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STUDIES IN THE AXIOMATIC
FOUNDATIONS OF BOOLEAN ALGEBRA

CZEShAW LEJEWSKI

Introduction

One way of characterizing Boolean Algebra would be to say that it con-
sists of all those theses which can be deduced from the following axiom-
system due to Schroder:

S1. [a].aCa
S2. [abe]:aCb.bCec.D.aCe
S3. [a]-ACa
§4. [a]l.-aCV

S5. [abc] :cCanb.=.cCa.c(Ch
Sé. [abc]:auch.E.aCc.ch
S7. [abc] . ar\(buc)C(ar\b)u(anc)
S8. [a].anN(a)C/\

59. [a].Vv Caun(a)t)

The totality of theses as deduced from SI — S9 will be referred to as
System ©.

As is well known, Boolean Algebra lends itself to various interpretations.
For the purpose of the present enquiry I propose to adhere to what may be
styled as the ontological interpretation. It is important to realize as clearly
as possible what this interpretation presupposes and what it implies.

Let us begin with a few introductory remarks on names and name-like
expressions in general. Names and name-like expressions of ordinary lang-
uage can be divided into two classes: the class of referential names, which
subdivide into unshared names and shared names, and the class of non-refer-
ential or fictitious names.?) A referential name names or designates at least
one object. A fictitious name behaves, as regards its syntax, like a referen-
tial one but it fails to name or designate anything at all. In accordance with
this classification names or name-like expressions such as ‘Socrates’, ‘the
husband of Xanthippe’, ‘philosopher’, ‘inhabitant of London’, are all referen-
tial names, whereas ‘Pegasus’, ‘mermaid’, ‘object which does not exist,’ etc.,
are examples of non-referential names.

Now, the ontological interpretation of Boolean Algebra demands that the
variables, ‘a’, ‘b’, ‘c’, etc., should be regarded as naminal variables, i.e.,
as variables for which names, referential or non-referential, could be substi-
tuted.
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Further stipulations implied by the ontological interpretation concern the
meaning of the constant terms of the Algebra.

The symbol ‘C’ is to be construed as a proposition forming functor for
two nominal arguments. We call it the functor of weak inclusion. With con-
stant names as arguments an expression of the type ‘a( b’ (to be read: all a
is b) is a true proposition if and only if for all ¢, — if ¢ is named by the name
for which the ‘a’ stands than it is also named by the name for which the b’
stands.

The symbol * /A’ is to be regarded as a constant name. It is a non-referen-
tial name as it is meant to be a name that does not designate anything. It may
be read: object which does not exist.

The symbol ‘\/’ is also a constant name but it names every object. It
thus means the same as ‘object’, or ‘thing’, or ‘entity’.

The symbol *‘A/’ is a name-forming functor for one nominal argument.
With a constant name as argument an expression of the type ‘~/(a)’ (to be
tead: non-a) names every object, if there is any, which is not named by the
name for which the ‘@’ stands in the expression.

The symbol *~’ is a name-forming functor for two nominal arguments.
With constant names as arguments an expression of the type ‘anb’ (to be
read: a and b) names every object if there is any, which is named by both the
names for which the ‘@’ and the ‘b’ stand in the expression. 3!

The symbol ‘<’ is again a name-forming functor for two nominal argu-
ments. With constant names as arguments an expression of the type ‘aw b’
(to be read: a or b) names every object, if there is any, which is named by at
least one of the names for which the ‘e’ and the ‘b’ stand in the expression.?)

The remaining symbolism in the axioms S1 — S9 is that of the logic -of
propositions and the theory of quantification.

It is not difficult to see that the ontological interpretation approximates
what is sometimes described as class-interpretation. ' Under the ontological
interpretation Boolean Algebra becomes a general theory of objects.

The present essay will consist of four sections. In section I an outline
of the proof will be given that the axiom-system comprising S] — S9 is infer-
entially equivalent to the one consisting of the following six theses:

Al [ab].-.acb.E: [cde]:~(ccd).cCe.cCa.j.[jfg],~
(fCg)-fCe.fCbh

A2. [a].'. aC/\.E:[bc]:~(ch).bCa.:).[ideJ,~(dCe).
dCb.~(d(Cd)

A3. [a].‘. aC\/.E.:[bc]:~(ch).bCa.j.[ﬂde__].fv(dCe).
dCb.dCd

A4. [ab].'.aC/v(b).E:[:cd]:~(ch).cCa.].|:E]ef].~(eC
fl.eCe.~(eCb)

As5. [abc].'.aCbnc.E:[de]:~(dCe).dCa.j.[afg:l.~(f
Cg)-fCd.fCb.fCe
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A6. [abc]::aCbuc.E.-. [de].‘.~(dCe).dCa.j:[afg]:~
(fCg)-fCa:fChb.v.fCec

In section II the problem of definitions will be discussed at some length, and
in addition to the usual rule for introducing propositional definitions a rule
for framing nominal definitions will be suggested. It will then become evi-
dent that a system of Boolean Algebra equipped with an appropriate rule for
nominal definitions can be based on 47 as a sole axiom. In Section III sys-
tems of Boolean Algebra based on functors other than that of weak inclusion
will be presented in outline. Section IV will be devoted to the discussion of
the relationship between Boolean Algebra and Lesniewski’s Ontology. It is
intended that this discussion should provide a convincing justification of the
rule for introducing nominal definitions as proposed in Section II.

SECTION I

The following theses can be derived from the axioms of System &:

T1. [a] a CanV [iollows from S5, Sl,andel]
T2. [abl.anb C a [from S5 andSI]
73. [ab].anb Cb [55, Sl]
T¢. [abl.a C avb |Ss, SI]
T5. [abl.a C bua [Se, S1]
T6. [abl.anb C bra [S5, T3, T2|
77. [ab].aub C bua [S6, T5, T4]
Ts. [abtz] i@ C b D.cna Cend

Proof:
[abc]:

(1) e Cb D.

2) cma C b. (:32, T3, 1]

cna C enb [55, T2, 2]

T9. [abc] i@ Cb. D.cua ( cub

Proof:
l:abc]:

1) a Cb D). _

@) a C eub. (S2, 1, T5]

cua Ccub [56, Tq, 2]

T10. [abj anV_C an(bun(bd)) [T& 59]
Ti1. [a b] .a Can(bu~(b)) [_-52, Ti, TIO]
Ti2. [a b].a C (@nb) v (an~(b)) [ 82, T11, S7]

Ti3. [ab] tan~vBYCAN.D.aCh
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Proof:
[ab]:
1) an~Bd)CA-D-
(2) ana(b) Canb [S2,1, S3]
B) (anb)u(an~(b)) Canb [Ss, S1, 2]
4) aCanbd [S2, Ti2, 3]
aCh [ S5, 4]

T14. [abcd]:a(Cb.aCcnnb).D.a(Cd
Proof:

[abecd]:
(1) aCb.
() aCecnan(d).).
(3) a(C~(b) [52, 2, T3:|
(4) aCbnan(d). [S5, 1, 3]
5) aCA. [s2, 4, sg]

aCd [s2, s, $3]

Ti5. [abcde]:aCb.~(ch).cCe. cCa.).[afg] ~(fCg)
fCe.fCb
Proof:
[abcde].'.
1) aChb.
(2) ~(cCd).
3) cCe.
4) cCa.D:
() eCb: (s2, 4, g
[3f] ~(fC®-fCe.fCbh [2 3, 5]

T16. [ab] ti~(aCh). j.~.[3cde] s~ (Cd).cCe.c(Ca:
[fe]:~(fCo-fCe.D.~(fCH)

Proof:

[ab]::
1) ~(aCb).D::
(2) ~(an~(b)CAN). 713, i
(3) an~(d)Cann(b). [s1]
W ans®Ce - (73]
) [fg]:~fCB) - fCanm(b). D~ (fCb):: [T14)

[3cde:| co~(cCd).cCe.c(Ca: I:ng i~(f Cg)-fCe.
D.~(fCh) (2,3, 4,5)
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T17.labc):a CN.~(bCc).bCa.D. [3a’ e] ~dCe).dCb~dC
d)
Proof:
[abcle
(1) a CA.
(2) ~b(Cec).
3) bCa. D).
4 bCA. [ S2,3, 1]
(5) bCec: [S2,4, S3]
[3de]l ~dCe).dCb.~dCd) [s, 2]

T18.[ a]::[bc]: (ch).bCa.j.[ade].N(d Ce).d(Cb.~
(dCd)..ov(aCA)..DaCA

Proof:
[a]::
W[ be]:i~bCe).bC a.D.[Jde] ~dCe).d Cb.~(d
Cd)..
@) ~(a CA) . D:
®[3d] ~dCd: [1, 2, s1]
a CA [:Sl, _’Z]
T19. [ a] .'.[bc]:N(ch).bCa.D.[}de].N(dCe).dCb.
~@dCd):D.aCA [ 718]
T20.[be] indbCe).D. [Jde].~dCe).dCb.dCd [s1]
T21 [a] [ch:~(ch).bCa.C .[]de] ~dCe).d
Cb.dCd:D.aCV [54]
T22.[ab:’.'.[c]:cCa.j.ch:j.aCb [51:]
T23. [abed]:aCa(b) . ~(cCd).cCa.cCb.D~(c(Ch)
Proof:
[abcd]:
(1) a CA(b).
(2) ~(cCd) .
(3) ¢cCa.
@4) cCb.D.
(5) ¢ C(b). [S2,3, 1]
(6) ¢ CbAn(b). [S5,4, 5]
(7) ¢ CA. [S2,6, S8]
8) cCd. [S2, 7, S3]

~(c Cb) (s, 2]
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T24. [abcd]:aCN(b)./v(ch).cCa.j.[}e[].fv(ecf).e

Ce.~(eChb)
Proof:
[a be d]
(1) a(CA(b)
(2) ~McCd).
(3) cCa. ):
4) ~(cCb): [723, 1, 2, 3]
) [3¢]-d Ce.~@ Cb): [T22,4]
[-ie[].N(eCf).eCc.N(er) [5]
T25. [ab].aCbur(b) [S2, S4, S9]
T26. [ab].au(N(a)nb)Caub [T9, 73]
127. [ab]. a U~ (a)nb) Caun(a) [r25]
T28. [ab]. au(nv(a)Nb) C (@aur (@) (aub) [S5, T27,T26]
T29. [a b]. annN(a) Cb [52, S8, 53]
730. [ab]. A(@)~aCb [s2,76,729]
T31 [a bJ AM@)Chb. D.A~vDB)(Ca
Proof:
[a b]:
1) ~@Cb.D.
2) ~ (&) C~(a) N [s5, 81, 1]
(3) ~(a)Cauv(n(a)nb). [S2,2, Ts5]
(4) au~(a) Cav(~N(a)Nb). [Se6, T4, 3]
(5) A (b) C au(n (a) Ab). [S2, 125, 4]
6) ~ (b) C(aua(a))~(awb). [S2, 5, T28]
(7) ~(})Caub. [S2, 6, 73]
(8) ~()Cbua. [S2, 7, T7]
(9) ~B)CAbB) NGB va). [S5, S1, 8]
(10) A (b) C(A(B)Nb) v (v (b) na). [S2, 9, §7]
11) (~VB)nb)u (NV(b)~a)) C A(b) na. [ $6,730,51]
(12) ~B)CA () Na [S2, 10, 11]
~ () Ca [ S2, 12, T3]
T32. [a].~(~(a)) Ca [731,51]
T33. [ab] : :N(aCN(b)).j.'.[Hcd].'.fv(c Cd).c(Ca: [e]:
eCe.D.e(Cd

Proof:
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[a b] i
(1) ~(aCa (b)) Do ]
@) ~(an~(VB)CA). (713, 1]
(3) an~(~())(Ca. [ 12]
(4) an~(~(b) Cb. [ S2, 13, T32]
G)[e]:eCana(rm®d).CeCh. [S2, 4]
[ﬂcd] con(eCd).cCa : [e]:eCec.D.eChd EZ, 3, 5]
T34 abcd]:aCN(b).N(cC d)y.c(Ca.).~c(Cb) [T23]

T35. [abef]: : [cd]:ax(c Cd).cCa.D)~(c(Cb)...nv(e Cf). e
Ca.'.j.[agj.gCe.N(ng)

Proof:
I:abef]::
[ cd)i~(c(Cd).cCa.D).~(c Cb)..
(2) ~(e Cf)-
B) eCa.. )
(4) ~(eCh). [1, 2, 3]
[74]- sCe - ~(gCh) [s1, 4]
T36. [ab] ... [cd:l i~ Cd)y.cCa.Do~(eChb) D). aC~(b)
Proof:
[ab]::

(1) [cd]:N(ch).cCa.:).~(ch):j.'.
@) [ef]=~<ecf).eCaJ.[}g].gCe.~(ng).-.
[735,1]
aC ~(b) [T33, 2]
T37. [abcde]:aCbnc.N(dCe).dCa.j.[afgj ~(fCg)
fCd.fCb.fCe
Proof:
I:abcde:l
(1) aeCbne.
(2) ~@(Ce).
3) dCa.D:
@) dCbac: [S2,3, 1]
(5) dCb.d(e: [S5,4]
[3fe] -~(fCe)-fCd.fCb.fCe (2.5, 5]
T38. [abchij]::[de]:fv(dCe).dCa.j.[afg].«v(ng).
de.be.ch.-.N(hCi).th.hCan.).[ifg].m(f
Cg)-fCij-fCbne
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Proof:

[abchij]::
(1) [de]:~dCe).dCa. 3[3[g] ~(fCg)-fCAd.fCb.fCe .
(2) ~kCi).

3) RCj.
4) hCa.-.D:
EREAR
(5) ~(fCg)-
© fCh (1, 2, 3]
M fCbh
® fCe
©  fCi. [s2, 6, 3%
(10) fCbne: [S6, 7, 8
[37¢] -~ Ce)-fCi-fChnre [5,9, 10]

739. [abc] .- [de]:w(dCe).dCa.j.[afg] ~(fCg-fCd.
fCb.fCe:D.aCbane

Proof:
[abc] it

W[ de]:n@Ce)-dCa.D-[gfe] -~(fCe)-fCd.fCh-fC
c: ).

@) hij]:i~(hCi).hCj-hC a.).[afg:l.N(ng).ij.
fCbnc .~ [ T38,1]
aCbanec [T1e6, 2]

T40. [ab]:aCN(b).j.bC/v(a)

Proof:

[ab] ]

(1) aC~B).C.

Q[ ed]i~EeCd).cChb.D.~(Ca). [T34,1]
bC ~(a) [T36,2]

T41. abcda ::a Cbve.~d (Ce).dCa.. [fg_l ~(fCgo-fC
d.3.~fCh ~AfCe)nD:[gf8]:nf Co) - fCA:fCEY
.fCe

Proof:
[abcde] H
(1) eCbdue.
(2) ~dCe)-
3) d(Ca.-
@ [fg]- ~(fCo-fCd.D .~(fCb).~(fCe). D.v.
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(5) dCA(b). [ T36, 4]
6) dCale). [T36. 4]
(7) bC ~(d). [ 140, 5]
(8) cC~d). [ T20, 6]
©9) buc CA~ (). (S6, 7, 8]
(10) a Car(d) . [S2, 1, 9]
(11) d CAAa). [T40, 10]
(12) ~d (Ca) .- (T34, 11, 2, S1]
[3fe] :~(fCe)-fCd:fCh.v .fCe [3, 12]
T42. [abcde] c.aCbue.~dCe).dCa.D [Efg] ~(f Cg)
fCd:fCb.v .fCe LT41]

T43. [abc] e [de] .-./V(dCe).dCa.j:[afg] ~(fCg)-fC
d:fCb.v .fCec::~@(Cbuvuec)::D.aCbuc

Proof:
[abe) ::
(1) [de].-.fv(a’Ce).dCa.j:[ifg]:N(ng).de:be.v'
fCe::
) ~(@(Cbvc)::D:-:
[3d€f:]::
3) ~(@Ce).
4 dCf.
) dCa.. [T16,2]
© [gh]l:~@CH.gCf-D-~(gCbue)."
[3gh]:
(M ~(gCh).
(8) gCd: [1,3, 5]
) gCb.v.g(Cec:
10 gCf- [s2, 8, 4]
(11) gChuc. [9, S2, T4, T5]
(12) ~(g Cbuc):: [6, 7, 10]
aCbuc El, 12]
T44. [abc]::[de].-.~(dc e).dCa.j:[afg] :~(fCo-fC
d:fCb.v.fCeo.D.aCbuec [T43]
T45 = Al [ab].'.aCb.E:[cde]:N(CCd).cCe.cCa.:)
[3fg] -~(fCg)-fCe.fCb [T15, Tié]
Ta6=42. [a]..a CA.=:[bc] :~@® Ce).bCa.D.[Jde].~
@dCe).dCb.~(d Cd) [T17, T19)

T47 — A3. [ a].'.aC\/.E——‘: [bc] :~(ch).bCa.j.[ de:l.~
@dCe).dCb.dCd ETzo, T21]
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T48 = A4. I:ab].~.aCN(b).E: [cd]:~(cC d). cCa.:).l_.aef:[
€Cf).eCc.~(e(Ch) [T24, T33]
T49 = 45. [abc:l.-.aCbnc.E:[de]:~(dCe).d
Ca.D.[jfe] - ~(Ce-fCd.fCb.fCe [T37,739]
T50 = Ae. [abc] tia Cbuc.s.°.[de].'.~(dCe) .dCa.):
[v:‘fg] i~(fCE)-fCA:fCb.V .fCe [T42, T44]

It is evident from T45 ~ T50 that Al — A6 can be deduced from SI — S9.
Our next task will be to show that, conversely, SI — S9 follow from A1 — A6.

7501 =S1 [a] .aCa [T45]

7502 [abedef|: aCb.bCec.~(dCe).d(Cf.-dCa.)D.
[38h]-~(gCh).gCf-8Cc

Proof:
[abcdef]::

1) aCb.

(2) bCe.

(3) ~(d Ce).

(4) dCf.

5) dCa.D.-.

© [ghi]:~@Ch) -gCi-gCa.D.[3/k]. ~GCh . jCi
iCh. ) [ T45,1]

) [ghi]:~@Ch .gCi-gCt.-D.[3/4]-~GCh .jCL
iCe .. [ T4s, 2]
[3i %]

8 ~GCk).

© icCf. }[6, 3, 4, 5]

(10) jCb .-

[jg#] -~C h)-8Cf.-gCe (7,8 9, 10]
T50*3 =52 [abc]:aCb.ch.:).aCc
Proof:
[abc] t:

(1) aCb.

@) 6Cec. D).

3 [defl:~@Ce).dCf-dCa.D-[Jgh] -~@6ChH -gCS
.gCec .- [T50*2, 1, 2]
aCec [T45, 3-:|

T50%¢. [ab]:aC A .D.aCh [T46, T50%]
T50%5=53. [a]. A Ca [T50*4, T50%I]

T50%6. [a b |:~ (a Cb). j.[E]cd] .~(cCd).-cCa.c(Cecl|T50%1]
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T50%7=S4. [a]. a CV [T27, T50%6]

T50*8. l:abcdef]:aCbnc.~(dCe).dC{.dCa.j.[aghj.fv
(§Ch)-gCf-gCb
Proof:
I:abcdef] ..
(1) a(Cbnec.
(2) ~(dCe).
3 dCf-
(4) d Ca.D:
[J gh].
5) ~(gCh).
6 gCd. [Te9, 1, 2, 4]
(7 gCb. -
® gCf: [750%3, 6, 3]
[362] - ~@Ch)-gCf-5Ch (5. 8 7]

T50%9. [abe] :aCbrc. D.aCh
Proof:
[abc]:'
1) aCbnrc. D).
@ [def]:~@Ce).dCf.dCa.D.[3gh] ~(gCh)gCf-
gCb.. [T50%8, 1]
aCh (T45, 2]

T50%10. [abcl:a Cbmc.D.aCcnb [T 49]
T50%11. [abc]:a Cbnrc. . a Ce [T50%10, T50%9]

750%12. [abede] : a Cb.acc.~(dge).dca.3.[3fg].~
(fCg)-fCd.fCb.fCe
Proof:

[a bed e]
(1) aChb.
2) aCe.
(3) ~(dCe)
4) dCea.)):
[378]-
6)) N(fC g) .
© fCd. } (145, 4, 3, T50*1]
(7 fCa.
®) fCb. [T50%3, 7, 1]
9 fCe: [T50%3, 7, 2]
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[3fe] ~(fCg)-fCd-fCh.fCe [5, 6, 8, 9]
T50*13 [abc]:aCb.aCc.:).aCbnc
Proof:
[abc:l t

1) aChb.

2) aCe.D).".

(3)[:1e]:~(dCe).dCa.].[3fg:] o~ Cg)-fCh. )
fCec .. [T50%12, 1, 2]
aCbne [T49, 3]

T50* 14 = S5. l:abc-_l:cc anb. =.cCa.cCb

[T50%9, T50%11, T5043)]
T50*15. [abcd] S~ (e C d).cCa.D:[ﬂef:l i~ (Cf).eCc:e

Ca.Vv .e(Ch

Proo[;'
[abcd_| e

(1) ~(eCd).

2) cCa.)..

(3) ¢cCa.v .¢(Ch.-. [2]

[Hef]:-v(ecf).eCc:eCa.v.er I:l, T50*1, 3]

T50%16 [ab].aCaub (150, T50%15]
T50%17. [abec| :avbCec.D. aCe [ 750%3, T50*16
T50%18. [ab] .aCbua (750, T50 *15]
T50%19 [abec|:aubCe.D.bCec [Ts50%3, T50%18]

T50*20. [abcdef]:aCc.ch.N(dCe).dCf.dCaub.).
[38h]-~(eCh).6Cf.-8Cc

Proof:

[abcdef]::

1) aCe.

2) bCec.

(3) ~(d(Ce).

@ dCf.

() dCavb.D.
[qs4] :

6 ~gCh)-

(7 gCd: %[TSO, s, 3, T50*1]

8) gCa.v .g(Ch:

© gCf. (T50%3, 7, 4]
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(10)  gCe.- [8, T50*3, 1, 2]
[3eh]-~(eCh)-gCf-6Ce (6, 9, 10]
T50*%21 [abc]:aCc.bC c.D.avub(ec
Proof:
]:abc:]::
1) aCe.
2) bCec.D.-.
G) [def]: ~@Ce).dCf.dCaub. ].[3gh].~(gch).g
Cf.gCew [T50%20, 1, 2]
avb(e [145, 3]

T50*%22 = Se. [abc:':auch.E,aCc.ch
[T50%17, T50%19, T50*21)
T50%23 [abcdef:l .'.dCam(buc).~(eCf).eCd.j:[3gh].~/
(§Ch).gCe:gCanb. v .gCanc

Proof:

[ab cde f:] e
(1) dCan(buc).
@) ~Cf).
3B) eCd.D..
(4) eCan(buc). [T50%3, 3, 1]
() eCa. [T50%9, 4]
(6) eCbuc.-. [T50%11, 4]

[3 gh]:

(7) ~(@gCh). _
8 g(Ce: [150, 6, 2, T50*1I]
9 gCb.v .g(Cec:
(100 gCa: [T503, 8, 5]
(11) gCanb.v .gCanc.. [9, T50%13, 10]

[3gh]:~(gCh).gCe:gCanb.V .gCanc [7, 8 11]
T50* 24 ':abcd] :dCan(buc).).dC(anb)ulanc)
Proof:
[abcd] e
(1) dCan(buce). D::
@ [ef]- ~(@Cf).eCd.D:[3gh] :~(gCh).8Ce:8C
anb.v .g(Canc:: [T50*23, 1]
dC (anb)u(anc) [TSO, 2]

T50%25=57. [abec]. an(due)C (anb)u(anc) [T50%24, T50*I]
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75026 [ab]:aCbar(d) .~ (@CA).D.-aCA
Proof:

I:ab]::
(1) aCbAn(b).
2) ~@CA)- D

3) aCh. [T50%9, 1]
4)  aC (). [T50%11,1)
5) [cd]:~(ch).cCa.j e(Cb.. [T50*3, 3]
6) ~(aC (b)) .- [T48, 2, T50*1, 5]
aC A [4, 6]
T50%27=S8. [a.ar~(a) C A [T50%26, T50*1 ]

T50%28. [a]: ~(VCav~@)-D-V Cavn(a)
Proof:

]’_a]??
1) ~(VCauma)). D :+:
(2) [Elbc] e

) ~(bCe). l[T50,1]

(3) [de]:~@Ce).-dCb.D.~@Ca).~Wd Ca(a).".

(4) ~(bCA(a)):: [3, 2, T50*I]

[ de].'.

(5) ~ (dC e).

(6) dCb .- [T48, 4]

(7) [fe]:~¢Ce)-fCd. D fCa -~

(8) dCa. [7,5, T50 *I]

9) ~dCa):: 3, s, 6]

VCau~(a) (s, 9]

150+29=59. [a].VCaum@ [T50* 28]

Theses T50%1 — T50* 29 have been deduced from T45 — T50, i. e., from
Al — A6. The totality of theses deducible from A1 — A6, will be referred to
as System ¥*. Since SI — S9 are included in this totality as can be seen
from T50*1, T50*3, T50%5, T50*7, T50%14, T50*22, T50*25, T50*27, and
T50*29, we can regard System © and System ¥* as inferentially equivalent.

In developing the two systems we made no explicit use of any rules of
inference. In our proofs, which strictly speaking are only outlines of proofs,
appeal is made to intuition or ‘obviousness’ rather than to formal conditions
which an expression must satisfy if it is to be added to the system as a new
thesis. There is, however, no theoretical difficulty in so recasting our de-
ductions as to make it evident that the only rules of inference that are involv-
ed, are the following:
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R1  the rule of substitution
R2  the rules concerning the use of the quantifiers
R3  the rule of detachment
So far no use has been made of definitions or laws of extensionality.

It is to be noted-that axioms A2 — A6 exhibit certain uniformity of struc-
ture. The significance of this uniformity will become clear in the light of
what is going to be said in Section II, which as we have already mentioned
will be devoted to the problem of definitions in systems of Boolean Algebra.

SECTION II

Definitions in deductive systems are often explained away as typograph-
ical abbreviations. In many cases, however, it is only too obvious that these
so called definitional abbreviations are expected to satisfy a number of impli-
cit or even explicit conditions which appear to be much stronger than the
conditions required solely for the purpose of streamlining our symbolism. In
what follows we propose to adhere to the view that in principle definitions
are not abbreviations but rather serve the purpose of expanding the vocabulary
of the system. In accordance with this view, which is that of Lesniewski,
a definition is, as it were, a single axiom for the constant term it introduces
into the system.>) The rules for writing definitions lay down a number of for-
mal conditions which must be satisfied by an expression if it is to be regard-
ed as a well constructed definition, and if it is to be added to the system as
a new thesis without the risk of generating a contradiction. The form of def-
initions varies from system to system depending on the primitive terms at our
disposal. Thus expressions which in one system can be regarded as defini-
tions, may have to be proved as theorems in another system of the same theory.

The constant terms of Boolean Algebra fall into two classes. First we
have the class of proposition-forming functors, of which the functor of weak
inclusion is an example. Secondly, we have names, like * A and ‘\V/’, and
the class of name-forming functors represented in @ and B* by ‘A’ * N’ and
‘v’ If we want to expand the vocabulary of our system by introducing con-
stant terms of either type, we need rules of definition.

Proposition-forming functors will be introduced into © ( or ¥ *) by means
of what we might call propositional definitions. They are all of the form

I [ . ] L =8
and the corresponding rule can be outlined as follows.

R4 the rule for writing propositional definitions. On the assumption
that a thesis T is the last thesis in the system, an expression E of type I
can be added to the system as a new thesis provided the following conditions
are fulfilled: * @ ’ in E, i. e., the definiendum, is a simple propositional
function: 6) its functor is a constant term which does not occur in T or in any
thesis preceding T in the system; the arguments of the function are all vari-
ables; none of these variables occurs in ' @ ' more than once; variables
which are of the same semantical category (logical type) as expressions ob-
tainable within the logic of propositions are not allowed in ‘@ ’, *8°* inFE,
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i. e., the definiens, is, with respect to T, a meaningful propositional expres-
sion; every constant term occurring in ‘8’ occurs in T or in a thesis preced-
ing T in the system, or it occurs in the logic of propositions, and every vari-
able occurring in ‘B’ belongs to a semantical category (logical type) already
available in the system; every variable occurring in * 8’ occurs as a free
variable in '8’ and every free variable in ‘B’ occurs in *@’; the universal
quantifier preceding’@ = B’ binds all the free variables in ‘@ = B,

R4 is a powerful means for expanding our ontological vocabulary within
the framework of © (or ¥*). It enables us, for instance, to add to the system
the following theses:

Di. [a__':ex(a).E []b_] ~(a Cb)
D2. [a]::sol(a). = .- [bc].-.bCa.j:aCb.v .b(Ce

D3. [a]::ob(a). = ::[:Jb]./v(acb)::[bc] o bCa.D:aCb
.v.bCC

D4. [ab].'.ar_‘b.E:aCb:[j c].N(aCc)
Ds. [ab}:aA b.E.[Elcd:I.N(ch).cCa.c Ccbd

De. [ab]:-: aeb.E::[ﬂc].N(aCc). aCb::[cd_—J.'.cCa.
D:aCe.v.c (Cd
D7. [ab]:a Ob.=.a(Cbh.b(Ca

Ds. [ab]:a[j b.E.[ic].N(a'Cc).aCb.bCa

D9. [ab]:: a=b.~=—::[:-|c].N(aCc).aC b::[cd].'.ccb.
J:bCe.v.cCd 7)

Definitions D1, D2, and D3 introduce what might be called functors of
existence. It is evident from their respective definientia that

‘ex(a)’ means the same as ‘there exists at least one a’
‘sol(a)’ means the same as ‘there exists at most one a’, and
‘ob(a)’ means the same as ‘there exists exactly one a’.

Definitions D4, D5, and D6 introduce further functors of inclusion, namely
the functor of strong inclusion, the functor of partial inclusion, and the func-
tor of singular inclusion. Propositions of the type ‘a [_ b’, to be read: every
a is b, correspond exactly to the universal affirmative propositions of syll-
ogistic. Similarly, propositions of the type ‘a A b’, to be read: some a is b,
can be equated with the particular affirmative propositions. Propositions of
the type ‘@ € b’, to be read: a is b, are not to be confused with those set-theor-
etical propositions which give expression to class-membership, and imply
that their arguments belong to different semantical categories (logical types).
There is no categorical difference between the arguments required by the
functor of singular inclusion.

We shall see in the sequel that our three functors of inclusion, which ap-
pear to be shunned by students of Boolean Algebra, give rise to interesting
theorems.
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Definitions D7, D8, and D9, introduce three different functors of identity:
the functor of weak identity, the functor of strong identity, and the functor of
singular identity. Propositions of the types ‘@ 0 b’, a T)b’, and ‘a =5’ can
be read respectively: only all a is b, only every a is b, and a is the same ob-
ject as b. Of these three functors the functor of weak identity is very familiar.
In some systems of Boolean Algebra it is used for the purpose of construct-
ing definitions which introduce constant names of constant name-forming func-
tors, and which we propose to call nominal definitions in contra-distinction
to propositional definitions.

In System © (or ¥*) all nominal definitions will have the following form:

Il [a...] coa(Cx. = :[bc] t~(b(Ce). b a.j.[ia’e].w(d
Ce).d(Cb. ¢ (d)

The rule for writing these definitions can be outlined thus:

RS  the rule for writing nominal definitions. On the assumption that a
thesis T is the last thesis in the system, an expression E of type II can be
added to the system as a new thesis provided the following conditions are
fulfilled: ‘%’ in E is a constant name which does not occur in T or in any
thesis preceding 7T in the system, or it is a simple nominal function; if the
latter is the case then the functor of this function is a constant term which
does not occur in T or in any thesis preceding 7T in the system, while the
arguments of the function are all variables; none of the variables in ‘@ C x’
occurs in that expression more than once; variables which are of the same
semantical category (logical type) as expressions obtainable within the logic
of propositions are not allowed in “x’. ‘@(d)’ in E is, with respectto T, a
meaningful propositional expression , i.e., every constant in ‘¢(d)’ occurs in
T or in a thesis preceding T in the system or in the logic of propositions, and
every variable occurring in ‘¢(d)’ belongs to a semantical category (logical
type) alteady available in the system; every variable occurring in ‘x’ occurs
as a free variable in '¢(d)’ and every free variable in ‘@(d)’ occurs in ‘x’ or
is equiform with(d); there are no free variables in E.

By applying R5 we can add to &(or #*), among others, the following
theses:

D1Io. [abc].-.acblc.E:[de]:rv(dCe).dCa.j.[ﬂfg] ~(fC
8- fCd.~(Cb).~(fCec)

D11. [abc__ls.aCb—c.E:[a’e]:fv(a’Ce).dCa.j.[]fg].'\’(fc
g)-fCd.fCb.~(fCo)

Di2. [abc_]::a Cbrec.=.- [:de] .'.N(dCe).dCa.j:[jfg]/v
(fFCg)-fCd:fCb.v.~(fCe)

It can be shown that within the framework of & (or A*) D10 is inferen-
tially equivalent to

T51. [a b] .a|b 0 ~ (a) AV (b)

It thus introduces the functor of rejection.
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D11, which can be shown to be inferentially equivalent to
T52. [a b] .a~b 0an~(),

introduces the functor of exception.

D12 introduces the functor of adjunction as it can be shown to be infer-
entially equivalent to

T53. [ab] . azb 0 au~(b)

It is obvious that in many re: pects our rule for writing nominal defin-
itions departs from the rules more commonly accepted for the purpose. It is
therefore, desirable to compare the traditional rules with the stipulations of
RS.

More often than not nominal definitions in systems of Boolean Algebra
are constructed as weak identities of the form

I [...] =0y

If instead of the functor of weak identity we want to make use of the func-
tor of weak inclusion then of course our definitions can be given the follow-
ing form:

Ila [...].ny.nys)
The corresponding rule for writing this type of nominal definitions could
be outlined as follows:

RSa  the rule for writing nominal definitions as identities. On the as-
sumption that a thesis T is the last thesis in the system, an expression E of
type III (or Illa) can be added to the system as a new thesis provided the
following conditions are fulfilled: ‘x’ in E, i.e., the definiendum is a simple
nominal function; its functor is a constant term which does not occur in T or
in any thesis preceding T in the system; its arguments are all variables; none
of these variables occurs in ‘¢’ more than once; ‘%’ in E, i.e., the definiens,
is, with respect to T, a meaningful nominal expression; this means that every
constant term occurring in *y’ occurs in T or in a thesis preceding T in the
system, and every variable occurring in ‘y’ belongs to a semantical category
(logical type) already available in the system; every variable in ‘x> occurs in
‘¢’ and vice versa; the universal quantifier preceding x 0 y* (or‘x Cy . y
C x”) binds all the variables in that expression.

If we equipped & (or B*) with RSa instead of RS then theses T51, T52,
and 753 above could be used as possible definitions.

R5a, which in a sense is analogous to R4, provides for very simple and
and intuitive definitions but with its aid we can introduce into our system only
those name-forming functors which have names as arguments.

No such restriction applies if we write definitions as equivalences of
the form

v [a...:l:an.Elp(a)
or IvVa [a...]:aCx.xCa. =.¢¥(a)

The corresponding rule for writing nominal definitions of this type could be
outlined as follows:
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R5b  the rule for writing nominal definitions. On the assumption that a
thesis T is the last thesis in the system, and on a further assumption that an
expression of the form

\Y [...]::[]a].'.ﬂo(a).'. [b]:‘P(b).C.aOb
or Va [...]::[:_]a:l.‘.ﬁo(a).-.[b]: Y).C.aCb.b(a

is a thesis of the system and precedes T or is identical with T, acorrespond-
ing expression E of type IV (or IVa) can be added to the system as a new
thesis provided the following conditions are fulfilled: ‘x’ in E is a constant
name which does not occur in T or in any thesis preceding T in the system,
or is it a simple nominal function; if the latter is the case then the functor of
this function is a constant term which does not occur in T or in any thesis
preceding T in the system while the arguments of the function are all varia-
bles; none of the variables in ‘@ O x” (or in ‘a C x’) occurs in that expression
more than once; variables which are of the same semantical (logical type)
category as expressions obtainable in the logic of propositions are not allow-
ed in 'x’; ‘¢(a)’ in E, i.e., the definiens, is, with respect to I, a meaningful
propositional expression: thus every constant term in ‘¢(a)’ occurs in T or
in a thesis preceding 7T in the system, or in the logic of propositions, and
every variable in ‘©(a)’ belongs to a semantical category (logical type) already
available in the system; every variable in ‘c O %’ ( or in‘a ( x’) occurs in
‘p(a)’ as a free variable in ‘P(a)’ occurs in ‘@ O x’ (or in ‘@ (C x’); there are
no free variables in E.

It is not difficult to see that with the aid of RSb we can define anything
that can be defined by making use of R5a.

Nominal definitions which satisfy the requirements of RSb are still very
simple and quite intuitive but R5b itself is more complicated than R5 or R5a
as it contains an extra condition which makes the application of the rule de-
pend on the availability of certain theses of type V (or Va).

We can remove this extra condition from the formulation of the rule and
include it in the definitions themselves. If we do this, and if we express
weak identity in terms of weak inclusion then our nominal definitions will
have the following form:

VI [ab.. J t:@(b) .. [c:[: o). D.bCc.cCb.s.D)raCx.

xCa.=.¢(a)

The corresponding rule, which in the sequel will be referred to as R5c,
is analogous to R5b except that the condition concerning the availability of
theses of type V or (Va) is dropped altogether. It is clear that with the aid
of R5¢ we can define anything that can be defined with the aid of R5b. The
converse, however, does not hold. For R5c allows us to add to & (or %)
theses of type VI with antecedents which, irrespective of the value of the
variable represented in VI by ‘b’, cannot be proved within the system. Such
theses still introduce new constant terms into the system but they open no

possibilities of employing these terms in theorems of any interest.
As a final preliminary to the discussion of RS let us note that as regards
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extensional functions for which theses of the form
VIl [ab...]:aCb.bCa.9(a).). ¢(b)

can be proved in the system, RSc is equivalent to corresponding rule, — we
shall call it R5d —, which stipulates definitions of the following form:

VII [ab...]::@(b).".[c]." ¢().D.bCc.cCb.~.D:aCx
x(Ca.= .[3d].aCd.dCa.<p(d)

Now, it can be shown that any thesis added to & (or q*) in virtue of R5d
can be derived within the system by making use of RS and R1 — R3. Here is

an outline of the proof.
In order to derive a thesis of type VIII we begin with the corresponding

thesis
E1l [b...]::be.E [cd:l:fv(ccd).ccb.j:[ﬂef]:
quf)-eCc:[ig]-ng.wg),
which we obtain by applying R5. We then proceed as follows:

E2. [a...]:-: l-_b]::bCa.E.'. I:cd:].'.»-v(ccd).ccb.j:[ﬂe-
f]:~(eCf).eCc:[3g:|.eC g.sD(g)::j.aCx.xCa[Sl,El_]
E3. [abcdeh...] .‘.aCh.qo(lz.).bCa.N(ch).ch.j:[:_le

fli~(eCh.eCec:[78] -eCg-9(8) [s2, sI]
E4. [abh...]::aCh.e(h).bCa.D[ cd] .~ Cd).cC
b.C:[aef]:N(eCf).eCc:[3g}.ng.‘P(g) [E3]

E5. [ah...]:: aCh.®kh).): {b]::bCadmfed] . ~(c Cd).
ch.:):[ﬂef:l:N(eCf).eCc:[ﬂg].ng.(p(g) [E4:]

E6. [abhijkl... ] [c]:i®().D.hCe.cChoiCa.pl)
[cd].'.fv(ccd).ccb.j:[aef_]:~(eCf).eCc:[ng.e
Ce-e@)i:~(jCh)-jCL.jCb::D - [Jef]~(eCf)-eCl
.eCa [52]

E7. [abhi...]: [e]:@(e). DhCe.cChriCa.pG).
[cd].‘.N(ch).ch.j:[aef] :~(eCf).eCc:[3g]

.eCg-P@::C-bCa [Eé, T16:|
ES. [adh...]::[c]:e(e).D.dCec.cCd ..aCh.hCa.p(h)

o D.aCx.xCa [E5, E7, E2]
E9. [ab...]::<p(b).‘.[c]:ga(c).:).ch.ch.'.aCx.xC

a.~.D.[3d]. aCd.dCa. ¢ @) [Es, S2]

E1lo. [ab...]::so(b) .'.[c]:go(c). D.bCec.c(Cb..DiaCx.x
Ca.=.[3¢)a Cd.dCa.¢@ [E9, E8]
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E'10 being of type VIII our proof that with the aid of R5 we can define
anything that can be defined by applying R5d, has been completed. The con-
verse, however, does not hold. RS proves to be a stronger rule and the prob-
lem arises to find out in what way it is. so.

The success of Rb, Rc, and Rd depends on the availability of theses of
type V (or Va). A number of such theses can be derived within & (or K* ); others
could be added axiomatically. Since, however, in view of R4 (and R5b, RS5S¢,
or R5d) the syntactical variety of the system is not static but admits of un-
limited extension, a special rule is required. This rule, which we propose to
call the rule of univocal functions, will be formulated below on the presuppos-
ition that it is to be used in some systems which have the functor of weak
inclusion among their primitive terms.

RG6  the rule of univocal functions. On the assumption that a thesis T
is the last thesis in the system an expression £ of the form

IX [ ] i Hb]: : [a].'.acb.z : [c dJ:N(c Cd).cCea
j.[aef].w(e Cf).e Cc.e¥(e)

can be added to the system provided the following conditions are fulfilled:
‘o(e)’ in E is, with respect to I, a meaningful propositional expression, i.e.,
every constant term in ‘¢(e)’ occurs in T or in a thesis preceding T in the
system or in the logic of propositions, and every variable occurring in ‘¢(e)’
belongs to the semantical category (logical type) already available in the
system; variables of which are the same semantical category (logical type)
as expressions obtainable in the logic of propositions are not allowed in‘p(e)’
as free variables. 9)

It can easily be shown that any thesis added to & (or ¥*)in virtue of R6
can be derived within the system by making use of RS, and R1 — R3. Here is
an outline of the proof.

In order to derive a thesis of type IX we begin with the corresponding
thesis

Fl1. [a...].'.aCx‘E:[cd]:/v(ccd).c(:a.j.[ief].,v(e(:
f).eCc.e(e),

which we obtain by applying R5. We then proceed as follows:

F2. [] et [a] .-.aCx.“:[cd] ~((cCd).c(Ca). [i ﬂ
~(eCf).eCec.@)::D::[3b]:: [a].naCb.= [ cd]~
(ch).cCa.j.[aef] ~(eCf).eCc.e(e)

(follows from the logic of propositions by R1 and R2)

F3. [a] coa(Cx . = :[cdl i~(c(Cd).cCa.)D. [3ef:|.~(e
ChH-eCec.o(e)... D= [ ] I—ab] I:a] .a(Ch.
[cd]i~cCd).cCa.D-[Jef].~(eCH.eCec.o(e

[from F2]
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Fq. [] [ab]::[a].-.acb.zz[cd]:~(ccd).cca.j.
['jef]./w(eCf).eCc.'p(e) [F3a Fl]
F4. being the thesis we set out to derive, our outline is completed.
We now proceed to show that any thesis which satisfies the conditions
of RS, can be derived within © (or ¥*) by applying R5d, R6, and R1 ~ R3,
We begin with the corresponding thesis
Gl [] [ab—_l::[a].'.aCb.Z—:[cd]:~(ch).cCa.j.
[3ef].~(eC[).eCc.¢(e),

which we obtain by applying R6. Then we derive

G2. [gh...]:-: [a:].-.an.E:[cd]:~(ch).cCa.:).[ae
f].N(eCf).eCc.qD(e)::l:a].'.aCh.E:[cd]:»v(ch)
ceCa.D.[Jef] ~(CH.eCec.9e)::D.gCh.-hCg [SI]

G3. [g...]?'f [a].-.an.E:[cd]:~(ch).cCa.:).l_—ief]
i~(e(Cf).eCec.®(e)::Dii [jb]?? [a] .'.aCb.E:[cd]

:M(ch).cCa.D.[ﬂefj ~@ECfH.eCec.9(eii [ k]

[a].‘.aCh.E:[cd]:N(c Cd).cCa.j.[]ef].N(eCf)

.eCc.pe)..D.bCh.R(CD [C2:|

G4. [] ]__jb]:.: [a].aCcb.=:[cd]:~(cCd).cCa.
).[]ef_-l.’v(ecf).eCc.qa(e):-: [h]::[a].'.ach.zz[c
d:l:rs/(ch).cCa.D.[ﬂef].N(eCf).eCc.(p(e).‘.).b
Ch.hCbd [ 63, 61]

Gs. [bi...]?'f [a].'.aCb.E:[cd]:M(ch).cCa.:).[ae
f;l.N(eCf).eCch(e):-: [h]::[a].'.ach.sz[cd]:/v
(ch).cCa.:).[jef].~(eCf).eCc..<P(e).'.:).bCh.h
Ch:: Di: iCx.x(Ci.=: [:‘!j]::i(:j.jci::[a].'.
aC'.E:[cd]:N(ch).cCa.j.[ﬂe[].N(eCf).eCc

. ¢ (e) [obtained by applying R 5d]
Geé. [] [3j]::ij.ij::[a] .’.aCj.E:[Cd]:N(CCd)
.cCa.j.[ﬂef].w(eCf).eCc.(p(e) [GS, G4, SI]

G7. ]:gj...:l:-: ij::[a:].'.aCj.E:[cd:l:rv(ch).cC
a.:).[ﬂef].f\/(ecf).e(:c.¢(e)::ng::j:[cd]:N(c
Cd).cCg.j.[3efj.~(eCf).eCc.‘P(e) [52]

G8. [gj...] = jCx: [a].‘. aCj. =: [cd]:f\/(ccd).c
Ca.D.[aef].rv(ecf).ecc.qo(e)::[cd]:N(ch).
cCg.j.[aef:l ~(e(Cf).eCc.p(e)::D.g(Cx [52]
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G9. [j ]:~: LjCx e [a] ca(j.= [cd]:N(ch).
cCa.D. [ ef] ~(e(Cf).eCc.eo(e): j"[a]'.aCx.
= [ch'N(ch) cCa.). [ﬂe[:l ~Ae Cf).eCc.p(e)

[ 67, 68]
G1o. I:a...:] coaCx .= [cd] i~(c(Cd).c(Ca. D[Hef]/\/
(eCf).-eCc.e(e) [09, G6]

G10 satisfying the demands of RS, our task has been completed. To sum
up, we have shown that R5 is equivalent to R5d and R6 taken together. This
however, constitutes no intuitive justification for accepting R5. Such a just-
fication cannot be given before we have become acquainted with the proper-
ties of certain constant terms which can be introduced into systems of Boo-
lean Algebra with the aid of R4. At this stage it can only be noted that on
the ground of D4 any thesis added to & (or ¥*) in virtue of RS is inferentially
equivalent to the corresponding thesis of type

X [a...] acx.=:[b]: b[a.).[jd] AT b. o)

And any thesis added to® (or ¥*) in virtue of RG is, on the same ground,
inferentially equivalent to the corresponding thesis of the type

X1 [ ] e [31;];: [a]. . acb.=:[c] :c[a.j.[_]d]
dc.o)

Although the intuitive justification of RS has to be postponed to a later
stage in our enquiry, we can already now indicate certain advantages which
result from adopting this type of rule for writing nominal definitions. If we
consider the axioms of %* then we see at once that 42 — 46 satisfy the re-
quirements of R5. Thus in a system equipped with RS they can be regarded
as definitions, and A] can be raised to the status of a single axiom of the
Algebra. Al is a relatively simple thesis. Its meaning becomes apparent
once we have realized that on the ground of D5 it is inferentially equivalent
to the thesis which says that

[ab] oa(Ch. E:[c] telNa. D.cAb

i.e., that for all a, for all b, — all a is b if and only if for all ¢, — if some ¢
is a then some c is b.

With one exception Al meets all the demands set up by Lesniewski for
well-constructed axiom systems. In particular it is organic and canonic but,
as we shall see in the sequel, it is not adequate for the ontological interpre-
tation!O)This does not mean that we were wrong in interpreting Boolean Alge-
bra on the lines suggested in the introduction. AI and the system based on
it lend themselves to the ontological interpretation without the slightest diffi-
culty. Al, however, is adequate for this interpretation because, as we shall
see, there are propositions which are meaningful with respect to A1 but which
cannot be deduced from it although under the ontological interpretation their
truth appears to be indubitable.
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NOTES

1) See Schroder, Vorlesungen iiber die Algebra der Logik, Vol. 1, Leip-
zig 1890, pp- 168, 169, 188, 196, 293, and 302. Strictly speaking in the ax-
iom-system suggested by Schroder the thesis

S7* [a b c]: bac C A.D.an(buc) C (anb)u(anc)
is used instead of S7. Considered separately S7 is stronger than S7* but with-
in the framework of the system these two theses are inferentially equivalent.
S1, 52, and S7*, are called principles or axioms while the remaining theses
i.e., S3, 54, S5, S6, S8, and S9 are described by Schroder as definitions. See
also L. Couturat, L’algebre de la logique, Scienta, No. 24, Paris 1905, prin-
ciples I to VIIIL.

In the present paper I shall be using the Peano-Russellian symbolism
with a few modifications due to Lesniewski. It will be noted that in this
version of the symbolism square brackets indicate the quantifiers. Thus, for
instance, the expressions '[a]’, ‘[a b c] ’ ‘[j a]’, and ‘[ 30 b c]’ mean the
same as ‘for all a’, ‘for all a, for all b, for all ¢, ‘for some a’, and ‘for some
a, for some b, for some ¢’. Concerning the interpretation of the particular
quantifier it must be emphasized that it has no existential import. The inter-
pretation of the universal quantifier is to be adapted accordingly. For details
see my ‘Logic and Existence’ in The British Journal for the Philosophy of
Science, 5(1954).

2) The terminology ‘shared name’, ‘unshared name’ and ‘fictitious name’
has been suggested by Professor Woodger. See his Biology and Language,
Cambridge 1952, p. 17, and 'Science without Properties’, The British Journal
for the Philosophy of Science, 2 (1952), p. 196.

3) The ‘and’ and ‘or’ as name-forming functors for nominal arguments
are to be distinguished from the ‘and’ and ‘or’ as used in the Logic of Prop-
ositions, where these two words are construed as proposition-forming func-
tors for propositional arguments.

4) See E. Schroder, op. cit. p. 217 sq.

5) For the treatment of definitions in the logic developed by Lesniewski
see his 'Grundzuge eines neuen Systems der Grundlagen der Mathematik’,
Fundamenta Mathematicae 14(1929), p. 70 sq., and ‘Uberdie Grundlagen det
Ontologie’, Comptes rendus des séances de la Socicté de Sciences et des Let-
tres do Varsovie, Classe 111, XX1II Année, Warszawa 1930. See also his 'Uber
Definitionen in der sogenannten Theorie de Deduktion’, Comptes rendus des
séances de la Societé des Sciences et des Lettres de Varsovie, Class III,
XXIV Année, Warszawa 1931. For an informal discussion of definitions in
Lesniewski’s Ontology see C. Lejewski, ‘On LeSniewski’s Ontology’, Ratio,
1(1958), pp. 172 sq.

6) The functor of a simple function is one word. In this respect a sim-
ple function differs from a ‘many-link’ function, in which the functor is itself
a function. Thus, for instance, in the thesis

[ab]:"‘(—b—)(a). =a(Cbh

the left hand side of the equivalence is a many-link function. Its functor is
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the expression ‘*(—b-)’, which itself is a function. In **(—b-)’ **’ is the
functor. Together with one nominal argument it forms a proposition-forming
functor for one argument, which again is a name.

7) The constant terms defined in DI — D9 occur in Leéniewski’s Ontol-
ogy. D2 is due to Sobocinski. Se C. Lejewski, op. cit.; pp. 157 sq.

8) Definitions of this form do no presuppose D7.

9) Theses added to the system in virtue of R6 correspond to what Le$é-
niewski used to call pseudo-de finitions.

10) For a discussion of the concepts of organicity, canonicity, and ade-
quacy see B. Sobocinski, ‘On Well Constructed Axiom Systems’, VI Rocznik
Polskiego Towarzystwa Naukowego na Obczyznie, Rok 1955 - 56(The Polish
Society of Arts and Sciences Abroad, Yearbook for 1955 —-56), London 1956,
54-64. To be continued.
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