Notre Dame Journal of Formal Logic
Volume VIII, Numbers 1 and 2, April 1967

RECURSIVE MODELS FOR THREE-VALUED PROPOSITIONAL CALCULI WITH CLASSICAL IMPLICATION

VLADETA VUČKOVIĆ

1. Introduction. The aim of this paper is to complete the author's paper [1], exhibiting various systems of propositional calculi which have models inside the recursive arithmetic of words. We limit our exposition to threevalued case; nevertheless, the method can be applied to the calculi with more than 3 truth-values.

In the elaboration of this paper we considered first four such systems, which raised naturally in an attempt to eliminate an error in our paper [1], which was remarked by B. Sobociński in [2] and [3], and we gave the proofs of their completeness along the lines of the well-known Kalmar proof for the completeness of the classical propositional calculus. Later discussions with I. Thomas ([6D contributed to look for models of general three-valued propositional fragments with classical implication. As now the paper [6] provides the proof of completeness we restrict ourself to the construction of models only.
2. Recursive arithmetic of words. Recursive arithmetic of words (short: RAW) is an equation calculus over the words of an alphabet

$$
\begin{equation*}
s_{n}=\left\{S_{0}, S_{1}, \ldots, S_{n-1}\right\} \tag{2.1}
\end{equation*}
$$

with more than one letter, which is built up as follows.
Denote the empty word by 0 .
Introduce $n+2$ initial functions

$$
\begin{align*}
Z(X) & =0, \tag{2.2}\\
I(X) & =X \tag{2.3}
\end{align*}
$$

and

$$
\begin{equation*}
S_{i}(X)=S_{i} X, \quad i=0,1, \ldots,(n-1) \tag{2.4}
\end{equation*}
$$

where $S_{i} X$ is the word obtained from the word X by writing the letter S_{i} on its beginning. All variables X, Y, Z (with possible indices) run over the set $\Omega\left(\delta_{n}\right)$ of all words written by letters of \AA_{n} (and also over the empty word, which is supposed to be a member of $\left.\Omega\left(\&_{n}\right)\right)$. Formation rules are the
substitution of functions and words for variables and the definitions by primitive recursion.

A function $f\left(X_{1}, \ldots, X_{m}, Y\right)$ is defined by simple primitive recursion by the following $(n+1)$ equations:

$$
\begin{gather*}
f\left(X_{1}, \ldots, X_{m}, 0\right)=a\left(X_{1}, \ldots, X_{m}\right) \tag{2.5}\\
f\left(X_{1}, \ldots, X_{m}, S_{i} Y\right)=b_{i}\left(X_{1}, \ldots, X_{m}, Y, f\left(X_{1}, \ldots, X_{m}, Y\right)\right), i=0, ., n-1
\end{gather*}
$$

where a and all b_{i} are or initial functions or previously defined by the scheme (2.5). A function $f(X, Y)$ is defined by double primitive recursion by the following $n^{2}+n+1$ equations:

$$
\begin{align*}
f(X, 0) & =a(X) \\
f\left(0, S_{i} Y\right) & =b_{i}(Y), i=0, \ldots, n-1 \tag{2.6}\\
f\left(S_{i} X, S_{j} Y\right) & =c_{i j}(X, Y, f(X, Y)), i, j=0, \ldots, n-1
\end{align*}
$$

where a, all b_{i} and all $c_{i j}$ are or initial function or previously defined by (2.5) or (2.6). A function is primitive recursive if it is an initial function, or if it is defined by primitive recursion (of both types), or if it is obtained from such a function by substitution with such functions. We note that (2.6) can be reduced to (2.5) (see f.i. [4]). We introduce (2.6) in order to simplify the exposition.

The only expressions which form RAW are equations between primitive recursive functions. We admit only proved equations. An equation $f=\phi$ between two word-functions is proved, if and only if f and ϕ satisfy the same defining equations (2.5) or (2.6), or if f and ϕ are obtained from such functions by the same substitutions. It can be proved that RAW is non-contradictory in the following sense: if the equation

$$
f\left(X_{1}, \ldots, X_{m}\right)=g\left(X_{1}, \ldots, X_{m}\right)
$$

is proved and if A_{1}, \ldots, A_{m} are any words in $\Omega\left(\&_{n}\right)$, then $f\left(A_{1}, \ldots, A_{m}\right)$ and $g\left(A_{1}, \ldots, A_{m}\right)$ are one and the same word. A complete exposition of RAW is given in [5]. Here we present a very minor part of it, which is sufficient for our purposes. We need first n additive operations $X o_{i} Y$, which are defined by ($i=0, \ldots, n-1$)

$$
\begin{align*}
X o_{i} O & =X \\
X o_{i} S_{j} Y & =S_{i+j}\left(X o_{i} Y\right), \quad j=o, \ldots, n-1 \tag{2.7}
\end{align*}
$$

The addition $i+j$ of indices is modulo n.
Especially, the operation o_{0} is called addition and denoted by + . We repeat its definition:

$$
\begin{align*}
X+0 & =X \\
X+S_{j} Y & =S_{j}(X+Y), \quad j=o, \ldots, n-1 \tag{2.8}
\end{align*}
$$

$X+Y$ is the concatenation $Y X . O o_{i} X$, written simply as $o_{i} X$, is obtained from X by augmenting the indices of all letters of X for i, modulo n. We note a few proved equations; on the right side we refer to the corresponding equation of [5].

$$
\begin{equation*}
X o_{i} Y=X+o_{i} Y \tag{2.9}
\end{equation*}
$$

$$
\begin{gather*}
0+X=X \tag{2.10}\\
X+(Y+Z)=(X+Y)+Z \tag{2.11}
\end{gather*}
$$

The multiplication $X \cdot Y$ is defined by

$$
\begin{align*}
X \cdot 0 & =0 \tag{2.12}\\
X \cdot S_{j} Y & =(X \cdot Y)+o_{j} X, \quad j=o, \ldots, n-1 .
\end{align*}
$$

Note that

$$
\begin{equation*}
S_{0} \cdot X=X \cdot S_{0}=X \tag{2.13}
\end{equation*}
$$

which suggests consideration of S_{0} as the unit for multiplication. Therefore, we write sometimes 1 for S_{0}.

The difference $X \dot{-} Y$ is defined by double primitive recursion:

$$
\begin{align*}
& X \dot{-} 0=X, \\
& 0-S_{j} Y=0, j=o, \ldots, n-1 \text {, } \tag{2.14}\\
& S_{i} X \dot{-} S_{j} Y=\left\{\begin{array}{ll}
X \dot{-}, & \text { if } \\
i=j, \\
S_{i}(X-Y) & \text { if } i \neq j
\end{array}\right\} i, j=o, \ldots, n-1 .
\end{align*}
$$

Some elementary properties of the difference are

$$
\begin{gather*}
0 \doteq X=0 \tag{2.15}\\
Y \div(X+Y)=0 \tag{2.16}\\
(Y+X) \dot{-X=Y} \tag{5.10}\\
X \doteq X=0 \tag{5.11}
\end{gather*}
$$

Note that $1-S_{i}$ is 0 if and only if $i=0$. In all other cases $1-S_{i}=1$.
The last function to be introduced is $\alpha(X)$:

$$
\begin{align*}
& \alpha(0)=0, \tag{2.19}\\
& \alpha\left(S_{i} X\right)=1, i=o, \ldots, n-1 .
\end{align*}
$$

We quote:

$$
\begin{equation*}
(1 \doteq \alpha(X)) \cdot X=0 \tag{2.20}
\end{equation*}
$$

If we define the absolute difference $|X, Y|$ by
(2.21) $|X, Y|=(X \doteq Y)+(Y \dot{\doteq})$,
it can be proved that $X=Y$ is equivalent with $|X, Y|=0$ ([5], (7.3)). Therefore: every equation in RAW can be put in the form $f=0$.

Finally, note the validity of the proof-schema:

$$
\begin{align*}
X & =0 \\
(1 \doteq \alpha(X)) \cdot Y & =0 \tag{2.22}\\
\hline Y & =0
\end{align*}
$$

whose meaning is: if the first two rows are provable, then the third row is provable.
3. Fundamental equations: Here we present that part of RAW which is needed for the construction of models, limiting ourselves to a RAW over the alphabet $\delta_{2}=\left\{S_{0}, S_{1}\right\}$ with two letters.

Introduce two functions

$$
\begin{equation*}
N_{i}(X)=\alpha\left(S_{i} \dot{-X}\right), \quad i=0,1 \tag{3.1}
\end{equation*}
$$

Remark that

$$
\begin{equation*}
N_{i}(X)=0 . \text { if and only if } X=S_{i} Y ; \text { in other cases } N_{i}(X)=1 \tag{3.2}
\end{equation*}
$$

The following set of equations is easily provable. There, i and j take the values 0 and 1 .

$$
\begin{equation*}
\{1-\alpha[(1-\alpha[(1 \dot{-} \alpha(X)) \cdot Y]) \cdot Z\} \cdot\{1 \dot{-} \alpha[(1 \dot{-} \alpha(Z)) \cdot X]\} \cdot[1 \dot{-} \alpha(V)] \cdot X=0 \tag{3.3}
\end{equation*}
$$

$$
\begin{align*}
& {[1-\alpha(X)] \cdot N_{0}\left(N_{i}(X)\right)=0 ;} \tag{3.4.i}\\
& \left\{1 \doteq \alpha\left[N_{i}(X)\right]\right\} \cdot N_{0}\left(N_{j}(X)\right)=0, \quad i \neq j ; \tag{3.5.i,j}\\
& \left\{1 \doteq \alpha \left\{\left(N_{i}(X)\right\} \cdot[1 \div \alpha(X)] \cdot Y=0 ;\right.\right. \tag{3.6.i}\\
& {[1 \dot{-}(X)] \cdot\left\{1 \dot{-\alpha}\left[N_{i}(Y)\right]\right\} \cdot N_{i}\{[1 \dot{-}(X)] \cdot Y\}=0 ;} \tag{3.7.i}\\
& \left\{1 \div \alpha\left[\left\{1 \div \alpha\left[N_{1}(X)\right]\right\} \cdot X\right]\right\} \tag{3.8}\\
& \cdot\left\{1 \doteq \alpha\left[\left\{1 \doteq \alpha\left[N_{0}(X)\right]\right\} \cdot X\right]\right\} \cdot X=0 .
\end{align*}
$$

F.i. to prove (3.3) denote its left side by $f(X, Y, Z, V)$. Then $f(0, Y, Z, V)$ $=0$ and $f\left(S_{k} X, Y, Z, V\right)=[1-\alpha(Z)]\{1 \div[1 \div \alpha(Z)]\} \cdot[1 \dot{-}(V)]=0$, as easily seen by recursion in Z. To prove (3.4.i) it suffices to show that the left side is 0 for $X=0$. As $N_{i}(0)=1$ and $N_{0}(1)=0$ (by (3.2)), the result follows. Remaining equations are provable in a similar way. To shorten the exposition we write $N_{2}(X)$ for X and by $X=S_{2} Z$ we mean $X=0$.

Call a word function \tilde{f}, whose range is in $\left\{0, S_{0}, S_{1}\right\}$ regular if from

$$
\begin{equation*}
\tilde{f}\left(S_{i_{1}}, S_{i_{2}}, \ldots, S_{i_{n}}\right)=S_{i_{n-1}}, \tag{3.9}
\end{equation*}
$$

where every i_{k} is or o, or 1 or 2 (in the last case S_{2} means 0), follows

$$
\begin{equation*}
\tilde{f}\left(S_{i_{1}} Z_{1}, S_{i_{2}} Z_{2}, \ldots, S_{i_{n}} Z_{n}\right)=S_{i_{n-1}} \tag{3.10}
\end{equation*}
$$

for any $Z_{1}, Z_{2}, \ldots, Z_{n} \in \Omega\left(\mathrm{~S}_{2}\right)$.
Every regular function can be defined in the following way. First, by "truth tables" we define a mapping f of the set $\left\{0, S_{0}, S_{1}\right\}$ into $\left\{0, S_{0}, S_{1}\right\}$. The truth table has 3^{n} rows and $n+1$ columns: (we write italics for variables running only over letters and the empty word)

x_{1}	x_{2}	x_{n}	$f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
0	0	0	$f(0,0, \ldots, 0)$
0	0	S_{0}	$f\left(0,0, \ldots, S_{0}\right)$
S_{1}	S_{1}	S_{1}	$f\left(S_{1}, S_{1}\right.$,

Then define \tilde{f} by

$$
\begin{equation*}
\tilde{f}\left(S_{i_{1}} Z_{1}, S_{i_{2}} Z_{2}, \ldots, S_{i_{n}} Z_{n}\right)=f\left(S_{i_{1}}, S_{i_{2}}, \ldots, S_{i_{n}}\right), \tag{3.12}
\end{equation*}
$$

for any Z_{1}, \ldots, Z_{n}.
\tilde{f} is defined by 3^{n} conditions, so it is primitive recursive. Let \tilde{f} be a regular function. To every row of the truth table for the corresponding f, say to j-th row, we assign the function

$$
\begin{equation*}
\psi_{j}\left(X_{1}, \ldots, X_{n}\right)=\left[1 \dot{-}\left(X_{1}^{\prime}\right)\right] \ldots\left[1 \dot{-} \alpha\left(X_{n}^{\prime}\right)\right] \cdot \tilde{f}^{\prime}\left(X_{1}, \ldots, X_{n}\right), \tag{3.13}
\end{equation*}
$$

where

$$
X_{i}^{\mathbf{t}}= \begin{cases}X_{i} & , \text { if in the } i \text {-th column of } j \text {-th row stands } S_{2}(\text { i.e. } 0) \\ N_{0}\left(X_{i}\right) & \text { if in the } i \text {-th column of } j \text {-th row stands } S_{0} \\ N_{1}\left(X_{i}\right) & \text { if in the } i \text {-th column of } j \text {-th row stands } S_{1}\end{cases}
$$

and where
$\widetilde{f}^{\prime}= \begin{cases}\tilde{f}{ }^{\prime}, & \text { if in the }(n+1) \text {-th column of } j \text {-th row stands } S_{2} \\ N_{0}(\tilde{f}), & \text { if in the }(n+1) \text {-th column of } j \text {-th row stands } S_{0} \\ N_{1}(f), & \text { if in the }(n+1) \text {-th column of } j \text {-th row stands } S_{1} .\end{cases}$
We prove: for every $j=1,2, \ldots, 3^{n}$

$$
\begin{equation*}
\psi_{j}\left(X_{1}, \ldots, X_{n}\right)=0 \tag{3.14}
\end{equation*}
$$

Remark that

$$
\psi_{j}=\left\{\prod _ { i = 1 } ^ { n } \left[1-\alpha\left(N_{j_{i}}\left(X_{i}\right)\right\} \cdot N_{j_{n-1}}\left(\tilde{f}\left(X_{1}, \ldots, X_{n}\right)\right)\right.\right.
$$

where $\prod_{1}^{n} \alpha_{i}=\alpha_{1}, \alpha_{2} \ldots \alpha_{n}$.
The expression in $\left\}\right.$ is $\neq 0$ if and only if $N_{j_{i}}\left(X_{i}\right)=0, i=1, \ldots, n$. By the definition of functions $N_{k}, k=0,1,2$
$N_{j_{i}}\left(X_{i}\right)=0$ if and only if $X_{i}=S_{j_{i}} Z_{i}$.
As then

$$
\tilde{f}\left(X_{1}, \ldots, X_{n}\right)=\widetilde{f}\left(S_{j_{1}} Z_{1}, \ldots, S_{j_{n}} Z_{n}\right)=S_{j_{n+1}}
$$

we have

$$
N_{j_{n+1}}\left(\tilde{f}\left(X_{1}, \ldots, X_{n}\right)\right)=N_{j_{n+1}}\left(S_{j_{n+1}}\right)=0 .
$$

This proves (3.14). We make the convention that (3.14) stands for all 3^{n} such equations.
4. Construction of models. To construct models for the propositional fragments of [6] interpret

$$
\begin{array}{ccc}
C p q & \text { as } & {[1 \dot{-\alpha(X)] \cdot Y,}} \\
N_{1} p & \text { as } & N_{0}(X) \tag{4.2}
\end{array}
$$

and

$$
\begin{equation*}
N_{2} p \quad \text { as } \quad N_{1}(X) . \tag{4.3}
\end{equation*}
$$

Every proposition involving C, N_{1} and N_{2} is interpreted in RAW as an equation, with O on the right side and with the corresponding interpretation of its symbols by means of (4.1)-(4.3) on the left side. F.l. $C p N_{1} N_{j} p$ becomes the equation

$$
[1-\alpha(X)] \cdot N_{0}\left(N_{j}(X)\right)=0, j=o, 1 .
$$

If $\phi\left(x_{1}, \ldots, x_{n}\right)$ is any n -argument functor, as his representant we introduce the regular function $f\left(X_{1}, \ldots, X_{n}\right)$ defined as follows:

To the values $0,1,2$ of arguments x_{i} and of $\phi\left(x_{1}, \ldots, x_{n}\right)$ for an assignment of those values in the truth table of ϕ, we correspond the words $0, S_{0}, S_{1}$ respectively. In this way, we define first a mapping f with domain $\left\{0, S_{0}, S_{1}\right\}$ and with the range in the same set. For \widetilde{f} we take then the regular extension of f, as defined by (3.12). With this, the first 6 rows of axioms in [6] become equations (3.3)-(3.8) of section 3 of this paper, and the 3^{n} axioms in the row 7 of the axiom list of [6] becomes 3^{n} equations (3.14). (2.22) becomes the detachment rule

and as a substitution rule, corresponding to the substitution rule of the propositional calculus, is valid in RAW we conclude: if any proposition is provable in the propositional fragment of [6], its corresponding equation in RAW is provable too.

Remark. To construct corresponding models for n-valued calculi we have to use an RAW over the alphabet with $n-1$ letters.

LITERA TURE

[1] V. Vučković: Rekurzivni modeli nekih neklasicnih iskaznih racuna. (Recursive models of some nonclassical propositional calculi). Filosofija, v. 4 (1960), 69-84. (Serbian, German summary).
[2] B. Sobociński: On the propositional system A of Vučkovic and its extension. I. Notre Dame Journal of Formal Logic, V (1964), 141-153.
[3] B. Sobociński: Same title, II. Notre Dame Journal of Formal Logic V (1964), 223-235.
[4] H. A. Pogorzelski: Commutative recursive word arithmetic in the alphabet of prime numbers. Notre Dame Journal of Formal Logic. V (1964), 13-23.
[5] V. Vučković: Rekursive Wortarithmetik, Acad. Serbe Sci. Publ. Math. Inst. 14 (1960), 9-60.
[6] I. Thomas: Three-valued propositional fragments with classical implication. Notre Dame Journal of Formal Logic, VIII (1967), 145-147.

University of Notre Dame
Notre Dame, Indiana

