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A DECISION PROCEDURE FOR FITCH'S
PROPOSITIONAL CALCULUS

RICHMOND H. THOMASON

In this paper1 a Sequenzenkalkul, in the sense of Gentzen [3], will be
formulated and shown equivalent (in a sense to be specified) to the
propositional system (which we will term F) of Fitch's [2]. Naturally, the
proof of equivalence requires an elimination theorem for the first system;
the bulk of this paper, in fact, will concern itself with the task of establish-
ing such a theorem. Finally, a decision method will be sketched for the
Sequenzenkalkul, and thereby, indirectly, for Fitch's system. Though
indirect and more complicated in some ways than the methods of James [4]
and Resnik [7], this method has the advantage of applying to Fitch's full
system of propositional calculus; the procedure of [4] does not take into
account formulas containing nested implications, and that of [7] applies only
to the implicational fragment of F.

1. The System LF. This is an L-system, in the sense of [3], designed
to be equivalent to the system F.

1.1. Wffs. Any propositional variable p is well-formed (wf); further-
more, if A and B are wf, so are (AvB), (AΛB), ~A, and {A D B ) . Where
a and β are strings of wffs separated by commas, a \- β is a (wf) sequent.

1.2. Axioms. There is one axiom-scheme, identity (Id): A \- A.
1.3. Rules.

1.3.1. Structura I rules:

a \-A,β a,A h β

h C a K β,A,B,γ C μ a,A,B,β h γ
a h- β,B,A,γ a,B,A,β \- γ

h W α y-A,A,β w | a,A,A h β
a \- A,β a,A \- β
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1.3.2. Logical rules:

- a *-A,B,β . a,A h β γ,Bhδ
a\-ΛvB,β V a,γ,AvB \-β,δ

h Λ a\-A,β y \-B,δ Λ ( a,A,B h β
a,γ hAΛB,β,δ a,A*B h β

h _ v a l—A,β γ l—B,δ _ α, ~Λ ~ff H /3
α,yh~C4v£),/3,δ ~ V a,~(Av B) ^ β

h _ Λ αh~,4,~g,j3 _ Λ | a,~A\-β y,~B hδ
α \-~(A*B),β a,γ, ~(AΛ5) h β,δ

h _ _ j 0 L L A i L _ ,, . , , gt^ 1-/3
" a\ A,β a,--A h 0

_ h g ι-Λi3
a,~i4 i- β

a,A h Jg a,B h g y hi4,δ
D a h ̂ 4 D 5 D a,y,̂ 4 D B h β,δ

Schemes such as ~ r are, of course, metalinguistic. Any result of
a ϊ-A,β ' '

replacing the premiss(es) and conclusion of such a scheme by sequents is
an instance of the scheme, or inference. Corresponding to the six primitive
structural rules and thirteen primitive logical rules of LF, there are six
sorts of primitive structural inferences in LF, and thirteen sorts of
primitive logical inferences; hv-inferences, W \--inferences, etc.

The Greek letters used in a scheme are called parameters. A con-
stituent A of a primitive inference is parametric if it results by the
the substitution of a sequent Bh . . . ,A, . . . , Bn forborne parameter of the
corresponding scheme.

The wff(s) introduced by a primitive inference is (are) the con-
stituents) of the conclusion which result by substitution of wffs for the
Roman letters of the corresponding scheme. E.g., AvB is introduced by
C h A,B,D Λ C,A,B \-D
— Λ π TΛ and both A and B are introduced by ' _ „ zr .
C ^AvB,D J C,B,A h D

Given a proof of a t- β, this sequent is said to be justified by the last
inference of the proof (which has a h β as conclusion), and is also said to
be justified by the scheme of which the inference is an instance.

Notice especially that the rule h o is unlike the others in that it has no
parameters on the right. This asymmetry corresponds to a similar feature
of Fitch's system; his rule of implication introduction will not permit, e.g.,
the proof of A v (A D B).

2. Preliminary lemmas. In this section we establish a number of
lemmas needed in our later proof of an elimination theorem for LF. Except
for lemmas 11 and 12, these all have to do with the reversibility of various
primitive rules of LF.
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By ! α " C t we represent schematically any result of deleting some (or

perhaps none) of the occurrences of C as constituent of α. We say that a

rule is admissible in LK if its addition to LK as a primitive rule would not

extend the class of theorems.

Lemma 1. The rule 7-1; *f, PN is admissible in LF.
a h A,B,β-[AvB>

Lemma 2. The rules Q - u ^ ^ h β <™d ̂ _{A"^ ^ μ β are admissible in

LF.

Lemma 3. The rules . J_,Δ—-^ and _ Λi/4—ΓT αr£ admissible in
a \-Λ,β l A Λ ΰ ' α \- B,β I\A*B)

LF.

Lemma 4. 77z£ rwZ# —7-;—~r~ zs admissible in LF.

Lemma 5. The rules ^ h ^ ^ U v B ) > a n d

 a h ^ - ( A V B ) α r e ̂ ^ s "

szδZβ m LF.

Lemma 6. T/2̂  r^Zβ ^ » D ^ — 1 ^ ŝ admissible in LF.

Lemma 7. T/zβ rwZβ — ^ -~(Δ—R\ is admissible in LF.

Lemma 8. T7z£ rules — 7̂7̂ —px ^ . α/2<i —-zjz—7Λ — ^ a r e admis-

sible in LF.

Lemma 9. T^β rwZβ —Z.~~Λ is admissible in LF.
a \- A,β A

Lemma 10. The rule — A \ is admissible in LF.
a A ,Λ \- β

Lemma 11. The rule —~ J_~4 is admissible in LF.
a,A h β Λ

Lemma 12. Γ/ẑ  rwZ# — ^ ^ ^ P \ ^ admissible in LF.
a,A h 5,/3 (Λ D β )

We say that α< j3, where α and β are sequences, if every constituent of

a is a constituent of β. And we say that n-LF a h β (briefly, \ha \- β) if

α h j3 is a sequent provable in LF. Finally, the notation2 ^ indicates

that γ h δ can be obtained from α h- β by a number of applications of

structural rules.3

Proof of Lemma 11. We will show that if n-α μ βi9~Ai9β2,~A2, . . .,~An,βn+i

and a,AhA2, . . . , A n ^ α * and βi,β 2 , . . -,βn+i <β*, then n-α* h β*.
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Case 1. a \- βι>~Au . . .,~An>fin+ι is an instance of Id, and so is
~Aλ i—A i. Derive a* h β* as follows:

AY- A
A,~A\-
a*\- β*

Case 2. The inference justifying a H βi,~Au . . .,~An>βn+i is struc-
tural. Because of the remark in footnote 3, this case is immediate.

Case 3. The constituents ~Alf~A2, ...,~An are all parametric in the
inference which justifies a \- β^Ab . ..fβn,~An.,βn+i All of these
cases are alike in their essentials; as an example we will present the
case in which the rule is ~ι-. Here, a is a^ ~B and we have

aL \- B,βυ~Aχ, ...,~An.,βn+1 ^ ^
ah~B h βi,~Au ...,~Anf,βn+ι

By the hypothesis of induction, H-α* \- B,β*. Then proceed as follows:

a* ^B,β* ^ h

a*,~B h β*
a* h β *

Case A. ^Ax is introduced by the inference which justifies a v- βu
~Alf . . . ,~i4 w ,β n + 1 . There are three subcases.

4.1. The rule is h~~. Here, ^ i is — B , and we have

a h B}β2,~A2, . . .,~An,βn+ι

a I B,β2,~A2, . . .,~An,,βn+i

By the hypothesis of induction, w-a* \- 5,β*. Then proceed:

a* H ^ , / 3 * _ h

α* h-β*

4.2. The rule is h~v. Here, ^4i is B v C, and one premiss is
α h ~£,/32,~^2, *>~An>βn+ι and the other a\-~B9β2,~A2,.. .,~An.9

βn+i° By the hypothesis of induction \t-a*,B ι- β* andH-α*,C f- β*.
Then proceed:

a*,B i- β* α * , C i - β *
α * , α M i Hβ*,β* V h

α* h β*

4.3. The rule is h~Λ. Here, Ax is B A C, and the premiss is
a\-~A,~B,β2, . . .,βn+i. By the hypothesis of induction, w-a*,A,
B h β*. Then proceed:

a*,A,B h- β* Λ h

α* h β *

This completes the proof of lemma 11. The proofs of lemmas 1-10 and
12 are very much alike, though lemmas 6, 8, and 10 are complicated by the
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fact that a formula having the shape — A , ~G4v£), or ~(A A B) can be
introduced on the left by either of two logical rules.

As a typical example, we will supply a complete proof of lemma 4, and
also partial treatments (interesting cases only) of lemmas 6, 8, 10, and 12.

Proof of Lemma 4. We will show that if \haυA Λ B,a2 \- β and on,A9B,
a2^ a* and β < β*, then H-α* \- β*.

Case 1. ct]jAAB,a2 *-β is A Λ B Y- A Λ 5 . Proceed as follows:

Av- A B Y-B h Λ

A,B \~AAB

a* \- β*

Case 2. aι,A λB,a2

 h β is justified by a structural rule. This is like
case 2 of the previous proof.

Case 3. ^ Λ 5 is parametric in the inference which justifies (XI,AΛB,
a2 H β. As an example we will consider the case in which the rule is
h D . Here /3 must consist of just one wff, say Z>, and we have

a^A ΛB,(X2,C h D

aυA AB,a2 Y- C~D D

so that w-a*,C Y- Dby the hypothesis of induction. Proceed as follows:

a*,C Y- D

a* h C p D h D

Cαsg 4. , 4 Λ 5 is introduced by the inference which justifies a^AhB,

a2 Y- β. This rule must be Λ h, so that we have a»ή>B>a* hβ m By the
a1,AΛB,a2Y

1β

hypothesis of induction, w-a* \-β*

This completes the proof of lemma 4.

Proof of Lemma 6. We will show that if w-a^^iAv B),a2 Y~ β and alt~A,~B,
a2 ^a* and β ^ β* then w-a* h β*.

Case 1. an ~(Λ v B),a2 \-β is ~(A V 5 ) H ~ ( A V 5 ) . Then:

Case 4. ~(Av£) is introduced by the inference which justifies

aυ~{Av B),a2 H j3.

4.1. The rule is ~ v h , Then we have

α ϋ ~(Avβ) h β

and so w-a* H β* by the hypothesis of induction.
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4.2. The rule is ~ \- . Then we have

a i h AvB,β ^ ^

alt~(AvB)\-β ~ '

and H-α* \-AvB,β* by the hypothesis of induction. By lemma 2

(which can be established independently) H-α* \- A,B,β*. Then

proceed:

α* hA,B,β* _ h

a*,~A hB,β* ^ h

a*,~A,~B h β*

a* h β*

Proof of Lemma 8. We will show that if \haυ~[AΛ B),a2 \-β and aυ^A,

α 2< a* and β < β*then H-α* f- β*. (The other half of the proof is similar.)

Case 4. ~ ( A Λ £ ) is introduced by the (logical) inference which

justifies αu~(AΛ£),α2 H 0.

4.1. The rule is ~Λ K We have γ,~A t-δ as a premiss, then, where

γ< αx and δ ^ /3, so that ^ α * I- j3* by the hypothesis of induction.

4.2. The rule is ~ h. Then we have

aλh A ΛB,β ^

au~(A*B) ^ β

Proceed as follows:

~J—-—-£~ hypothesis of induction

-1-— A. '£ lemma 4
a? >~A,β*

afi-A h g*

α* h β *

This completes the proof of lemma 8.

Proof of Lemma 10. We will show that if w-a^—A,a2 ^ β and αi,^4,α2 ^ α *

and /3<β*then H-α* h β*.

Case 4. — A is introduced by the inference which justifies aυ—A,

a2 Hβ.

4.1. The rule is ~~ (- . Then we have

ctuA i- β

αi ,—A h β

By the hypothesis of induction, H-α* h β*.

4.2. The rule is ~ h . Then we have

α i , ^ ^ h β

By the hypothesis of induction, n-α*f-~,4,β. Then proceed,
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remembering that lemma 11 has already been established:

a* i A,β lemma 11.
a*, A t- β

This is a sufficient sketch of the proof of lemma 10.

Proof of Lemma 12. We will show that if w-a \- βl3A DB,β2 and a,A < a*

and βi,B,β2< β* then H-α* h j3*.

Case 1. a h jSu-A D 5,j32 is -A D 5 h .A D J3. Then proceed as follows:

A \- A B \-B
A,AΌB h 5 D h

α* h β*

Case 4. A "D B is introduced by the inference which justifies a \- βi,

AΊ)B,β2. Then we have — ι — ~ — ~ since the rule must be v- D. By

the hypothesis of induction, w-a* \- β*.

Since by now the method of proof of these lemmas must be clear, we
will proceed to the next section.

3. Elimination Theorem

Theorem 1. The rule mix, 3—^T~r— > i>s admissible in LF.
a,γ-c h β~c,δ

Proof. As usual,4 the proof takes the form of a double induction on the rank
and degree of inferences which are instances of mix. As hypotheses of
induction we assume the following:

Hi. All mix-inferences with degree less than d are admissible, what-
ever their rank.

H2: All mix-inferences with rank less than r and with degree d are
admissible.

We must now suppose of an arbitrary mix-inference that it has degree
d and rank r, and show that, under the hypotheses Hx and H2 it can be
eliminated in favor of a proof in LF.

The argument falls into seven main cases, according to the form of the
eliminated constituent C of the given inference.

Case 1. C is a propositional variable p, and the inference is:

a \- β y h δ

a,γ'p h β~p,δ *

We distinguish subcases depending on how a \- β is justified.

1.1. a \- β is p \- p. Replace the inference by ί „ *— .
J a,γ'p h- β~p,δ

1.2. a \- β is justified by a s t r u c t u r a l ru le . In each of these six

c a s e s , mixing the p r e m i s s of a h β with y h δ (by H2) will produce
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the desired result—except for the case in which p is introduced by

h K and does not already appear as a constituent of the right side

of the premiss of a h β. Here, structural rules applied to this

premiss will do the trick.

1.3. a \- β is justified by a logical rule. In this case, p is para-

metric, and so the rule cannot be \- D . Here, judicious use of H2

will again yield the desired conclusion. We will supply one

example: say, where the rule is f-v. Here, we have

a h A,B,β a \- A,B,β γ t- δ mix (H2)

a \-AvB,β γ h δ, Replace by a,γ-P \-A,B,β-P,δ hv .

α,r"^iv5,^,δ' a^-PhAvB β-^δ

Case 2. C has the form ~p or the form ~(A-DB). These forms share

with the preceding case the property that there is no logical rule for

their introduction on the right side of a sequent. And so the argument

used in Case 1 will apply here too, with no changes.

Case 3. C has the ίorπi Av B, and the inference is

a h β y \- δ

aty-(AvB)< (- β-(AvB) fδ

Proceed as follows:

T~r Γ7R~ lemma 1 Δx/R , lemma 2

a h- A,B,β AwB γ-AwB,A H δ . / T J v γ H δ , o

a,γ-AyB h^vβ, δ

Case 4. C has the form A Λ B, and the inference is:

a h ]3 y I- δ

α , y - A A β h j 3 ~ Λ Λ β , δ '

Proceed as follows:

α h j 3 . _ y h δ _
a^-β ί , α^/^B lemma3 / δ lemma 4 ^

a,α,y-Λ Λ β / 3 - Λ A β , r Λ Λ β , δ m i X ( H l )

α,y"^Λβ β'AAB,δ

Case 5. C has the form ~(A v B), and the inference is:

a h ]3 y Hδ

α ? y - - ( Λ v β ) h β — ( Λ v B ) ; δ

Proceed as follows:

» M . α π V - U v B ) ^ m a 5 U v f l ^ g μ δ lemma 6

g h ^ , ; - ~ U v B ) lemma 5 ^ - ( Λ v B ) ^ B h /-~U»B>,6 ^ ' . x «>

a,g>y—Uvfl) i- <3-~UvB)>β-~MvB)>δ

 m l x W
a,γ—UVB) H β—Uvβ);5
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Case 6. C has the form ~(Λ Λ B), and the inference is:

a h ]3 y h δ
α ? r (ΛΛB) |_ β (AAB) 5̂

P r o c e e d a s follows:

^ — π — ~ r lemma 7 —^,/J D) lemma 8

αfy-(ΛΛB) h ^ r - U Λ β ) , δ m > X ( H l ) y-~U*B)f~B h δ

 l e m ™ a 8

a > y-^(ΛΛB)> y—UΛB) h |3-MAΛB)fδfδ miXlHJ

a,γ~~(AAB) |_ β—UΛB) ,δ

Case 7. C has the form 4̂ D 5, and the inference has the form

a \- β γ \- δ
a,γ-ADB h β'ADB ,δ #

This is the most complicated case, since our lemmas cannot be
applied. We distinguish subcases:

7.1. Either a h β or γ \- δ is justified by Id or a structural rule.
These cases yield easily to applications of H2; in some cases the
hypotheses of induction do not need to be used at all.

7.2. A~DB is not introduced by the inference which justifies
a \- β.— Again, use H2. As an example consider the case in which
the rule is ~ \-. Here the mix is

αi-A/3

a,~D h β y h δ

α , - A r " A D β I- / 3 " Λ 3 β , δ '

Proceed as follows:

a \- D,β y h δ mix (H2)

aiΎ-AJB h D,β-ADB ,δ ~ h

a,y-ADB ,~D ϊ- β'ADB_,δ

(Because of the restriction built into I-D , we could not use Hx if
a h β were justified by this rule. But this situation cannot arise
in the present case.)

7.3. A D B is introduced by the rule-application which justifies
a \- β. Here, the mix is:

a, A h B

a h A pB y h δ

a,γ~AJB h δ

Now distinguish more subcases, according to the role AΌB plays in
the inference which justifies y t- δ.
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7.3.1. A D B is not introduced by the inference which justif ies y h δ .

Then A D B is p a r a m e t r i c in the inference, and H2 can be applied as in

7.2.

7.3.2. Az)B is introduced by the inference which justif ies y h δ . Then

we have

a,A H B r i t- i4,δi y2ff I- δ2

α t-ΛpB y i , y a ^ 3 ^ »- δi,δ2

a,ΎfA^B ,Ύ2-AJB I- δ»δa

We distinguish still more subcases.

7.3.2.1. A-DB occurs as constituent in neither γi nor y2. Here,
proceed as follows:

Ύl h A,^ a,A \r B m j χ

n ' a H δ " B * ?»* h δ 2 mix (H l) .
yi>g,y2 I- δnδa

α j y Γ Λ 3 B ,y2-ADB ,_ δ ϋ δ 2

7.3.2.2. yl r>B occurs as constituent in both yx and γz Proceed as
follows:

^ ' A 3 B ^ A ί ^ V i J ^ m i χ ( H i ) a^B Ύ2,B^ m . χ
a tyΓΛ : > BaHeι,g a,γ2

 Λ 3 B ,B ι-6a , m \

Qf,yΓΛ 3 β α,α,y2

 Λ D B Hδ 1 } δ 2

α , y Γ Λ D β , y 2 " Λ : ) β hδi,δa

Cases 7.3.2.3 and 7.3.2.4 are mixtures of the two cases above.
This completes the proof of Theorem 1.

Corollary 1. The rule ~ is admissible in LF.

a h AziB
. —— lemma 12

„ x a h A a,A H 5
Proof: — mix

a,cί \-B
a Y-B

4. LF and the Fitch System. In this section the results of section 3
will be used to demonstrate the equivalence of LF and Fitch's system F of
propositional calculus. Where β is the sequence B^ ...,Bn let Vβ be the
disjunction Bλ v (B2v . . . v (Bn^ v Bn ).. .)• W e w i l 1 u s e t n e notation »α H-Fβ

τ,
or, more simply, !αtt-β' to indicate that (where β is nonempty) there is a
proof in F of V β on the hypotheses a: i.e., a hypothetical proof having the
form

_An

V β , where a is A i, . . . ,̂ 4W
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Where β is empty, ra H-/3T indicates that there is a proof in F of ph~p

on the hypotheses a where p is a fixed propositional variable (say, the first

alphabetically). For convenience, we set V β equal to p*~p where β is

empty in a ti- β.

Theorem 2. H-L F a h β iff a H- V j8.

Proof. Part 1: If \ha h j3 then α H- V β.

We induce on the length of proof in LF of a hβ to show that a w-β.

Corresponding to Id and the nineteen primitive rules of LF, there are one

hypothetical proof and nineteen derived rules to be checked in F. We will

present five of the most interesting of these cases.

Case 1. Id. A \h A as follows: 1. ]A hyp

2. \A rep

Case 2. W (-. Suppose B, A, A H- C. Then B, A H- C as follows:

1. Bhyp

2. _Λ hyp
3. A 2, rep

C

C(25^ 3. ~ h. Suppose A if- V (£,0).

3.1. j3 is nonempty, so that A H-BvVβ. Then ^,^5H- V β, as

follows:

1. A hyp

2. _~J? hyp
3. A 1, rep

n. 5vV]3 3,i4 H- 5v V/3

n+1. |_δ_ hyp

n+2. ~B 2, reit

n+3. V/3 n+1, n+2,-elim

n+4. I V β hyp

n+5 I V β n+4, rep

n+6 V β n, n+l-n+3, n+4-n+5, v elim

3.2. β is empty, so that ,4 H- B. Then A,~B H- ph~p, as follows:

1. A hyp

2. j ^ B hyp

3. A 1, rep

n. B 3,Au-B

n+1. ~B 2, rep

n-!-2. pλ~p n, n+1, ̂ elim
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Case 4. h-K. Suppose A H- V β .

4.1. β is nonempty. Then A H- B v Vβ, as follows:

1. M hyp

n. VjS I,i4tt-Vp

n+1. B v V/3 n, v int

4.2. 0 is empty, so that A H- pA~ρ. Then 4̂ ft- 5, as follows:

1. L4 hyp

2. /> Λ ~p 1, AH-/>Λ ~/>

3. /> 2, Λ e l i m

4. ~/> 2, Λ e l i m

5. 5 3, 4, -el im

Case 5. h o . Suppose that A,B H-* C. Then i IH β D C, as follows:

1. L4 hyp

2. Lβ hyp

3. A 1, reit

n. C 3,Λ,BH-C

n+1. 5 D C 2-n, D int

Part 2: If α H-F Vβ then H-LF a h β. It is known5 that a \hpB iff a\hHFBy

where tt-HF is the consequence-relation of the system given by the following

twelve axiom-schemes and the sole rule of inference modus ponens:

1. (A =>. BZ)C)-DA D £ D . B-DC

2. A -D- Bz)A

3. A D 5 v A

4. A Σ)A v B

S . A V B Ώ - A Ώ C D . B D C Ό C

6. A A B DA

7. B A A D i

8. A Ό B DA A B

9. A D.~i4 D ΰ

10. —A = A

11. -(A v 5 ) = ~A v~B

12. - ( A A S ) Ξ ^ A -5

Here, A = B =df (A Ί) B) A (B z> A).

Since by Corollary 1 of the previous section, is an

admissible rule in LF, it will suffice for part 2 to show that all the axioms

of HF are provable in LF; i.e., that if A is an axiom of HF, then H-L F \- A.

In each case, this can easily be done. And this completes the proof of

Theorem 2.
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5. The System LFT. This is another L-system, differing slightly from

LF.

5.1. Axioms, One axiom-scheme, generalized identity (Id): a^ A,

a2 H βi,A,β2.

5.2.1. Rules. All of the rules of LF'are logical rules.

a \- βlyA,B,β2,Av B auA,aτ,Av B h gi a^,Q 2 > ivE,hg

a h βi,A v £,β2 ahA v 5,a2 H β

, Λ

 a ϊ- βuA,β2,AΛ B a h- βl9B,β2,AΛB f fli,A,£,a2,A ΛB h β

h ^ V a Hj3i,~(i4vJB),j82 ^ V aj,~W v5),a 2 h β

h t _ Λ a \-βu^A3^B$β2i^{AAB)

at- βu~(AΛB),β2

al3^A}a2y^(AA B)hβ a!,~B,a2j~{A Λ B) h β

~ θίι,~ (A Λ B\a2 H 0

_ h t Q?ι,a2j^ h gi,A,i32

au~A>oi2 Hβ!,/3 2

a 1 , A ? a 2 H ̂  f a^Bya^A -p B h β a^a^A z> B \- A,β

Ql>0ί2 h βl,A D 5,02 .Qί̂ A D 5,^2 I" β

M a h jB^.jSz,—i4 _ _ h t Q?i>A,a2,—A hβ

a h jSi,-—-4,j82 ^i,—A,a 2 H j8

By the length of a proof in LF T , we m e a n the m a x i m u m n u m b e r of s teps

in any b r a n c h of the proof. We w r i t e 'H-LF* a h β t t o indicate that α h j 3 h a s

a proof in L F ' of length m.

Lemmal3. If H- ^pt a h /3 αw<i - ^ ^ (i.e., if a ^ a* and β ^ β*) then for

some n ^ m, n~ ̂ pi α* 1- β*.

Proof. By induction on w. If m = 1, α h |3 is an instance of ldτ, and so is

α* h β*. We will present just two of the remaining cases.

Case 1. If a \- β is a \- β^A v £,β2and is proved as follows:

m-l a v- βkAjBtβtoAvB L

m a \- βjjA vB,β2

then β* has the form y^A^B^y^AvB. By the hypothesis of induction,

H- L̂ » ,a* \- yi,A,B,y2,AvB.

mu j ^ - 1 α * H y]jA,B,γ2,A v B
Then proceed: ' \ 1 1- »v .

m a* \- γχ,Av B,y2

Case 2. If a h β is αuα2 1- βuA^)£,β2 and is proved:
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ra-1 QίifΛya2 \- B

then w-^fιa*,A h B by the hypothesis of induction. Then proceed:

ra-1 a*,A t- B t

w α* h/3* h D #

Theorem 3. H-Lpα h β iff H-LF,α h j3.

Proof. Part 1. If H~LFα h |3 then tt-LFτα i- 0. By lemma 13 all the struc-
tural rules of LF are admissible in LF', and it follows directly that all of
the logical rules of LF are likewise admissible in LF': e.g., hv, as
follows:

a h A,B,β
a \-A,B,β,AwB H v

a \- AvB,β

Part 2. If H~LFtα H β then H-LFα I- β. This is clear, since any instance of
Id' is provable in LF and since all the rules of LF 1 are easily derivable in
LF: v I-*, for instance, as follows:

oti,A,a2,A v B h β auByazfAv B h β

ai3a*AvB,A H β a^a^AvB,B \- β

ctiyCίtoA v B,a1}a2A v B,A v B β

ai,0ί2,A\f B h β

This provides a sufficient sketch of the proof of Theorem 3.

6. A Decision Procedure for LFT . 6 By a tree we mean a discrete
lower semilattice with least element, such that any two elements of the tree
which have an upper bound are comparable. The least element of a tree is
called its origin, the t ree ' s elements nodes, and its maximal chains (under
set-theoretical inclusion) branches. We diagram a tree by placing its
origin at the bottom of the diagram, and by placing lines connecting each
node with its immediate successors, which are placed on a level im-
mediately above the node. Clearly, every proof in LFT is a tree whose
nodes are sequents. A tree is finite if it has a finite number of nodes, and
has the finite branch property if all of its branches are finite. It has the
finite fork property if none of its nodes possesses an infinite number of
immediate successors.

The distinguished proof-search tree (dpst) Pa\-β °f a sequent a h j3 is
the tree defined as follows:

i) a h β is the origin of pahβ.
ii) Where γ H δ is an axiomatic node (i.e., is an instance of Id'), y h δ

has no successors, and the branch terminates.
iii) Where y h δ is a nonaxiomatic node of pahβ, the immediate suc-

cessors of γ hδ consist of all those sequents y' h δ ' which
a) can count as premisses for γ h δ under the rules of LFT, and

b) are such that it is not the case that ^ , or that indeed
y ' h δ 1

y* h δ*
• -̂j -— for any y* h δ* preceding y h δ in pa ^β .



A DECISION PROCEDURE 115

v* h δ*In view of note 3, the stipulation that it is not the case that r

y ' h δ '
is equivalent to the condition that y* 4 yτ or δ*^ δτ.

Lemma 14. pa\-β is complete, in the sense that if H— α \- β then some
subtree of pay-β is a proof in L P o / α h β .

Proof. In view of the construction of pa\-β, the lemma follows immediately
from lemma 13.

We will say that a h β and γ \- δ are cognate if -—&- and ̂  The
y hΰ α h p

class of all sequents cognate with a \- β is called cognation class of a h |3 .
A cognation class is said to appear in a branch of a dpst if any of its
members occurs in the branch.
Lemma 15. Only a finite number of cognation classes can appear in any
branch of pa\-β*

Proof. By inspection of the rules of LF', it is easily verified that a wff A
is a well-formed part of a constituent of some premiss of an inference only
if 4̂ is a well-formed part of some constituent of the conclusion. And since
the constituents of a \- β can have only a finite number of subformulas, and
only a finite number of cognation classes can be constructed out of these,
the desired result follows.

Lemma 16. Every dpst Pahβ ^as the finite branch property.1

Proof. Given Lemma 15, it will suffice to show that only a finite number of
sequents from any given cognation class appear in a branch of pa h β. Then
let M consist of those members of a given cognation class which appear in
a specified branch. We may order M under the relation < such that
Ύi \- δi < y2 ^ $2 iff every wff in γx has at least as many occurrences as
constituent in γ2 as it does in γ^ and every wff in δi has at least as many
occurrences as constituent in δ2 as it does in δlβ

Since there are only a finite number of sequents γλ \- δi such that
Ύi H δi < y2 \- δ^ there must be minimal elements under < in M. And since
only a finite number of different constituents can appear in the members of
cognation class, there must be only a finite number of such minimal
elements.

But given condition iii(b) of the definition of dpst, it follows that any
node of the branch which succeeds all of these minimal elements of M
cannot itself be a member of M. And since it follows that no member of M
can appear above a certain finite level of the branch, M is finite.

Lemma 17. Every dpst pa h j 8 is finite.

Proof. It is clear that/>α μ^ satisfies the finite fork property. Then our
result follows from the general result, proved by D. Kδnig [5] (on the basis
of the axiom of choice), that every tree possessing both the finite fork
property and the finite branch property is finite.
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Theorem 4. LF1 is decidable.

Proof. It is evident that the construction from a \- βoί pah β is effective.
Then, since pa\-β is finite (lemma 17) and hence possesses only a finite
number of subtrees, one of which must be a proof of a \- β if ih fα h β
(lemma 14), and since it is also clear that the property of being a proof in
LF ! is effective, it follows that there is an effective way of finding a proof
in LF* of a h β if there is any such proof, and of verifying that there is no
such proof in case a h β is not provable.

NOTES

1. I am grateful to Nuel D. Belnap, Jr., Hughes Leblanc, and Michael D. Resnik for
helpful comments and suggestions. This research was supported in part by National
Science Foundation Grant GS-190.

2. We will abuse this notation in much the same way that the m eta-linguistic assertion-

sign V is sometimes mistreated. That is, we will use f sometimes to indicate
y h δ

that there is a structural proof of γ \- δ on the hypothesis a \- β, and sometimes as an
abbreviation of such a proof on hypotheses.

3. It is not difficult to show that 2 U L iff a < γ and β < δ.
γ hδ

4. The degree of a wff is simply the number of occurrences of connectives in that wff.
The rank of a wff eliminated in an instance of mix depends on the number of steps
leading back to the points at which the eliminated wff is first introduced in the proofs
of the premisses of the instance. For a definition of rank, see Gentzen [3].

5. As far as I know, a proof of this result has not been published. But the methods of the
second chapter of Fitch's [2] can easily be used to establish the equivalence of F and
HF.

6. The strategy and terminology of this section is modeled on that of Belnap-Wallace [1],
pp. 24-29.

7. The idea behind this lemma is due to Kripke. His abstract [6] announces a result ob-
tained by a similar method.
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