the proof is obvious.

Let x. ¢ Sw {G*}, V {T, Qpev+» Qy F* + X aG*} = 0 and for each
HeA {F*]+ 3 aG*}, [TliI, c e, iw(H)] € Qw(H); hence and by virtue of
(3d’) we obtain:

VAT, Q.. Q, F*1 =0, VIT, Q). .., Q, 5 aG*} =0.

If x. € Sw{% aG*}, then taking H = 3 aG* we have [T|i, ..., iw(G*)]
€ Qw(G*) and from (5&’) V{T, Q;, . . ., Q,» G*(x./a)} = 0; hence in view of
(34’), the assumption and L.10. we obtain V {11', Qs v vy Qp F* + G*
(x]./a)} =0and [T|i}, ..., iw(H)] € Q) for each H e A{F* + G*(x./a)};
therefore F* + G*(x,/@) TP(Q;, - - - ékg, which is impossible, and there-
fore F* + % aG* e P Qps + + +» Q) in this case.

If x; € Sw {F*}, then analogously to above—using L.10.—we have:
[T[z'I, eee, iw(G*)] €0, 2nd (T{ileQ,.

Because r = 3, (F* + X aG*) 2 3, (F* + G* (xj/a)) and r > w(G*), then
in view of the assumption and D. 14, there exists such T, of the rank % that
[TIl’:I’ c e, l:w(G*)’ j]‘e' Qw(G*)+_1 and for each H ¢ A {F* + 3 aG*},
[T1|11, e, lw(H)] =[1 ligpe-es zw(H)]‘

Hence in view of L.18. and 34") V{T,, 0, .. ., Q> F*} = 0 and by
virtue of (54°) and D.15. V {Tl, Qs v v v s Qy G (x]./a)§ =0.

From the above and in view of (3d’) and L. 10. we have: V{T, Q,,...,
Q,» F* + G* (x]./a)} =0 and for each H ¢ A {F* + G* (xj/a)} [r, iy eees
iw(H)] € Q,(yy hence F* + G* (xl./a) €P(Q -+ -5 Qp), and therefore F* +
S aG* ¢ P(Qy -+ ., Q) in this case also.

If % € Sw {F}, % 7 Sw {Y aG*} and F* + 3 aG* has no free variables,
then because Q; is non-empty, then there exists such T, of the rank & that
[T, |11 € Q; and by virtue of L.18 V{T;, Q;, ..., Qp, F*} =0 and V{T,
Qg5 « + + s Oy % aG*} = 0; hence in view of (5d°) and D.15. V {T; Qpreess
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Q> G(xl/a)i = 0 and therefore by virtue of (3d’) V {TI, Qpsvvvs Oy F* +
G*(x,/a)} = 0, which proves that F* + G*(x,/a) € P(Q;, ..., Q), and
therefore F* 4+ 2 aG* € P(Q s e e ey Q ) in the thu-d case.

If x, € Sw{F*}, x. € Sw {G*} and—-for the shortest writing—x; € SwiF* +
3 aG*}, then analogously to the second case there exists such T, of the

rank k that [T, i, ..., L Gry 1l e QG )1’ VAT, Q-+ -5 Qs F*i=
0, V {T,, Ql" «+» Qp, % aG*} = 0 and for each H ¢ A {F* + X aG*},
[T [z Cee, lw(H)] = [T|i gy ey iw(H)] € Qun) therefore analogously
F* + G* (xl/a) € P(Qp, - -+, Q) and therefore F* + X aG* ¢ P(Q;, . . -,
0,)-

The above considerations prove L.22.

L.22'. 1f F* + G*(x;/a) ¢ P, then F* + % aG* ¢ p.32

Proof: —Because n {F* + G* (xl/a)} >3 {F* + G* (x Ja)}, 3 {F* + G*
(x./a)} £ 3 {F* + 3 aG}, then in view of L.16, L.19. and L.22. we obtain
L.22’; the whole proof is analogous to the proof of L.21.

L. 23. IfF+HaGeP(Q,...,Q),r— {F + I aG} > w(G) and N(r,
Qps e v v s Q) thenF+G(x/a)eP(Q1,...,Qk).

Proof: —We assume the assumption of L.23. and let V {T, Qrse v+
Q, F+ G(x /a)} =0, and for each H ¢ A {F + G(x ./ a)} [T[zl, - iw(H)]
¢ Quemy

Because 7 > w(G), then using D.l4. many times we obtain that there
exists such T that [T1 |z’1, e, w{G(x Ja) il e Q.6 + 17 and for each

He A{F + G(x./a)} [T[i’ ceey w(H)] e 0 HY therefore in view of L. 18
and 3d): V {T,, Q,...,Q Fl=0, v{”'l(l, Qs+ -5 Qs Glx/a} =
and by virtue of (4d’) and (3d’) Vv {T Opy+ s Oy, F+1I aG} = O and by
virtue of L.10. for each H ¢ A {F + II aGl, [T, i), ..., w(H)] € Quuy
hence F + 1 aG € P(Qy, . . ., Q,), which is inconsistent with the assump-
tion; therefore F + G(xl./a) € P(QI, cevy @); qeed.

L.23. If F+ I aG € P, I1 aG ¢ C(F), 2 (F + II aG) > w(G), then F + G
(x]./a)eP.

Proof: —Because here 3 {F + [I aG} £ X {F + G(x]./a)}, therefore in
view of L.16, L.19. and L.23. we obtain L.23’.; the whole proof is anal-
ogous to the proof of L.21.

T.3. 1If E is a thesis, then E ¢ P.

The proof of T.3. is inductive on the length of formalized proof of the
formula E and this follow from L.0, L.20°, L.2I’. and L.23".
A simple conclusion from L.1, T.1, T.2, and T. 3. is:

T.4. A formula E is a thesis if and only if E € p.33

For example:

If E € Skt andE=2a1 ...2aMMa;, ;... gF, then E is a thesis
. > NEY, i i+
if and only if E € P (&, 7).
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Obviously:
P, 1)CP(k+1,2)CP(k+2,3)C...

From L.12, L.14, and T.4 follow some generalization of theorem
Godel-Kalmar, see [1], [3] that the class of theses of the form X a; X a,
Il aj...ll a,F, where F is a quantifierless formula containing no free
variables, is decidable:

The classes P (k, 1) and P (k, 2) are decidable, & = 1, 2, .

The monadic first-order functional calculus is decidable.

From T.4. we obtain the decidability function for the classes P (k, I)
and P(k, 2), k=1,2,...

From [1] follows that the decidability of the class P (4, 3) is equivalent
with the decidability of the class P (k, m), for m > 3, k > m; it follows also
that the function V defined in D. 18. for the classes P(k, m), m 2 3, k2 m,
is not general recursive.

If we shall add to the considered functional calculus the description
of tables, then the above considerations we may write in the domain of
those theories, see [9].

Another characterization of theses of the first-order functional calculus
we shall obtain from [8] in the following way:

First of all we introduce the function V; which is defined for an ar-
bitrary finite sequence {Qn},‘ where Q. are non-empty sets of tables of the
rank 7, i = 1,,..,n, for an arbitrary table T ¢ 0 and for an arbitrary
formula E whose indices of the free variables are <k and k& + p(E) Sn:

@y VAT AQYL 7 Gygse v v s % =Lz FP(rpyevyr),

(d2) (T, QL Py =1-=-~V,IT,{Q}, F} =1-=-V, T, 1Q},
Ff-o,

d3) Vv, {T,{Q}, F+Gi=1-

(d4) V{T {Q}HaF}-z =

(T}){(T 6Qk+1)A(T [

D.19. FePUQ N =- (DT e Qpy»V, {T,{Q}, F} =1}

I
1
<

DGR > VAT, {Q}, F(x,/a)} = 13 A

. V1 {T, {Qn}, F} =1v VI {T, {Qn}’ G} = 1,
(
l ’ k]) i VI {le {Qn}’ F(xk+1/a)}

D.20. N,(tQ,}l, "Gy = () (T )(T2) (z+p(G)< n)A(T €Q)A(T, e QIH)
W 2t ..,z])AV (T,{0}, Gl =1V, (T, (0] Gl =]
D.21. FeP[G {Q}] - N ({Qi G)»{FeP({QH
D.22. FePin, E} {Q f)(aG)({Ge C(E)} A {Fe PG, {Q i1}.
D.23. FePlE|-= (an) {(F e P {n, E}) a (n 2 n(F))}.
D.24. EeP =" E ¢ P|E|.
It may be proved, see [8]:
T.5. A formula E is a thesis if and only if E ¢ P,.
We note that if we shall replace D.22. by:
D.22°. F ¢ P {n, E} - = - ({Q,}) (F € P [E, {Q,}]), then analogously we may

show:

T.6. IfE € Skt, then E is a thesis if and only if E ¢ P,.
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T.6. may also be proved in another way.
The function V; has interesting properties which may be applicable

to the verification of formulas of considered calculus, see [8].

By a simple generalization of the above definitions we may obtain a

new characterization of theses of the first-order functional calculus with
added axioms U, see [4].

10.
11.
12.
13.
14.
15.

16.

NOTES

The numbers in the square brackets refer to the bibliography given
at the end of this paper.

The symbols of this calculus are:

(a) free individual variables: X5 %y, o« « (or simply x),
(b) apparent individual variables: a;, a,, . . . (or simply a),
(c) functional variables with m-arguments: /"1", fg’, ey

(d) logical constants: ’ (the negation), + (the alternative), II (the gen-
eral quantifier),

Here the formula has the same meaning which has the well formed
formula. An expression in which an apparent variable a belongs to the
scope of two quantifiers Il a is not a formula.

It is Skolem’s normal form for theses.
We see that every significant part of the formula E is a formula.

We notice here that if 3 {F (x/a)} = 0, then 3, {F(xi/a)} =0, for each i.
In exactly given cases the number X (F) may be less than defined
above.

The dots separate more strongly than parentheses.

If U is empty, then we say that E;, ..., E, is a formalized proof of
E, or—briefly~a formalized proof.

This is a form of Herbrand’s theorem.

See T. 1.

See [2].

L.1 asserts the existence of Skolem’s normal form for theses.
The whole proof of these lemmas is given in [5].

This lemma is proved by L. Kalmar in [3]..

(T) we read: for each T (of the respective rank)
(4T) we read: there exists such T that

Another extension of model M; to model M ¢ R,, for every ¢, is given

in [5].
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17.

18.
19.
20.
21.
22.
23.
24.

25.
26.

27.

28.

29.

30.

31
32.
33.

34.

[1]

JULIUSZ REICHBACH

See footnote 15. We notice that T1 is an extension of T with some
conditions.

We notice that M is here a monadic model.

(T, 7le Q,, then we assume T = T.

To the proof of L.15. and L.16. we use also L.5, L.7, L.8. and L.9.
If m =0, then we write R(T, T, 7).

See footnote 15.

(G) we read: for every G; (HG) — there exists G such that

We assume that [T|] € Q;, for each i; we have this case when H has
no free variables.

We notice that X aF = (II aF’)".

Then E results from E° by replacing the free variables with indices
Tppeees jw(EO) correspondingly by free variables with indices 7},...,

Lw(B)"
Obviously il’ e e ey iw(E)’ jlr R ) jw(EO) S— k
It is easy to show:

") F+G+GeP(Qp...,0Q), then F+ G eP(Qp ..., Q).
YU F+G+GeP,then F+GeP.

See p. 3, (1,7) and footnote 34.

If i 2 j, then we assume

{Tl,ifi=j
TO =

1
(T, 11,y =1, 4, 41, o oo, i=1, f, i+l . .. , R, if Q> ]
Since x; € Sw {F*}, then we may write here 0(G*) for iw{G*(a/x’.)}

The reader may omit this lemma in the first reading.
See footnote 31.

We notice here that if the Skolem’s normal form for theses does not be-
long to P, then E€ P.

Another proof of this theorem we may obtain from T.1, T.2. and L.0,
L.20°, L.21°, L.22’, see p. 4, (1,7), (1,8) and footnote 28.
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