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THE NUMBER OF MODULI IN N-ARY RELATIONS

ROBERT E. CLAY

As a consequence of theorem 1, p.p. 385-387, in [ l ] , Tarski has proved
that two unary relations and four binary relations are definable by purely
logical means, and that in general, "for every natural number n only a spec-
ifiable finite number of n-termed relations between individuals can be de-
fined by purely logical means, and each of these relations can be expressed
by means of identity and the concepts of the sentential calculus." It is the
objective of this note to specify the above mentioned number and to exhibit
the relations for n - 3.

Let n be a fixed natural number and x^ x2, . . . , xn n individuals.

Dl. If R (xj, x2, . . . , xn) is an w-ary relation definable in terms of
identity and the propositional calculus, it is called a modulus.

D2. If R (xj, *2> > xγj) ι s a modulus which applies to none of the
individuals x 2 , x2, , xn, it is called the empty modulus and is denoted
by Φ.

0 3 . L e t N = [ ( £ , j ) \ 1 < i < n , l < j < n ]

D4. If a set S determines a finite number of propositions, Λ P denotes

the conjunction of these propositions. In some instances the conjunction
m

of P v P2, . . . , Pm, will be denoted by A Pi% In like manner, V P will
be used for alternation.

Lemma 1. Any non-empty modulus can be expressed in the form ^ (ΛΌ;

where (a) φ ξ A £ N, (β) T is either xi = x or x{ =j= XJ for (i, /) e A, (y) ^ T

f Φ, (δ) {φ\^B7φ^B C p (N) where P (N) is the set of subsets of N.

Proof: Any negation sign can be taken into a T by means of ~ (p A q) .
= . ~ p v - q and ~ (p v q) . = . ~ p A ~ q. Any Φ can be removed by p v Φ .

The conditions (α) through (δ) will apply to the next two definitions.

D5. A Kw-form is a proposition of the form Λ T.
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D6. An AKn-ίorm i s a proposition of the form V ( Λ T).

Lemma*2. Any non-empty modulus can be expressed by an AKn-ίotm.

Proof. By lemma 1 it suffices to show that Λ T = V (Λ T). Since N

is finite it suffices to show that if M s Λ ?\ and A C |s| ) then M s M^ v M 2

where M^ Ξ Λ T, A.C A^ for A = ί, 2. Let (z, /) e N - A. Λl = . M A (χ£ = x;- .

v . x z :|= x ) . = : w Λ (x z = x ) . v . M Λ (x z =(= xy) : = ..M ; v M2. Therefore

Mk = /\ T with A^ = A + (z, /) .
ΛA

If two forms differ only by the order of their terms they will be consid-

ered identical.

Lemma 3. If M and P are distinct Kn-ίorms then ~ (M D P).

Proof. If M and P are distinct Kn-forms there is an (z, /') € N such that

*z = χ i s a conjunct of Λl and x z ψ x i s a conjunct of P (or vice versa).

Therefore, Λl D %i = JC and P D x^ =j= x . M ̂  P 3 : Λ! D : x z = x . A . x^ φ x..

Since Λl 4 Φ, - (A! 3 P).

Corollary. Lemma 3 says that distinct Kw-forms are not equivalent and

therefore define different relations.

Lemma 4. If M, P 7 , P o . . . , P; are distinct /C«-forms, then ~ (M 3

, y , "'•>•
k k

Proof: By lemma 3 we have A (~ (Λl 3 P ) ) . But Λ (~ (M 3 P ) ) .
A z=l i=l

= . - (AID V 2 P £ ) .

Lemma 5. If M^ M2> . . . , Λl̂ , P J ? P 2 , . . . , P^ are distinct K/z-forms,

then- ( V M p V P.).

m k m
Proof. By lemma 4 we have Λ (- (M^ 3 y p . ) ) . But Λ (~ (M f 3

z=2 y=2 ' i=l

k m k m k

v , P , » • - ( ^ Mi ^ y=i p k ) . , . ~ ( v ^ , . D v 2 p p .

Corollary. Lemma 5 says that distinct AKn-forms are not equivalent

and therefore define different relations.

By this corollary and lemma 2 we have:

Theorem 1. The number of non-empty moduli equals the number of distinct

AKn-ίotms.
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If Kn represents the number of Kn-forms, then by D6 and theorem 2, we
know that 2 — 1 is the number of non-empty moduli, and consequently
that 2 n is the number of moduli. It therefore suffices to determine Kn.

Since (i, /') varies through all of N for a Krc-form, it is clear that each
Kn-ίotm determines that each pair of the n individuals are either identical
or different, i.e. each Kn-form partitions x*, x^, > xn ^ n t o classes.
Therefore finding Kn is equivalent to the following combinatorial problem:
"in how many ways can n distinct objects be placed in n like cells, with no
restriction on the emptiness of the cells." This result is well known [2], it

n
being 2^ S (n, k), where S (n, k) is the Stirling number of the second kind

k=l Γ k , ,
whose explicit formula is S (n, k) = i- Y) (kΛ (-2)/ (k - j)n . Conse-

quently.

Theorem 2. The number of moduli for a given natural number

n is 2a, where a = f ) £? Γ ^ (f) (-i)> (*-/)"
4=jf [_7=0

For n = 2, 2, 3, 4, this number is 2 (the Boolean moduli 0 and 2), 4
(the Schroder moduli 0, 2, 0', 2'), 32, 32768. The 32 moduli for n = 3 are
listed below. The list is so arranged that if M 3 P then M is listed before
P, and if M is listed in the mth place then ~ M is listed in the (33-^)th
place. The five Kn-moduli are indicated by (•) and the analogs of the four
Schroder moduli by (°).

°1. a^a.v.b^b.v.c^c 17. a - b . v . a = c
°*2. a= b . Λ . b= c 18. a = b . v . b = c
*3. a = b . Λ . a ^ c V). a-c.^.b-c
•4. b ψ c . Λ . a- c 20. a = b.v:a^c.Λ.b^c
*5. a^ b . Λ . b = c 21. a = c.v;a\b.^.b\c

°*6. aϊfb.Λ.a^c.Λ.b^c 22. b = c.v:a^b.Λ.a^c
7. a-b.K.c-c 23. a-b.κ.a\c.s\a-c.
8. a-c.f^.b-b Λ.b^c:v:b = c.Λ.
9 . b - c . K . a~ a a^b

10. a = b.A.b = c:w:a^b 2 4 . b -^ c . Λ . a = a

. Λ . 6 =f=C . Λ . β =)= C 2 $ . β ^ C . A , έ = έ

11. fc^c.Λ:<z = c . v . t f = fc 2 6 . <z =|= b . A . c = c

12. Λ ^ C . Λ \ a - b . s . b - c 27. a - b . \ . a = c.w.b~c

13. Λ ψ ^ A : t f = c . v . 6 = c 2 8 . fl = c, vJ^c
14. Λ ψ c . Λ . & ψ c 29. a = b . v . b ^ c
15. α ψ fc . Λ . fc ψ c 30. b = c . v . a^ b
16. a^ b .A . a ^ c 31. a j : b . v . a ^ c

°32. a - a . A . b - b . A . c = c
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