DECISION PROBLEM IN THE CLASSICAL LOGIC

EUGEN MIHĂILESCU

The important problem of decision in mathematical logic has been studied by many authors; it was resolved for propositional calculus. For functional calculus, Church demonstrated that there was no model by which we can determine whether a well-formed formula of the predicate calculus is true or false.

In classical logic a formula " α " is a tautology if for the propositional variables:

$$
p_{1}, p_{2}, \ldots, p_{n}
$$

in " α " we can make correspond the truth values:

$$
a_{1}, a_{2}, \ldots, a_{n}
$$

(where each of " a_{i} " are constant, $\mathbf{v}=$ true, and $\mathbf{f}=$ false) and the substitution of the variable p_{i} by a_{i} conduct to " α " true). In our paper we shall say that " α " is a tautology if its logical value is \mathbf{v}, where logical value of a formula means the result which we get making the substitution of the propositional variables by \mathbf{v} or f in all possible ways and making all the operations connected.

The purpose of this article is to present a new method for the resolution of the decision problem, a method which is an immediate result of our studies on normal forms in propositional calculus. The work is treated in this way: I. For forms made with equivalence. II. For forms made with equivalence, negation, reciprocity. III. For forms made with equivalence, reciprocity and alternation. IV. For a general form of classical logic.

For all these we use the notation of J. Łukasiewicz. The idea of form is defined in this way:

1. Each propositional variable is a form;
2. If " α " is a form and " F " is a unary functor, then " $F \alpha$ " is a form;
3. If " α " and " β " are forms and " F " is a binary functor, then " $F \alpha \beta$ " is a form. The set of the forms made by the means of the functors $F_{1}, F_{2}, \ldots, F_{n}$ is to be written: $\mathbf{S}\left(F_{1}, F_{2}, \ldots, F_{n}\right)$. For simplicity, we denote by S the set of all forms from classical logic. Two forms ' α " and " β " are equipollent

$$
\alpha \sim \beta
$$

if $E \alpha \beta$ is a tautology.
§1. In the work [1] we considered the axioms:
A1. EEpqEqp
A2. EEEpqrEpEqr,
and we proved that the set of consequences is non-contradictory and complete. The rules of deduction are: 1. The rule of substitution; and 2. The "modus ponens" rule.

$$
\begin{aligned}
& \vdash \alpha \\
& \vdash \underline{E \alpha \beta} \\
& \vdash \beta
\end{aligned}
$$

Remark: If " α " is a tautology then the form " β ", which we obtain applying the rule of substitution of the "modus ponens"' rule from ' α '" is also a tautology. If " β " is not a tautology then " α " also is not a tautology.

The axioms $A 1-A 2$ being tautologies, it means that all the consequences (theses) which we obtain by application of rules of deduction are also tautologies.

The normal forms of the system: Each form $\alpha \varepsilon S(E)$ which contains $2 n$ propositional variables $p_{i}, q_{i}(i=1,2, \ldots, n)$ admits the normal form

$$
\mathbf{N}_{1}(E)=E^{n-1} E p_{1} q_{1} E p_{2} q_{2} \ldots E E p_{n} q_{n}
$$

Each $\alpha \varepsilon S(E)$ which contains $2 n+1$ propositional variables $p_{i} ; q_{j}(i=1$, $2, \ldots, n ; j=1,2, \ldots, n+1$) admits the normal form

$$
\mathbf{N}_{2}(E)=E^{n-1} E p_{1} q_{1} E p_{2} q_{2} \ldots E E p_{n} E q_{n} q_{n+1}
$$

in which the letters p_{i}, q_{i} may be permuted and $\alpha \sim \mathbf{N}_{1}(E) ; \alpha \sim \mathbf{N}_{2}(E)$.
Remark 2. If: $\alpha \sim \beta$ and $\alpha=\mathbf{v}$ then also $\beta=\mathbf{v}$, and $\alpha=\mathbf{f}$ then also $\beta=\mathbf{f}$.

Indeed: If $\alpha \sim \beta$ then $E \alpha \beta=\mathbf{v}$ and therefore if $E \mathbf{v} \beta=\mathbf{v}$, then $\beta=\mathbf{v}$, and if $E f \beta=\mathbf{v}$, then $\beta=\mathbf{f}$.

Theorem I. The form ' α " is a tautology only if each propositional variable of " α " occurs an even number of times.

We show that each form " α " which contains each propositional variable an even number of times is a tautology. The form " α " admits indeed the normal form:

$$
\mathbf{N}_{1}(E)=E^{\sum_{i}^{n} h_{i}-1}\left(E p_{1} p_{1}\right)^{h_{1}}\left(E p_{2} p_{2}\right)^{h_{2}} \ldots \ldots\left(E p_{n} p_{n}\right)^{h_{n}}
$$

and

$$
\alpha \sim \mathbf{N}_{1}(E)
$$

But $\mathbf{N}_{\mathbf{2}}(E)$ is a tautology because:

$$
E p_{i} p_{i}=\mathbf{v} \quad(i=1,2, \ldots, n)
$$

and therefore:

$$
E \sum_{j}^{n} h_{i}-1 \quad(\mathbf{v})^{h_{1}}(\mathbf{v})^{h_{2}} \ldots \ldots(\mathbf{v})^{h_{n}}=\mathbf{v}
$$

and therefore $\alpha=\mathbf{v}$, that is a tautology.
Now let us show that other forms $\alpha \varepsilon \mathbf{S}(E)$ having at least one propositional variable which occurs an odd number of times, it is not a tautology. Indeed take the variable p_{n+1} of " α ", which occurs $2 h+1$ times.

We have a normal form:

$$
\begin{aligned}
\mathbf{N}_{2}(E) & =E^{\sum_{1}^{n} h_{i}}\left(E p_{1} p_{1}\right)^{h_{1}}\left(E p_{2} p_{2}\right)^{h_{2}} \ldots \ldots\left(E p_{n} p_{n}\right)^{h_{n}}\left(E p_{n+1} p_{n+1}\right)^{h_{n+1}} p_{n+1} \\
& =E \omega p_{n+1}
\end{aligned}
$$

where

$$
\omega=E^{\sum_{1}^{n+1} h_{i}}\left(E p_{1} p_{1}\right)^{h_{1}}\left(E p_{2} p_{2}\right)^{h_{2}} \ldots \ldots\left(E p_{n} p_{n}\right)^{h_{n}}\left(E p_{n+1} p_{n+1}\right)^{h_{n+1}}
$$

is a tautology. Then we have $\omega=\mathbf{v}$ and therefore

$$
E \omega p_{n+1}=E \mathbf{v} p_{n+1}=\left\{\begin{array}{lll}
\mathbf{v} & \text { if } & p_{n+1}=\mathbf{v} \\
\mathbf{f} & \text { if } & p_{n+1}=\mathbf{f}
\end{array}\right.
$$

and therefore:

$$
\mathbf{N}_{\mathbf{2}}(E)=\left\{\begin{array}{lll}
\mathbf{v} & \text { if } & p_{n+1}=\mathbf{v} \\
\mathbf{f} & \text { if } & p_{n+1}=\mathbf{f}
\end{array}\right.
$$

and:

$$
\alpha=\left\{\begin{array}{lll}
\mathbf{v} & \text { if } \quad p_{n+1}=\mathbf{v} \\
\mathbf{f} & \text { if } & p_{n+1}=\mathbf{f}
\end{array}\right.
$$

That is, " α " is not a tautology.
Conclusion. Each form $\alpha \varepsilon \mathbf{S}(E)$ is a decision only if each propositional variable of " α " is included by an even number (we shall call a tautological formula a decision).
§2. In the work [2] we take the axiomatic system $L(E, R, N)$ given by the axioms:

A1. EEpqEqp
A2. EEEpqrEpEqr,
A3. EERpqRrsEEpqErs,
A4. ENpERppp,
in which the functors E, R and N are defined by the matrix

p, q	$E p q$	$R p q$	$N p$
\mathbf{f}, \mathbf{f}	\mathbf{v}	\mathbf{f}	\mathbf{v}
$\mathbf{v , f}$	\mathbf{f}	\mathbf{v}	
\mathbf{f}, \mathbf{v}	\mathbf{f}	\mathbf{v}	
$\mathbf{v , v}$	\mathbf{v}	\mathbf{f}	\mathbf{f}.

We have demonstrated that this system is non-contradictory and incomplete.

The normal forms of the system. Each form: $\alpha \varepsilon \mathbf{S}(E, R, N)$ which includes $2 n$ propositional variables $p_{i}, q_{i}(i=1,2, \ldots, n)$ admits a normal form of the type

$$
\mathbf{N}_{1}(E, R)=E^{n-1} E p_{1} q_{1} E p_{2} q_{2} \ldots E_{p n} q_{n}
$$

if the number of the functors " R " and ' N " which are included in " α " is an even number, and a normal form of the type

$$
\mathbf{N}_{2}(E, R)=R^{n-1}\left(R p_{1} q_{1}\right)\left(R p_{2} q_{2}\right) \ldots \ldots\left(R p_{n} q_{n}\right)
$$

if the functors " R " and ' N ' appear an odd number of times. The form ' α " is equipollent with $\mathrm{N}_{1}(E, R)$, respectively, $\mathrm{N}_{2}(E, R)$, and the letters p_{i}, q_{i} may be permuted. Each form $\alpha \varepsilon S(E, R, N)$ which contains $2 n+1$ variables $p_{i}, q_{j}(i=1,2, \ldots, n ; j=1,2, \ldots, n, n+1)$ admits a normal form of the type

$$
\mathrm{N}_{3}(E, R)=E^{n-1}\left(E p_{1} q_{1}\right)\left(E p_{2} q_{2}\right) \ldots\left(E p_{n} q_{n+1}\right)
$$

if " α " includes an even number of the functors R and N and a normal form of the type

$$
\mathbf{N}_{\mathbf{4}}(E, R)=R^{n-1}\left(R p_{1} q_{1}\right)\left(R p_{2} q_{2}\right) \ldots\left(R p_{n} R q_{n} q_{n+1}\right)
$$

if " α " contains an odd number of the functors " R " and " N '"; $N_{3}(E, R)$ being equipollent with the form " α " and the letters p_{i}, q_{j} being able to be transferred.

Theorem II. A form " α " is a tautology only if each propositional variable occurs an even number of times and the number of the functors ' R '" and ' N ' is also an even number.

Indeed, if " α " contains each propositional variable an even number of times and the number of the functors " R " and ' N " is also an even number, then ' α " admits the normal form

$$
\mathbf{N}_{1}(E, R)=E^{\sum_{1}^{n} h_{i}-1}\left(E p_{1} p_{1}\right)^{h_{1}}\left(E p_{2} p_{2}\right)^{h_{2}} \ldots \ldots\left(E p_{n} p_{n}\right)^{h_{n}}
$$

which is a tautology according to Theorem 1. If " α " contains each propositional variable an even number of times, and the number of functors " R " and ' N " is an odd number, then " α " admits the normal form

$$
\mathrm{N}_{2}(E, R)=R^{\sum_{1}^{n} h_{i}-1}\left(R p_{1} p_{1}\right)^{h_{1}}\left(R p_{2} p_{2}\right)^{h_{2}} \ldots \ldots\left(R p_{n} p_{n}\right)^{h_{n}}
$$

which is not a tautology, i.e. $\mathbf{N}_{\mathbf{2}}(E, R)=\mathbf{f}$. Indeed, the form

$$
E \mathbf{N}_{\mathbf{2}}(E, R) R p p
$$

is a tautology according to the preceding case. But:

$$
R p p=\mathbf{f} \text { and } \mathbf{N}_{\mathbf{2}}(E, R)=R p p=\mathbf{f}
$$

and therefore $\mathbf{N}_{\mathbf{2}}(E, R)=\mathbf{f}$ and $\alpha=\mathbf{f}$, that is " α " is not a tautology.
If " α " contains at least one propositional variable which occurs an odd number of times then " α " is not a tautology. We have two subcases:

1. The number of the functors " R " and " N '" is an even number. In this case " α " admits the normal form
$\mathrm{N}_{3}(E, R)=E^{\sum_{1}^{n} h_{i}}\left(E p_{1} p_{1}\right)^{h_{1}}\left(E p_{2} p_{2}\right)^{h_{2}} \ldots \ldots\left(E p_{n+1} p_{n+1}\right)^{h_{n+1}} p_{n+1}$
then according to Theorem I " α " is not a tautology.
2. The number of the functors ' R '" and " N '' is an odd number. In this case the form ' α " admits the normal form

$$
\mathrm{N}_{1}(E, R)=R^{\sum_{1}^{n+1} h_{i}}\left(R p_{1} p_{1}\right)^{h_{1}}\left(R p_{2} p_{2}\right)^{h_{2}} \ldots \ldots\left(R p_{n+1} p_{n+1}\right)^{h_{n+1}} p_{n+1}=R \omega p_{n+1}
$$

where

$$
\omega=R^{\substack{n+1 \\ \sum_{1} h_{i}-1}}\left(R p_{1} p_{1}\right)^{h_{1}}\left(R p_{2} p_{2}\right)^{h_{2}} \ldots \ldots\left(R p_{n+1} p_{n+1}\right)^{h_{n+1}}=\mathbf{f}
$$

It follows

$$
\mathbf{N}_{1}(E, R)=R \omega p_{n+1}=R \mathbf{f} p_{n+1}=\left\{\begin{array}{lll}
\mathbf{v} & \text { if } & p_{n+1}=\mathbf{f} \\
\mathbf{f} & \text { if } & p_{n+1}=\mathbf{v}
\end{array}\right.
$$

and therefore $\mathrm{N}_{1}(E, R)$ is not a tautology and therefore " α " is not a tautology.

Conclusion. Each form $\alpha \varepsilon S(E, R, N)$ is a decision only if each propositional variable of " α " occurs an even number of times and the number of the functors ' N " and " R " is also an even number.
§3. In [3] we considered the axioms:
A1. EEpqEqp
A2. EEEpqrEpEqr
A3. EKKpqrKKqpr
A4. EKKpqrKpKqr
A5. EKKppqKpq
A6. EApqEEpqKpq
A7. EARpqrEEAprAqrr.
This system is non-contradictory and incomplete. The following forms

1. EKRpqrRKprKqr
2. EKEpqrEEKprKqrr
3. EAEpqrEAprAqr
are theses (tautologies). Indeed:
4. KRpqr \sim EERpqrARpqr \sim EERpqrEEAprAqrr \sim EERpqEAprAqr
\sim EERpqEEprKprEEqrKqr \sim RE ${ }^{6}$ prqrpqKprKqr \sim RKprKqr
that is the form 1. (We used the thesis EKpqEEpqApq of sub-system $\mathrm{L}(E, K, A))$.
5. We have:

AEpqr $\sim E E E p q r K E p q r \sim E^{3} p q r E^{2} K p r K q r r \sim E^{2} p q E K p r K q r$
$\sim E E p q E E E p r A p r E q r A q r \sim E^{7} p p q q r r A p r A q r \sim E A p r A q r$
and therefore the form 3.
3. We have:

KRRpqrr \sim RKRpqrKrr \sim RRKprKqrKrr~ EEKprKqrKrr~ EEKprKqrr and therefore form 2.

The functors " E ", " R ", " A ", ' K " are defined by the matrix:

p, q	$K p q$	$A p q$	$E p q$	$R p q$
\mathbf{f}, \mathbf{f}	\mathbf{f}	\mathbf{f}	\mathbf{v}	\mathbf{f}
$\mathbf{v , f}$	\mathbf{f}	\mathbf{v}	\mathbf{f}	\mathbf{v}
\mathbf{f}, \mathbf{v}	\mathbf{f}	\mathbf{v}	\mathbf{f}	\mathbf{v}
$\mathbf{v ,} \mathbf{v}$	\mathbf{v}	\mathbf{v}	\mathbf{v}	\mathbf{f}

Theorem III. Each form $\alpha \varepsilon \mathbf{S}(K)$ which contains $\sum_{i=1}^{n} h_{i}$ propositional variables $p_{i}(i=1,2, \ldots, n)$ each letter p_{i} being included respectively h_{i} times admits a normal form of the type:

$$
\mathbf{N}(K)=K^{n-1} p_{1} p_{2} \ldots p_{n}
$$

and in this form all the letters p_{i} can be permuted (cf. [4]).
Theorem IV. Each form $\alpha \varepsilon \mathbf{S}(A)$ which contains $\sum_{i=1}^{n} h_{i}$ propositional variables $p_{i}(i=1,2, \ldots, n)$ each letter p_{i} being included respectively h_{i} times admits the normal form of the type

$$
\mathbf{N}(A)=A^{n-1} p_{1} p_{2} \ldots p_{n}
$$

and in this form all letters p_{i} can be transferred.
Theorem V. Each form $\alpha \in \mathbf{S}(E, K, A, R)$ admits a normal form of the type:

$$
\mathbf{N}(E, R, A)=E^{k} R^{h} \alpha_{1} \alpha_{2} \ldots \alpha_{h+k+1}
$$

in which $\alpha_{i} \varepsilon \boldsymbol{S}(A)$

$$
\alpha \sim \dot{\mathbf{N}}(E, R, A)
$$

Theorem VI. Two forms $\alpha, \beta \varepsilon \mathbf{S}(A)$ are equipolent if each variable p of of " α " is a variable of " β " and vice versa.

Theorem VII. Each form $\alpha \varepsilon \mathbf{S}(E, R, K, A)$ is a tautology only if it admits the normal form of the type

$$
* \mathrm{~N}(E, A)=E^{\sum_{1}^{h} 2 n_{i}-1}\left(\alpha_{1}^{1} \alpha_{2}^{1} \ldots \alpha_{2 n_{1}}^{1}\right)\left(\alpha_{1}^{2} \alpha_{2}^{2} \ldots \alpha_{2 n_{2}}^{2}\right) \ldots \ldots\left(\alpha_{1}^{h} \alpha_{2}^{h} \ldots \alpha_{2 n_{h}^{h}}^{h}\right)
$$

in which $\alpha_{1}^{i} \sim \alpha_{2}^{i} \sim \ldots \ldots \sim \alpha_{2 n_{i}}^{i} \quad(i=1,2, \ldots, n)$
We shall prove that if " α " permits the normal form $* \mathrm{~N}(E, A)$ then it is a tautology and if ' α " does not permit a normal form of the type $* \mathbf{N}(E, A)$ then it is not a tautology.

Case 1. " α " admits the normal form $* \mathbf{N}(E, A)$. But according to Theorem IV, the forms

$$
\alpha_{1}^{i} \sim \alpha_{2}^{i} \sim \ldots \sim \alpha_{2 n_{i}}^{i} \sim \mathbf{N}_{i}(A) \quad(i=1,2, \ldots, h)
$$

admit the normal forms $\mathbf{N}_{i}(A)$ and:

$$
\alpha_{1}^{i} \sim \alpha_{2}^{i} \sim \ldots \sim \alpha_{2 n_{i}} \sim \mathbf{N}_{i}^{2}(A) \quad(i=1,2, \ldots, h)
$$

It follows that

$$
* \mathbf{N}(E, A) \sim E^{\sum_{1}^{h} 2 n_{i}-1}\left[\mathbf{N}_{1}(A)\right]^{2 n_{1}}\left[\mathbf{N}_{2}(A)\right]^{2 n_{2}} \ldots \ldots\left[\mathbf{N}_{h}(A)\right]^{2 n h}
$$

and

$$
\alpha \sim * \mathbf{N}(E, A) .
$$

But the form
(1) $E^{\sum_{1}^{h} 2 n_{i}-1}\left(p_{1}\right)^{2 n_{2}}$
is a tautology. We make in the form (1) the following substitution:

$$
p_{i} / \mathbf{N}_{i}(A) \quad(i=1,2, \ldots, h)
$$

and we obtain the form " ω ". It follows that " ω " is a tautology and it is " α ".

Case 2. The form " α " does not admit the normal form * $\mathbf{N}(E, A)$.
It means that " α " admits one of the following normal forms
I. $\mathbf{N}(E, A)=E^{M} \prod_{i=1}^{h} \prod_{j=1}^{2 n_{i}} \alpha_{j}^{i} \prod_{l=1}^{m} \beta_{l} . \quad\left[\alpha_{j}^{i}, \beta_{l} \varepsilon \mathbf{S}(A)\right]$
and in which

$$
M=\sum_{i=1}^{h} 2 n_{i}+m-1
$$

The forms $\prod_{j=1}^{2 n_{i}} \alpha_{j}(i=1,2, \ldots, n)$ are equipolent and the forms $\beta_{1}, \beta_{2}, \ldots, \beta_{i}$ are not equipolent.
II. $\mathbf{N}(R, A)=R^{\sum_{1}^{h} 2 n_{i}-1}\left(\alpha_{1}^{1} \alpha_{2}^{1} \ldots \alpha_{2 n_{1}}^{1}\right) \ldots\left(\alpha_{1}^{h} \alpha_{2}^{h} \ldots \alpha_{2 n_{h}}^{h}\right)$

$$
\alpha_{1}^{i} \sim \alpha_{2}^{i} \sim \ldots \sim \sim \alpha_{2 n_{i}}^{i} \quad(i=1,2, \ldots, h)
$$

III. $\mathbf{N}(E, R, A)=E^{M} R^{N}\left(\alpha_{1}^{1} \alpha_{2}^{1} \ldots \alpha_{2 n_{1}}^{1}\right) \ldots\left(\alpha_{1}^{h} \alpha_{2}^{h^{\prime}} \ldots \alpha_{2 n_{h}}^{h}\right)\left(\beta_{1} \beta_{2} \ldots \beta_{m}\right)$
in which

$$
\begin{gathered}
M+N=\sum_{i=1}^{h} 2 n_{i}+m-1 \\
\alpha_{1}^{i} \sim \alpha_{2}^{i} \sim \ldots \sim \alpha_{2 n_{i}}^{i} \quad(i=1,2, \ldots, h)
\end{gathered}
$$

and the forms $\beta_{1}, \beta_{2}, \ldots, \beta_{m}$ are not mutually equipolent.
I. Let

$$
\omega=E^{\sum_{1}^{h} 2 n_{i}}\left(\alpha_{1}^{1} \alpha_{2}^{1} \ldots \alpha_{2 n_{1}}^{1}\right)\left(\alpha_{2}^{2} \alpha_{2}^{2} \ldots \alpha_{2 n_{2}}^{2}\right) \ldots\left(\alpha_{1}^{h} \alpha_{2}^{h} \ldots \alpha_{2 n_{h}}^{h}\right)
$$

We have

$$
\mathbf{N}(E, A)=E \omega E^{m-1} \beta_{1}, \beta_{2}, \ldots \beta_{m}
$$

But ' ω " is a tautology and according to the "modus ponens" rule, it follows that:

$$
\gamma=E^{m-1} \beta_{1} \beta_{2} \ldots \beta_{m}
$$

By the first remark $\mathbf{N}(E, A)$ is not a tautology if " α " is not. We have two cases:

1. $m=2 k+1$. In this case replacing all the propositional variables in the form " β_{i} " by " p " and according to the formula $A p p \sim p$ we have

$$
\gamma^{\prime}=E^{2 k}(p)^{2 k} p=E \mathbf{v} p=\left\{\begin{array}{lll}
\mathbf{v} & \text { if } & p=\mathbf{v} \\
\mathbf{f} & \text { if } & p=\mathbf{f}
\end{array}\right.
$$

and therefore " γ '" is not a tautology, also " γ " and $\mathbf{N}(E, A)$ and " α ".
2. $m=2 k$. Let be $p_{1} \varepsilon \beta_{1}$ and $p_{1} \xi \beta_{2}$. We make the substitution p_{1} by q and the other propositional variables by p. According to the formulas

$$
A p p \sim p ; \quad A A p p q \sim A p q ; \quad A^{2 k}(p)^{2 k} q \sim A p q
$$

it follows that:

$$
E^{2 k}(A p q)^{2 k} q \sim q=\left\{\begin{array}{lll}
\mathbf{v} & \text { if } & q=\mathbf{v} \\
\mathbf{f} & \text { if } & q=\mathbf{f}
\end{array}\right.
$$

whence we have

$$
\gamma^{\prime}=E^{2 k+1}(A p q)^{2 k+1} q \sim E A p q q=\left\{\begin{array}{lll}
\mathbf{v} & \text { if } & p=\mathbf{f}, q=\mathbf{f} \\
\mathbf{v} & \text { if } & p=\mathbf{v}, q=\mathbf{v} \\
\mathbf{v} & \text { if } & p=q, q=\mathbf{v} \\
\mathbf{f} & \text { if } & p=\mathbf{v}, q=\mathbf{f}
\end{array}\right.
$$

and therefore " γ '" is not a tautology, also " γ " and $\mathbf{N}(E, A)$ and " α ".
II. ' α '" permits the form $\mathbf{N}(R, A)$.

According to the theorem IV, we have

$$
\alpha_{i}^{j} \sim \mathbf{N}_{j}(A) \quad(j=1,2, \ldots, h)
$$

and therefore

$$
\mathbf{N}(R, A)=R^{\sum_{1}^{h} 2 n_{i}-1}\left[\mathbf{N}_{1}(A)\right]^{2 n_{1}}\left[\mathbf{N}_{\mathbf{2}}(A)\right]^{2 n_{2}} \ldots\left[\mathbf{N}_{h}(A)\right]^{2 n h}
$$

But

$$
E \mathbf{N}(R, A) R p p
$$

is a tautology, therefore

$$
\mathbf{N}(R, A) \sim R p p
$$

and $\mathbf{N}(E, A)$ is not a tautology and also " α ".
III. ' α ' admits the normal form $\mathbf{N}(E, R, A)$. In this case N is an odd number. We have two possibilities:

1. $M=2 k$. Then we have:

$$
\begin{aligned}
\mathbf{N}(E, R, A)= & E^{2 k} R^{N}\left(a_{1}^{1} \alpha_{2}^{2} \ldots \ldots \alpha_{2 n_{1}}^{1}\right)\left(\alpha_{1}^{2} \alpha_{2}^{2} \ldots \alpha_{2 n_{2}}^{2}\right) \ldots\left(\alpha_{1}^{h} \alpha_{2}^{h} \ldots \alpha_{2 n_{h}}^{h}\right) \\
& \left(\beta_{1} \beta_{2} \ldots \ldots \beta_{l}\right) \sim R^{2 k+N}\left(\alpha_{1}^{1} \alpha_{2}^{1} \ldots \ldots \alpha_{2 n_{1}}^{1}\right)\left(\alpha_{1}^{2} \alpha_{2}^{2} \ldots \alpha_{2 n_{2}}^{2}\right) \ldots . \\
& \left(\alpha_{1}^{h} \alpha_{2}^{h} \ldots \alpha_{2 n_{h}}^{h}\right)\left(\beta_{1} \beta_{2} \ldots \beta_{l}\right)
\end{aligned}
$$

in which l is an even number because $2 k+N$ is an odd number. It follows that $N+2 k+1$ is an even number and therefore we have

$$
\begin{gathered}
\mathbf{N}(E, R, A) \sim E^{N+2 k+1}\left(\alpha_{1}^{1} \alpha_{2}^{2} \ldots \alpha_{2 n_{1}}^{1}\right)\left(\alpha_{1}^{2} \alpha_{2}^{2} \ldots \alpha_{2 n_{2}}^{2}\right) \ldots\left(\alpha_{1}^{h} \alpha_{2}^{h} \ldots \alpha_{2 n_{h}}^{h}\right) \\
\left(\beta_{1} \beta_{2} \ldots \beta_{l-2} R \beta_{l-1} \beta_{l}\right) \sim E \gamma E^{l-2}\left(\beta_{1} \beta_{2} \ldots \beta_{l-2}\right) R \beta_{l-1} \beta_{l}
\end{gathered}
$$

in which

$$
\gamma=E^{\sum_{1}^{h} 2 n_{i}-1}\left(\alpha_{1}^{1} \alpha_{2}^{1} \ldots \alpha_{2 n_{1}}^{1}\right)\left(\alpha_{1}^{2} \alpha_{2}^{2} \ldots \alpha_{2 n_{2}}^{2}\right) \ldots\left(\alpha_{1}^{h} \alpha_{2}^{h} \ldots \alpha_{2 n_{h}}^{h}\right)
$$

is a tautology, and therefore, according to the 'modus ponens" rule, we shall deduce

$$
\gamma^{\ell}=E^{l-2}\left(\beta_{1} \beta_{2} \ldots \beta_{l-2}\right) R \beta_{l-1} \beta_{l}
$$

Let be $p_{1} \varepsilon \beta_{1}$ and $p_{1} \not \beta_{2}$. We make the substitution for p by q and for the other variables by p. Then we have

$$
E^{l-\mathbf{2}}(A p q)^{2 n}(p)^{l-2 n-2} R p p \sim E p R p p=E p \mathbf{f}=\left\{\begin{array}{lll}
\mathbf{f} & \text { if } & p=\mathbf{v} \\
\mathbf{v} & \text { if } & p=\mathbf{f}
\end{array}\right.
$$

whence we have

$$
\gamma^{\prime \prime}=E^{l-2}(A p q)^{2 n+1}(p)^{l-2 n-2} R p p \sim E A p q R p p=E A p q \mathbf{f}=\left\{\begin{array}{lll}
\mathbf{v} & \text { if } & p=\mathbf{f} ; q=\mathbf{f} \\
\mathbf{f} & \text { if } & p=\mathbf{v} ; q=\mathbf{v} \\
\mathbf{f} & \text { if } & p=\mathbf{f} ; q=\mathbf{v} \\
\mathbf{f} & \text { if } & p=\mathbf{v} ; q=\mathbf{f}
\end{array}\right.
$$

and therefore " γ "'" is not a tautology and also " γ "", $\mathbf{N}(E, R, A)$ and " α ".
2. $M=2 k+1$. In this case $M+N$ is an even number and therefore h is an odd number. We make the substitution of all propositional variables by p and there results a form of the type

$$
\gamma=E R^{M+N-1}(p)^{2 n_{1}}(p)^{2 n_{2}} \ldots(p)^{2 n_{h}}(p)^{l-1} p \sim E R p p p=\left\{\begin{array}{lll}
\mathbf{v} & \text { if } & p=\mathbf{f} \\
\mathbf{f} & \text { if } & p=\mathbf{v}
\end{array}\right.
$$

and therefore is not a tautology and also $\mathbf{N}(E, R, A)$ and " α ".
Conclusion. Each form $\alpha \varepsilon S(E, R, A, K)$ is a decision only if " α " admits the normal form

$$
* \mathbf{N}(E, A)=E^{\sum_{1}^{h} 2 n_{i}-1}\left(\alpha_{1}^{1} \alpha_{2}^{1} \ldots \alpha_{2 n_{1}}^{1}\right)\left(\alpha_{1}^{2} \alpha_{2}^{2} \ldots \alpha_{2 n_{2}}^{2}\right) \ldots\left(\alpha_{1}^{h} \alpha_{2}^{h} \ldots \alpha_{2 n_{h}}^{h}\right)
$$

where $\alpha_{1}^{i} \varepsilon S(A)$ and $\alpha_{1}^{i} \sim \alpha_{2}^{i} \sim \ldots \sim \alpha_{2 n_{i}}^{i} \quad(i=1,2, \ldots, h)$
§4. We consider the functors of the classical logic defined as follows:

p, q	$A p q$	$K p q$	$C p q$	$E p q$	$R p q$	$D p q$	$H p q$	$B p q$
\mathbf{f}, \mathbf{f}	\mathbf{f}	\mathbf{f}	\mathbf{v}	\mathbf{v}	\mathbf{f}	\mathbf{f}	\mathbf{f}	\mathbf{v}
$\mathbf{v , f}$	\mathbf{v}	\mathbf{f}	\mathbf{f}	\mathbf{f}	\mathbf{v}	\mathbf{v}	\mathbf{f}	\mathbf{v}
\mathbf{f}, \mathbf{v}	\mathbf{v}	\mathbf{f}	\mathbf{v}	\mathbf{f}	\mathbf{v}	\mathbf{f}	\mathbf{v}	\mathbf{f}
$\mathbf{v ,} \mathbf{v}$	\mathbf{v}	\mathbf{v}	\mathbf{v}	\mathbf{v}	\mathbf{f}	\mathbf{f}	\mathbf{f}	\mathbf{v}

$M p q$	$G p q$	$\bar{M} p q$	$\bar{G} p q$	$\bar{A} p q$	$\bar{K} p q$	$V p q$	$F p q$	$N p$
\mathbf{v}	\mathbf{f}	\mathbf{f}	\mathbf{v}	\mathbf{v}	\mathbf{v}	\mathbf{v}	\mathbf{f}	\mathbf{v}
\mathbf{f}	\mathbf{f}	\mathbf{v}	\mathbf{v}	\mathbf{f}	\mathbf{v}	\mathbf{v}	\mathbf{f}	
\mathbf{v}	\mathbf{v}	\mathbf{f}	\mathbf{f}	\mathbf{f}	\mathbf{v}	\mathbf{v}	\mathbf{f}	
\mathbf{f}	\mathbf{v}	\mathbf{v}	\mathbf{f}	\mathbf{f}	\mathbf{f}	\mathbf{v}	\mathbf{f}	\mathbf{f}

The system L is the set of consequences of the axioms of the system $\mathrm{L}(E, R, A, K)$ and of the axioms

A8. EACpqrAEApqqr
A9. EADpqrARApqqr
A10. EAHpqrARApqpr
A11. EAGpqrAEEppqr
A12. EAMpqrAERpqqr
A13. EANprAERpppr
A14. EA $\bar{A} p q r A N A p q r$
A15. EA $\bar{K} p q r A N K p q r$
A16. EA $\bar{G} p q r A N G p q r$
A17. EA $\bar{M} p q r A N M p q r$
A18. EABpqrAEApqpr
For demonstration of the theorems we use the following theses:
The forms

1. EEAprAqrAEpqr

2. $E A p p p$
are theses of the system $L(E, R, A, K)$
$1 p / C p q, q / E A p q q, * E A 8-3 r / E C p q E A p q q$
3. $A E C p q E A p q q E C p q E A p q q$
$2 p / E C p q E A p q q$ * E3-4
4. $E C p q E A p q q$
$1 p / D p q, q / R A p q q * E A 9-5 r / E D p q R A p q q$
5. $A E D p q R A p q q E D p q R A p q q$
$2 p / E D p q R A p q q * E 5-6$
6. $E D p q R A p q q$
$1 p / H p q, q / R A p q p * E A 10-7 r / E H p q R A p q p$
7. $A E H p q R A p q p E H p q R A p q p$.
$2 p / E H p q R A p q p * E 7-8$
8. $E H p q R A p q p$.
$1 p / B p q, q / E A p q p * E A 18-9 r / E B p q E A p q p$
9. $A E B p q E A p q p E B p q E A p q p$
$2 p / E B p q E A p q p * E 9-10$
10. $E B p q E A p q p$
$1 p / G p q, q / E E p p q * E A 11-11 r / E G p q E E p p q$
11. $A E G p q E E p p q E G p q E E p p q$
$2 p / E G p q E E p p q * E 11-12$
12. $E G p q E E p p q$
$1 p / M p q, q / E R p q q * E A 12-13 r / E M p q E R p q q$
13. $A E M p q E R p q q E M p q E R p q q$
$2 p / E M p q E R p q q * 13-14$
14. $E M p q E R p q q$
$1 p / N p, q / E R p p p * E A 13-15 r / E N p E R p p p$
15. AENpERpppENpERppp

2p/ENpERppp * E15-16
16. $E N p E R p p p$
$1 p / A p q, q / N A p q * E A 14-17 r / E \bar{A} p q N A p q$
17. $A E \bar{A} p q N A p q E \bar{A} p q N A p q$
$2 p / E \bar{A} p q N A p q * E 17-18$
18. $E \bar{A} p q N A p q$
$1 p / \bar{K} p q, q / N K p q * E A 15-19 r / E \bar{K} p q N K p q$
19. $A E \bar{K} p q N K p q E \bar{K} p q N K p q$
$2 p / E \bar{K} p q N K p q * E 19-20$
20. $E \bar{K} p q N K p q$
$1 p / \bar{G} p q, q / N G p q * E A 16-21 r / E \bar{G} p q N G p q$
21. $A E \bar{G} p q N G p q E \bar{G} p q N G p q$
$2 p / E \bar{G} p q N G p q$ * E21-22
22. $E \bar{G} p q N G p q$.
$1 p / \bar{M} p q, q / N M p q * E A 17-23 r / E \bar{M} p q N M p q$
23. $A E \bar{M} p q N M p q E \bar{M} p q N M p q$
$2 p / E \bar{M} p q N M p q * E 23-24$
24. $E \bar{M} p q N M p q$

According to these theses we have the following forms
$\begin{array}{rlr}C p q & \sim E A p q q & \text { (I) } \\ D p q & \sim R A p q q & \text { (II) } \\ H p q q & \sim R A p q p & \text { (III) } \\ B p q & \sim E A p q p & \text { (IV) } \\ G p q & \sim E E p p q & \text { (V) } \\ M p q & \sim E R p q q & \text { (VI) } \\ N p & \sim E R p p p & \text { (VII) } \\ \bar{A} p q & \sim N A p q \sim E R A p q A p q A p q & \text { (VIII) } \\ \bar{K} p q & \sim N K p q \sim E R K p q K p q K p q & \text { (IX) } \\ \bar{G} p q & \sim N G p q \sim E R G p q G p q G p q & \text { (X) } \\ \bar{M} p q & \sim N M p q \sim E R M p q M p q M p q & \text { (XI) }\end{array}$
and therefore each form $\gamma \varepsilon S$ is an equipolent with a form of the type $E \alpha \beta$ or $R \alpha \beta$.

We denote by S the set of forms made with all the functors of classical logic.

Theorem VIII. Each form α is equipolent with a form $\beta \varepsilon \mathbf{S}(E, R, A)$.
To demonstrate this theorem we use the theses:
a. EEpqEEprEqr
b. EEpqERprRqr
which are the theses of the system $\mathbf{N}(E, R)$
$a p / C \alpha \beta, q / E A \alpha \beta \beta, r / \gamma * E 4 p / \alpha, q / \beta-a_{1}$
$\mathrm{a}_{1} . E E C \alpha \beta \gamma E E A \alpha \beta \beta \gamma$
$b p / C \alpha \beta, q / E A \alpha \beta \beta, r / \gamma * E 4 p / \alpha, q / \beta-b_{1}$
$\mathrm{b}_{1} . E R C \alpha \beta \gamma R E A \alpha \beta \beta \gamma$
$a p / D \alpha \beta, q / R A \alpha \beta \beta, r / \gamma * E 6 p / \alpha, q / \beta-a_{2}$
a_{2}. $E E D \alpha \beta \gamma E R A \alpha \beta \beta \gamma$
$b p / D \alpha \beta, q / R A \alpha \beta \beta, r / \gamma * E 6 p / \alpha, q / \beta-b_{2}$
b_{2}. $E R D \alpha \beta \gamma R R A \alpha \beta \beta \gamma$
$a p / H \alpha \beta, q / R A \alpha \beta \alpha, r / \gamma * E 8 p / \alpha, q / \beta-a_{3}$
a_{3}. EEH $\alpha \beta \gamma \operatorname{ERA} \alpha \beta \alpha$
$b p / H \alpha \beta, q / R A \alpha \beta \alpha, r / \gamma * E 8 p / \alpha, q / \beta-b_{3}$
b_{3}. ERH $\alpha \beta \gamma R R A \alpha \beta \alpha$
$a p / B \alpha \beta, q / E A \alpha \beta \alpha, r / \gamma * E 1 O p / \alpha, q / \beta-a_{4}$
a_{4}. $E E B \alpha \beta \gamma E E A \alpha \beta \alpha \gamma$
$b p / B \alpha \beta, q / E A \alpha \beta \alpha, r / \gamma * E 1 O p / \alpha, q / \beta-b_{4}$
b_{4}. $E R B \alpha \beta \gamma R E A \alpha \beta \alpha \gamma$
$a p / G \alpha \beta, q / E E \alpha \alpha \beta, r / \gamma * E 12 p / \alpha, q / \beta-a_{5}$
a_{5}. $E E G \alpha \beta \gamma E E E \alpha \alpha \beta \gamma$
$b p / G \alpha \beta, q / E E \alpha \alpha \beta, r / \gamma * E 12 p / \alpha, q / \beta-b_{5}$
b_{5}. $E R G \alpha \beta \gamma R E E \alpha \alpha \beta \gamma$
$a p / M \alpha \beta, q / E R \alpha \beta \beta, r / \gamma * E 14 p / \alpha, q / \beta-a_{6}$
a_{6}. EEM $\alpha \beta \gamma E E R \alpha \beta \beta \gamma$
$b p / M \alpha \beta, q / E R \alpha \beta \beta, r / \gamma * E 14 p / \alpha, q / \beta-b_{6}$

```
\(\mathrm{b}_{6}\). ERM \(\alpha \beta \gamma R E R \alpha \beta \beta \gamma\)
    \(a p / N \alpha, q / E R \alpha \alpha \alpha, r / \beta * E 16 p / \alpha, q / \beta-a_{7}\)
\(\mathrm{a}_{7}\). \(E E N \alpha \beta E E R \alpha \alpha \alpha \beta\)
    \(b p / N \alpha, q / E R \alpha \alpha \alpha, r / \beta * E 16 p / \alpha, q / \beta-b_{7}\)
\(\mathrm{b}_{7} . E R N \alpha \beta R E R \alpha \alpha \alpha \beta\)
    \(a p / A \alpha \beta, q / N A \alpha \beta, r / \gamma * E 18 p / \alpha, q / \beta-a_{8}\)
\(\mathrm{a}_{8}\). \(E E \bar{A} \alpha \beta \gamma E N A \alpha \beta \gamma\)
    \(b p / \bar{A} \alpha \beta, q / N A \alpha \beta, r / \gamma * E 18 p / \alpha, q / \beta-b_{8}\)
\(\mathrm{b}_{8} . E R \bar{A} \alpha \beta \gamma R N A \alpha \beta \gamma\)
    \(a p / \bar{K} \alpha \beta, q / N K \alpha \beta, r / \gamma * E 20 p / \alpha, q / \beta-a_{9}\)
\(\mathrm{a}_{9} . E E \bar{K} \alpha \beta \gamma E N K \alpha \beta \gamma\)
    \(b p / \bar{K} \alpha \beta, q / N K \alpha \beta, r / \gamma * E 20 p / \alpha, q / \beta-b_{9}\)
\(\mathrm{b}_{9} . E R \bar{K} \alpha \beta \gamma R N K \alpha \beta \gamma\)
    \(a p / G \alpha \beta, q / N G \alpha \beta, r / \gamma * E 22 p / \alpha, q / \beta-a_{10}\)
\(\mathrm{a}_{10} . E E \bar{G} \alpha \beta \gamma E N G \alpha \beta \gamma\)
    \(b p / \overline{G \alpha} \beta, q / N G \alpha \beta, r / \gamma * E 22 p / \alpha, q / \beta-b_{10}\)
\(\mathrm{b}_{10} . E R G \alpha \beta \gamma E N G \alpha \beta \gamma\)
    \(a p / \bar{M} \alpha \beta, q / N M \alpha \beta, r / \gamma * E 24 p / \alpha, q / \beta-a_{11}\)
\(\mathrm{a}_{11} . E E \bar{M} \alpha \beta \gamma E N M \alpha \beta \gamma\)
    \(b p / \bar{M} \alpha \beta, q / N M \alpha \beta, r / \gamma * E 24 p / \alpha, q / \beta-b_{11}\)
\(\mathrm{b}_{11} . E R \bar{M} \alpha \beta \gamma R N M \alpha \beta \gamma\)
According to these theorems we have the following formulas
\(E C \alpha \beta \gamma \sim E E A \alpha \beta \beta \gamma\)
\(R C \alpha \beta \gamma \sim R E A \alpha \beta \beta \gamma\)
\(E D \alpha \beta \gamma \sim E R A \alpha \beta \beta \gamma\)(XIV)
\(R D \alpha \beta \gamma \sim R R A \alpha \beta \beta \gamma \quad\) (XV)
\(E H \alpha \beta \gamma \sim E R A \alpha \beta \alpha \gamma\)
\(R H \alpha \beta \gamma \sim R R A \alpha \beta \alpha \gamma\)
\(E B \alpha \beta \gamma \sim E E A \alpha \beta \alpha \gamma\)
\(R B \alpha \beta \gamma \sim R E A \alpha \beta \alpha \gamma\)
\(E G \alpha \beta \gamma \sim E E E \alpha \alpha \beta \gamma\)
\(R G \alpha \beta \gamma \sim R E E \alpha \alpha \beta \gamma\)
\(E M \alpha \beta \gamma \sim E E R \alpha \beta \beta \gamma\)
\(R M \alpha \beta \gamma \sim R E R \alpha \beta \beta \gamma\)
\(E N \alpha \beta \sim E E R \alpha \alpha \alpha \beta\)
\(R N \alpha \beta \sim R E R \alpha \alpha \alpha \beta\) (XXV)
\(E \bar{A} \alpha \beta \gamma \sim E N A \alpha \beta \gamma\)
(XXVI)
\(R \bar{A} \alpha \beta \gamma \sim R N A \alpha \beta \gamma\)
(XXVII)
\(E \vec{K} \alpha \beta \gamma \sim E N K \alpha \beta \gamma\)
(XXVIII)
\(R \bar{K} \alpha \beta \gamma \sim R N K \alpha \beta \gamma\)
\(E \bar{G} \alpha \beta \gamma \sim E N G \alpha \beta \gamma\)
(XXX)
\(R \bar{G} \alpha \beta \gamma \sim R N G \alpha \beta \gamma\) (XXXI)
\(E \bar{M} \alpha \beta \gamma \sim E N M \alpha \beta \gamma\)
\(R \bar{M} \alpha \beta \gamma \sim R N M \alpha \beta \gamma\)

On the other hand, according to the axioms \(A 8-A 18\) we have
\begin{tabular}{lr}
\(A C \alpha \beta \gamma\) & \(\sim A E A \alpha \beta \beta \gamma\) \\
\(A D \alpha \beta \gamma\) & \(\sim A R A \alpha \beta \beta \gamma\) \\
\(A H \alpha \beta \gamma\) & \(\sim A R A \alpha \beta \alpha \gamma\) \\
\(A B \alpha \beta \gamma\) & \(\sim A E A \alpha \beta \alpha \gamma\) \\
\(A G \alpha \beta \gamma\) & \(\sim A E E \alpha \alpha \beta \gamma\) \\
(XXXIV) \\
\(A M \alpha \beta \gamma\) & \(\sim A E R \alpha \beta \beta \gamma\) \\
(XXXVI) \\
\(A \bar{A} \alpha \beta \gamma\) & \(\sim A N A \alpha \beta \gamma\) \\
\(A \bar{K} \alpha \beta \gamma\) & \(\sim A N K \alpha \beta \gamma\) \\
\(A \bar{G} \alpha \beta \gamma\) & \(\sim A N G \alpha \beta \gamma\) \\
(XXXVII) \\
\(A \bar{M} \alpha \beta \gamma\) & \(\sim A N M \alpha \beta \gamma\)
\end{tabular}

We continue with the demonstration of the theorem. Any form can belong to one of the following types
1. \(E \alpha \beta\)
2. \(R \alpha \beta\)
3. \(A \alpha \beta\)
4. \(K \alpha \beta\)
5. \(C \alpha \beta\)
6. \(D \alpha \beta\)
7. \(H \alpha \beta\)
8. \(B \alpha \beta\)
9. \(G \alpha \beta\)
10. \(M \alpha \beta\)
11. \(N \alpha\)
12. \(\bar{A} \alpha \beta\)
13. \(\bar{K} \alpha \beta\)
14. \(\bar{G} \alpha \beta\)
15. \(\bar{M} \alpha \beta\)
each form containing \(m_{i}(i=1,2, \ldots, n)\) functors \(C, D, H, B, G, M, N, \bar{A}\), \(\bar{K}, \bar{G}\) and \(\bar{M}\).

As to the formulas (I)-(XI), the forms of the type 5-15 are equipolent with the forms of the type 1 and 2.

According to commutation and association of the functors \(E, R\), the forms of type 1 and 2 can be of one of the following particular types
\begin{tabular}{llllll} 
1.1. & \(E C \alpha \beta \gamma\) & 1.2. & \(E D \alpha \beta \gamma\) & 1.3. & \(E H \alpha \beta \gamma\) \\
1.4. & \(E B \alpha \beta \gamma\) & 1.5. & \(E G \alpha \beta \gamma\) & 1.6. & \(E M \alpha \beta \gamma\) \\
1.7. & \(E N \alpha \beta\) & 1.8. & \(E \bar{A} \alpha \beta \gamma\) & 1.9. & \(E \bar{M} \alpha \beta \gamma\) \\
1.10. & \(E \bar{K} \alpha \beta \gamma\) & 1.11. & \(E \bar{G} \alpha \beta \gamma\) & 2.1. & \(R G \alpha \beta \gamma\) \\
2.2. & \(R D \alpha \beta \gamma\) & 2.3. & \(R H \alpha \beta \gamma\) & 2.4. & \(R B \alpha \beta \gamma\) \\
2.5. & \(R G \alpha \beta \gamma\) & 2.6. & \(R M \alpha \beta \gamma\) & 2.7. & \(R N \alpha \beta\) \\
2.8. & \(R \bar{A} \alpha \beta \gamma\) & 2.9. & \(R \bar{K} \alpha \beta \gamma\) & 2.10. & \(R \bar{G} \alpha \beta \gamma\) \\
2.11. & \(R \bar{M} \alpha \beta \gamma\) & & & &
\end{tabular}

According to the formulas (XII)-(XXXII), it results that these forms are equipolent with the forms of the type 1 and 2 , in which \(C, D, H, B, G\), \(M, \bar{N}, \bar{A}, \bar{K}, \bar{G}\) and \(\bar{M}\) are containing of \(m_{i}-j(i=1,2, \ldots, n)\).

Repeating this argument a finite number of times it results that the forms of the types 1.1-1.11, 2.1-2.11 are equipolent with the forms of the set \(\mathbf{S}(E, R, A)\).

The forms of the type 3 are further specified as of the following types:
3.1. \(A C \alpha \beta \gamma\) 3.2. \(A D \alpha \beta \gamma\) 3.3. \(A H \alpha \beta \gamma\)
3.4. \(A B \alpha \beta \gamma\) 3.5. \(A G \alpha \beta \gamma\) 3.6. \(A N \alpha \beta\)
3.7. \(A M \alpha \beta \gamma\) 3.8. \(A \bar{A} \alpha \beta \gamma\) 3.9. \(A \bar{K} \alpha \beta \gamma\)
3.10. \(A \bar{G} \alpha \beta \gamma \quad\) 3.11. \(A \bar{M} \alpha \beta \gamma\)

According to the formulas (XXXIV)-(XXXXIII) these forms will be equipolent with forms which contain one less occurrence of the functors \(C-\bar{M}\).

Repeating the reasoning we come to the conclusion that each form of the set S is equipolent with a form of the set \(\alpha \varepsilon S(E, R, A)\) and hence it admits a normal form of the type \(\mathbf{N}(E, R, K)\) or \(\mathbf{N}(E, R, A)\).

Conclusion. A form " \(\alpha\) " is a tautology if and only if its normal form is of the type \(* \mathbf{N}(E, A)\) of \(\S 3\).

\section*{BIBLIOGRAPHY}
[1] Eugen Mihăilescu: Recherche sur un seus-système du calcul des propositions. Annales scientifiques de l'Université de c'assy, t. XXIII, année 1937, pp. 106-124.
[2] Eugen Mihăilescu: Recherches sur l'équivalence et la réciprocité dans le calcul des propositions. Ann. sc. de l'Univ. Jassy, t. XXIV, année 1938, fasc. 1, pp. 116-153.
[3] Eugen Mihǎilescu: Recherches sur l'équivalence et la négation dans le calcul des propositions. Ann. Sc. Univ. Jassy, t. XXIII, année 1937, pp. 369-408.
[4] Eugen Mihăilescu: Recherches sur l'équivalence, la négation et la réciprocité dans les calculs des propositions. Mathematica V.XV, année 1939, pp. 81-148.
[5] Eugen Mihăilescu: Sur les formes normales par rapport a l'équivalence la réciprocité et la conjonction. Acta Logica 1965, pp. 150-172.
[6] Eugen Mihăilescu: Recherches sur quelques systemes du calcul des propositions. Acta Logica 1958, pp. 173-185.
[7] Eugen Mihăilescu: Recherches sur les formes normales par rapport a l'équivalence et la disjonction dans le calcul des propositions. Ann. sc. Univ. Jassy, t. XXIV, année 1938, fasc. II, pp. 1-81.

\author{
Centre de Logique \\ Académie de la République Populaire Roumaine \\ Bucarest, Rumania
}```

