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AN EXTENSION ALGEBRA AND THE MODAL SYSTEM T

E. J. LEMMON

In [4], 1) [5I, and Cόl J.C.C. McKinsey and A. Tarski proved some far-
reaching theorems concerning the modal system S4 and its extensions by
using techniques of abstract algebra, and in particular the concept of a clo-
sure algebra. In [ 2 ] , M.A.E. Dummett and the present author applied these
results to proving the characteristicity of certain matrices for S4 and some of
its extensions. In the present paper, a new kind of algebra is introduced,
here called an extension algebra, which is shown to have the same utility in
studying the modal system T that closure algebras have in the study of S4.
Finally, a particular extension algebra is shown to be characteristic for T;
this algebra is very similar to the closure algebra shown to be characteristic
for S4 in [ 2 ] . Acquaintance with the relevant material in Γ2l, Γ4l, C5I, and
[6] is presumed in what follows, and proofs which model closely their anal-
ogues in these papers are omitted.

I

We define an extension algebra as follows:

Definition 1. 1ΰl = <.M,^, *"\ — , E > i s an extension algebra iff M is some set
of elements and v-/, ̂ , — , E are operations on these elements such that:

(i) M is a Boolean algebra with respect t o ^ , ^ , and —
(ii) if x e U, then ExeM;
(iii) if x € M, then xQEx;
(iv) if x, γ e M, then E(x^>γ):= E x^Ey;
(v) EΛ = Λ.
If we compare this definition with [5] Df 1.1 we see that, if in addition

we stipulate that for xeM E Ex = E x, 2tt is a closure algebra. Thus our def-
inition is a generalization of that of a closure algebra: all closure algebras
are extension algebras, but not conversely.

Ex may be called the extension of x, and, in analogy with the interior
operator of closure algebras, we may define:

Definition 2. For x E M, Jx = — E—x.

Tx is the intension of x.
Extension algebras might form the basis of an abstract mathematical

study of growth. For example, if the elements of M are construed as sets of
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points, then for any xEMEx may naturally be construed as the set of points
into which x has' grown after a certain time-lapse. Conditions (iii) — (v) of
Df. 1 then stipulate that the growth of a point-set include the set, that*the
growth of the union of two point-sets be equal to the union of their separate
growths, and that the growth of the null set be the null set. In what follows,
however, we are concerned primarily with applications in the field of modal
logics.

Following closure-algebraic terminology, we say that x E M is closed
iff x = Ex and open iff x = Jx . Also, we say that x EM is extended iff there
is a z E M such that x = E z and intended iff there is a z E M such that x =
Jz. Closed elements are extended and open elements intended, but the con-
verse is not generally true; it is characteristic of closure algebras that the
concepts of closed element and extended element and the concept of open
element and intended element coincide. Elements which are not extended may
be called atomic.

Simple examples of extension algebras which are not closure algebras
may be constructed as follows. Let M be the set of all subsets of the signed
integers . . . , - 1 , 0, 1, . . . . Let «•> , ̂  , - be the usual set-theoretic opera-
tions, and, for any AE M, we put E A = {x : x E A or x + 1 E A. ot x-~l E A } .
For example, if A = { - i , 3, 4 } , EA = { - 2 , - I , 0, 2, 3, 4, 5 } . ΓhenJ/ =
< M^9 ^,-,>is an extension algebra with the property that no element except
Λand V ίs closed and every unit set is atomic. Further, if B = { θ}, then,

writing E^^E^A as EmA, we have EmB ^ EnB for any natural numbers m
m

and n such that m j4 n. Again, let M9 be the set of all subsets of the natural

numbers 0, 1, 2, . . . , and let ^ , ^ , - be as before; we put E M = [x x E A

or %-l EA} . Thenafl' = <M\^,^, -, E'> is an extension algebra. In W

the set { 0 } is closed, as are the se ts JO, 1} , {0, 1, 2} , etc., but all other

unit sets are again atomic; the set { l , 2 } is extended but not closed.

Theorem l.2^ For any extension algebra 2?? =KM, ̂ ,^, —, E > ,
(i) for x, y e M, if x Q y then E x Q E y and Jx C Jy;
(ii) E V - V ;
(iii) for x 6 M, 7xQx;
(iv) for x, y e U, 7(x r\y) - Tx ^Ty.

(Proofs are immediate by Boolean operations and Dfs. 1 and 2.)

Closed and open elements of extension algebras behave in many respects
like their counterparts in closure algebras; the behaviour of extended and
intended elements is rather different, however. We have

Theorem 2. In any extended algebra

(i) the complement of an intended (open) element is extended (closed),
and the complement of an extended* (closed) element is intended (open);

(ii) the sum of any finite number of extended (closed) elements is extended
(closed), and the product of any finite number of intended (open) elements is
intended (open);
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(iii) the product of any number of closed elements is closed, and the sum
of any number of open elements is open;

(iv) Ex is extended and 7x is intended;
(v) Λ and Vare both open and closed.

We lack the analogue of (iii) for extended and intended elements. For exam-
ple, in the extension algebra2R* given earlier { 1, 2} and £2, 33 are both ex-
tended elements, but their product \ 2 } is atomic.

We shall need later the

Lemma 1.4) If x is any open element of an extension algebra and y any ele-
ment, then x r\E (χr\y) = χ n E y .

(The proof requires only Boolean operations and Dfs. 1 and 2.)

Also, we shall need appropriate definitions of universal algebras, gener-
alized universal algebras, and extension-algebmic functions (cf, L5] paras.
3 and 4) Thus we stipulate:

Definition 3 Let Π be a class of extension algebras: then SB is a universal
algebra for Π iff SW is an extension algebra and every extension algebra in Π
is isomorphic to a subalgebra of 91.

Definition 4. If 2R— < M, KJ, r\f - , E > is an extension algebra and a is an

element of 3R ?έΛ, then by Bfco, the relativized subalgebra ofSJlwith respect to

α, we understand the a lgebra<J | α ,^,/Λ, — Q J E α > where, for xeM> xe2ftα iff

#Cα, —α x=: o n - x , and Eax = ar\Ex.

It is immediate that2ftα is itself an extension algebra.

Definition 5 Let Π be a class of extension algebras: then 2tt is a general-
ized universal algebra for Π iff SD? is an extension algebra and for each exten-
sion algebra 91 eΐl there is an open element a of 2tt such that 91 is isomorphic
to a subalgebra of Λ α .

Similarly, we define extension-algebraic functions in exact analogy with
the definition of closure-algebraic functions in [5] para. 4. An extension-
algebraic function f(xj , . . . , x n ) is said to vanish identically in 9tt iff for all

II

Using results concerning extension algebras, in the present section we

prove certain theorems concerning the system T, in particular (Theorem 8)

that T has the finite model property in the sense of [3] and so is decidable. ^

By the system T we understand that modal logic obtained by adding to a
classical propositional calculus base formulated with the rules of substitu-
tion and detachment the rule (R): if hχo: then h j D 01 , and the two axioms:

(1) Op ->p;
(2) D(p ->?) -•> ( D p - » Qq).
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Let H = < A, D, w , ^ , — , E > be an algebraic system in which A is a
set of elements D is a non-empty proper subset of A, *u and c\ are binary and
— and E are unary functions defined over A and class-closing on A: then 8
is a T-matrix iff A satisfies every provable wff of T when KJ corresponds to
&, r\ to v, — to —i, and E to Π. Also, we stipulate the

Definition 6. % = < A, D, v ^ , r ^ , - , E > i s a regular matrix iff

(i) /I is a Boolean algebra with respect to u , π , and —

(ii) if x € D and - # o y β D, then y e D

(iii) if % £ D, then E x e D.

We have at once:

Theorem 3 A regular matrix 8 is a T-matrix iff tf satisfies (1) and (2).

Theorem 4. 8 = < <4, {</}, w , *~\ — , E > is a regular T-matrix iff < 4 , °,
^ , - , E > is an extension algebra and oί is the zero element of this algebra.
(The proof, though long, follows closely the lines of [6] Thm. 1.2.)

Corollary. If SW = < M, ^ , ̂  , - , E > is an extension algebra, then <'M,
{ Λ ] , v ^ , r \ , - , E > i s a regular T-matrix.

In view of this corollary, we need not distinguish between an extension al-

gebra and the corresponding matrix in which \Λ J is taken as the designated

set: hence we shall speak of extension algebras as themselves T-matrices.

Considering extension algebras as T-matrices, we clearly set up a correspond-

ence between any wff α of T and an extension-algebraic function /*fα> 7)

such that oc is satisfied by an extension algebra M iff / 'vanishes iden-
tically in M.

Theorem 5 There is an extension algebra X which is a characteristic matrix
for T.
Proof. £ is constructed by Lindenbaum's method, as in [4] Thms. 4 and 11.
It is easy to show that X is regular and has only one designated element (cf.
[6] Thm. 3.6), whence by Theorem 4 X is an extension algebra.

If we define a normal extension oί T to be one which is closed under
substitution, detachment, and the rule (R), then Theorem 5 may immediately
be generalized to all such normal extensions.

Theorem 6.8 Let « be a wff of T: then H « iff /"* a ) vanishes identically

in every extension algebra.

Proof. If h X « , then « is satisfied by every T-matrix, and so by every ex-
tension algebra in view of the Corollary to Theorem 4. Conversely, if it is
not the case that h ^ «• , then a is not satisfied by the extension algebra X

of Theorem 5.

Theorem 7. Let 2R = < M, ̂  , ̂  , — , E > be an extension algebra, and

α, , . . ., aγ be a finite sequence of elements of M. Then there is a finite ex-

tension algebra 9Λ1 = < Mt, *u , r\ 9 - t Et > with at most 2^r elements such

that:
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(i) for 1 < i<r, a( e M\

(ii) If x. € M\ and E x € Λ/t , then Et Λ; - E Λ;.

Proof. (Though the proof follows closely those of [4] Thm. 5 and [5] Lemma

2.3 and Thm. 4.14, it may be worthwhile here to give the outlines.) Let M\

be the set of elements of M obtained from α t , . . . , Oj by the Boolean opera-

tions *+J , ^ , — . Then U\ contains at most 22Γ elements, and condition (i)

is satisfied. We say that x e Mf is covered by y € M/ iff x Q.y and Ey € Mj .

For x € Mf, suppose Λ; to be covered by xt , . . . , xn . Then we put E^* —

E xγ r\ . . . r\ E xn. If Λ; is covered by %j , . . . , xn , then for l < j < / i J i C i C j ,

whence by Theorem 1 (i) E x C E%j and E ^ . ^ ^ X. lί x eM1 and E# € Mu

then Λ; is covered by itself, whence by the definition of Ei E*JOEΛ;. Hence

condition (ii) is satisfied. It remains to show that < Λ / y , o , ^ ^ , — , E i >

is an extension algebra. Of the five conditions in Df. 1, (i) and (ii) are im-
mediate and (v) follows from condition (ii) just established. As to (Hi), we
have x C Ex and EίcC Ei Λ; as just shown, whence χC*E\ x. (iv) is demon-
strated exactly as the same condition is demonstrated in [4] Thm. 5.

Corollary 1. If an extension-algebraic function fails to vanish identically in
some extension algebra, then there is a finite extension algebra in which it
fails to vanish identically.

Corollary 2. If an extension-algebraic function vanishes identically in every
finite extension algebra, then it vanishes identically in every extension alge-
bra.
(The proofs of these from Theorem 7 follow the pattern of the proof of [5]
Thm. 4.15 from Lemma 4.14.)

Theorem 8. T has the finite model property.

Proof. Let a be some unprovable wff of T. Then « is falsified by the char-
acteristic matrix T of Theorem 5, and so fails to vanish identically in some
extension algebra. Hence by Corollary 1 to Theorem 7 there is a finite ex-
tension algebra — which will itself by Theorem 4 be a T-matrix — which fal-
sifies « .

In [2] Lemma 4, it was proved that any extension of S4 of a certain kind
had the infinite model property. The analogous proof for extensions of T
breaks down because, as observed in Section I, the product of a finite number
of extended elements is not in general itself extended. The same fact seems
to explain why there are not propositional calculi standing in a special re-
lation to T and its extension, as there are to S4 and its extensions (namely
systems between the intuitionist and the classical calculus).

One further property of T, which it shares with S4, does not seem to
have been noticed before. Inspection of the proof of [5] Thm. 4.12 shows
that it applies as well to extension-algebraic functions as to closure-alge-
braic functions. Thus we have:

Theorem 9- If / and g are extension-algebraic functions (of the same number
of variables) and if Ef <̂  Eg vanishes identically, then either f or g vanishes
identically.
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Corollary, ^ If f j Π a ^ Ώ β , then either h j « or h jβ .

Ill

We saw in Theorem 5 that a characteristic matrix of a trivial sort exists
for T. We proceed in this section to prove the characteristicity of a more in-
teresting matrix. We establish in fact that the matrix in question is a general-
ized universal algebra for the class of all finite extension algebras. Since
it is not obvious that such an algebra is a characteristic matrix for T, we
prove this first (Lemma 3)

Lemma 2. ' If α is an open element of an extension algebra9R, and xf , . . . ,

xn are elements included in α, then for every extension-algebraic function f

of n variables /gRα (*r , , xn ) ~ a ^/SR(*r , ,*rc)

Proof. By induction on the order of /, using Lemma 1 for the case where/is
of the form E g.

Lemma 3-1*) Let 2fl be a generalized universal algebra for the class of all
finite extension algebras, and a a wff of T which is not provable in T: then
α is falsified by2R.

Proof. By Theorem 8 f(a ) (x\ , . . . yxn) fails to vanish identically in some

finite extension algebra, say $1. Since 3ft is a generalized universal algebra

for all finite extension algebras, there is an open element a of 2ft such that

9t is isomorphic to a subalgebra of Mα. Hence under the isomorphism there

are elements at , . . . , an of 9ttα such that /ajM,αX #i > > «# ) r Λ . Hence

by Lemma 2 α r^f^^){ay , . . . , an ) ^ Λ , so that /fo(* Xo, , . . . , α n ) = Λ.

Thus « is falsified by2ft.

As in [ 2 ] , we shall be concerned with systems and algebras constructed

in special ways upon partially ordered sets and quasi-ordered sets. Thus if

St = < K, ^ = > is a quasi-ordered set, by Λe, = <.Ke,—e ^ w e understand

the partially ordered set such that Ke is the set of equivalence classes of K

under the equivalence relation: a-^b and ό ^ α , and, for A,B e K€, A^e B

iff for every a € A, B € b, a^b. Further, if St — <K,— > is a quasi-ordered
set, St t = < Ky , ^ 1 > is defined as follows:

Kj — { < a, n > : a € K and n is a natural number j

< α, m > ^ 1 < b, n > iff α ^ 6, for all α, b € K and natural numbers m, n.

A partially ordered set Λ — < K,^ > is minimally bounded iff there is a
subset /I ίΞ K such that each a e A is a minimal element of £ and for every
b € K there is a c € 4 such that c ̂ b. We understand dually maximally bound-
ed partially ordered sets.

In [2 ] , we defined a constant closure operator on subsets of quasi-order-
ed sets. Similarly, we now define an extension operator. First, let Λ = <K,
^ > b e a quasi-ordered set: then for a € K by e(a) we understand the equiv-
alence class in Λe to which a belongs. Now for a,b € K we say that o extends
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b iff either e(a) ~ e(b) or e(a) covers e(b) in fte. (We note that if ft is a par-
tially ordered set then for a, b in ft a extends b iff either a = 6 or a covers b
in ft, by the isomorphism between &e and &*) Finally, by ft we understand
the algebra < X#, v̂  , >̂ , - , E > , where K& is the set of all subsets of K,
o , < ,̂ and — are the usual set-theoretic operations, and E is an operator on

K#such that, for A e K# , EA —{a : for some b, b eA and a extends b} . It
is easily verified that Λ# is an extension algebra, which we call the order
extension algebra on ft. *2)

Now we prove a succession of lemmas, corresponding to lemmas in U23,
which we shall need later.

Lemma 4. (Cf. [2] Lemma 1). Any finite extension algebra is isomorphic to
the order extension algebra Λ^ on some finite quasi-ordered set ft.
Proof. Let 8 = < 4, o , ^ , - , E > be a finite extension algebra. Then<A,
^j , Γ\ , — > is a finite Boolean algebra, and hence isomorphic to the field of

all subsets of some finite set A*. Where Ψ is the isomorphism, for any B£A9

we define E ' β ^ ΦEΦ~ B. For any a,b € A9 we define: a extends b iff a e E1

{ i j ; Then we say that a s^ b iff there are elements ĉ  , . . . , cm € A9(m^o)
such that b extends c\, c\ extends cz , . . . , cm extends α. Then it is readily
seen that Λ — < /!', ~ > is a quasi-ordered set and that the extension oper-
ator in Λ# coincides with E', so that 8 is isomorphic to Λ# .
Lemma 5. For any finite partially ordered set Λ ' = <C /£', — > , there is a
finite partially ordered set Λ' = < X', — f > with the property that in it no
element is covered by more than one element, such that Λ# is isomorphic to
a subalgebra of Λ ' # .

Proof identical with the proof of [2] Lemma 3, altering Λ+ and # > + to # #
and Λ ' ΐ respectively.

Lemma 6. Let & = < K, — > be a countable (i.e. finite or denumerable)
quasi-ordered set and 8 == < L, ^ = > be a partially ordered set, such that
Λfe:tt is isomorphic to a subalgebra of 8 * . Then Λ* is isomorphic to a sub-
algebra of # ! #

Pr00/ identical with the proof of [2] Lemma 5, mutatis mutandis fin particular,
we note that members of equivalence classes in quasi-ordered sets are col-
lectively either members or not members of extended sets, by the definition
of ft # from St).

Lemma 1. Let ft = : : < K, — > be a countable quasi-ordered set. Then there

is a denumerable partially ordered set ftQ = <KQ,—q> such that ft# is iso-

morphic to a subalgebra of ftQ* . If fte is maximally bounded, then so is ftQ.

Proof. (Compare [2] Lemma 7; as the construction there differs in certain
respects from that required here, we give the proof in full.) We define Λ 9 from
fte as follows:

ftQ — {</4, m, n> : A € Keand m, n are natural numbers}
<A,m9n>^q<B,m9,n9> iff A^ e B and either n > n9 or both n — n9

and m => m*.
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It is easily shown that St ? = < K9,^q> is a partially ordered set, and that
if St is finite or denumerable then & ^ is denumerable. Also, StQ is maximally
bounded if ®e is. Next, we define a mapping </> of elements of K into denum-
erable subsets of K% using the equivalence classes of St. If A € Ke contains
finitely many numbers of K, α o , . . . , α n (rc ~ 0 ), then for i<Cnwe put Φ (α̂  ) =

£ < /4, i, A: > : k is a natural number}and Φ(an) = |<C ̂ 4, ί, A; > ι — ra andA
is a natural number) . If A 6 X e contains denumerably many members of K,
a^ for i — 0, then we put Φ (a*) = { < /4, i, A; > : A; is a natural number } .

Finally we map every subset B S.K into a subset Θ(B) of K ,̂ namely Θ(B) —

b zB φ(b) Clearly Φ maps every element of K into unique, mutually exclu-

sive, and collectively exhaustive subsets of Kβ, so that θ is an isomorphism

with respect to ^ , ^ , and —. That θ is also such an isomorphism with

respect to E is evident when we observe that, for a e K,Eφ(a) contains,for

every b that extends α, every element < B, m, n > € K9 such that B is the
equivalence class containing b and m, n are natural numbers.

To construct the matrix characteristic for T, we use the sequence ^Φj ^

of systems < Hi, — i > defined in [2] : namely, for each i, Hi is the set

of ordered couples < n, m> of natural numbers such that m— £ and m!. n — 1'!;

^ £ is the result of confining to H- the relation-^ such that < n , m > : ^ <; i ,

k>iiί m^k and A:! . i~m!.n<A;! ("/+ 1). Also we use the partially ordered
set © such that, for each i, Φj is a subsystem of Φ: namely, // is the set of

all ordered couples of natural numbers, — is defined as above, and $ = < H,

^ > . In [2] it is proved that the order closure algebra on $1, Φ1+ , is a

characteristic matrix for S4. We now prove that the order extension algebra on

Φi> Φ1* , is a characteristic matrix for T.

Lemma 8. Let St = < £, — £ > D e a ^ n ^ t e partially ordered set in which no
element is covered by more than one element. Then if St has a greatest ele-
ment, $ # is isomorphic to a subalgebra of φ j # for some i; if St has no

greatest element, St& is isomorphic to a subalgebra of $i ' # for some i, where
φ j ' = < /£ ' , ^ 2 > i s the partially ordered set obtained from Φt by subtracting
from tfj its greatest element < o , i > .

Proof follows exactly the proof of [2] Lemma 10 as far as the construction
of the isomorphism θ is concerned. That θ is an isomorphism with respect to
E follows from considerations analogous to those given there in connexion
with the closure operation.

Theorem 10. Φi# is a characteristic matrix for T.

Proof. If % is a finite extension algebra, then by Lemma 4 % is isomorphic
to a finite order extension algebra $ * for some quasi-ordered set $ . Since
$ e will be finite and partially ordered, St'e$ is isomorphic to a subalgebra of
$ e > # , where $ e ' is the partially ordered set in which no element is covered



AN EXTENSION ALGEBRA AND THE MODAL SYSTEM T 11

by more than one element, whose existence is assured by Lemma 5 ®€ '$• i s

in turn isomorphic to a subalgebra of either Φj# or Φj' # for some i, by

Lemma 8. Hence $ e # is isomorphic to a subalgebra of either ©£$• or ©j' ΐ .

Now using Lemma 6, we see that ^ ^ , and so 8, is isomorphic to a subalge-

bra of either Φjj # or ΦjΊ # . Clearly //jj and Ήi\ are both always open

elements of ©1 # , since their complements are not only extended but also

closed. Hence both © j ^ and Φ/jtt are relativised subalgebras of ©j #

with respect to open elements Φ^ and «£>£ 't of ©^ . It follows that Φ t# is

a generalized universal algebra for the class of all finite extension algebras,
whence by Lemma 3 we have the theorem.

By Lemma 7, since ©j is denumerable, we can find a denumerable par-

tially ordered set © ^ such that © ^ is isomorphic to a subalgebra of Φ j ^ *

Φ ^ ^ will obviously also be a characteristic matrix for T; unlike Φ, which

is minimally but not maximally bounded, Φt^ is neither minimally nor max-

imally bounded, as its construction from ©t reveals.

NOTES

1. Numerals in square brackets refer to items listed in the bibliography at
the end of the paper

2. Cf. [5] Corollaries 1.2 and 1.4

3. Cf. [5] Corollary 1.7

4. Cf. [5] Corollary 1.8 (i)

5. On the system T, see Sobociήski [7 l . T is equivalent to von Wright's M
(intβ]), as Sobociήski shows. The result that T is decidable is not, of
course, new: it is proved by Anderson, using quite different techniques, in
[ l ] . But that T, like S2, S4, and S5, has the finite model property seems to
be a new result.

6. As in [ 2 ] , the correspondence is the dual of that in e.g. [43.

7. Cf. [6l pp. 4-5

8. Cf. [6l Thm. 1.4.

9. Cf. [63 Thm. 2.2.

10. Cf. [53 Thm. 4.8.

11. Cf. [53 Thm. 5.7

12. Cf. the definition of order closure algebra in [23 .

13. Cf. [23 Lemma 9



12 E J . LEMMON

BIBLIOGRAPHY

[ l ] Anderson, Alan Ross, Improved decision procedures for Lewis's cal-
culus S4 and von Wright's calculus M. Journ. Symb. Log., Vol. 19 (1954),
pp. 201-214.

[ 2 ] Dummett, M.A.E., and Lemmon, E.J., Modal logics between S4 and S5.
Zeitschr. f. math. Logik und Grundlagen d. Math., Vol. 5 (1959), PP 250-264.

[ 3 ] Harrop, R., On the existence of finite models and decision procedures

for proposίtional calculi. Proc. Camb. Phil. Soc, Vol. 54 (1958), pp. 1—13

[ 4 ] McKinsey, J.C.C., A solution of the decision problem for the Lewis
systems S2 and S4, with an application to topology. Journ. Symb. Log., Vol.
6 (1941), pp. 117-134.

[ 5 ] McKinsey, J.C.C., and Tarski, Alfred, The algebra of topology. Annals

of Mathematics, Vol. 45 (1944), pp. 141-191-

[ 6 ] McKinsey, J.C.C., and Tarski, Alfred, Some theorems about the senten-
tial calculi of Lewis and Heyting. Journ. Symb. Log., Vol. 13 (1948),pp. 1—15

[ 7 ] Sobociήski, B., Note on a modal system of Feys-von Wright. Journal
of Computing Systems, Vol. 1 (1953), PP 171-178.

[ 8 ] Von Wright, C. H., An essay in modal logic. Amsterdam, 1951.

Trinity College
Oxford, England




