DECISION PROBLEM IN THE CLASSICAL LOGIC

EUGEN MIHĂILESCU

The important problem of decision in mathematical logic has been studied by many authors; it was resolved for propositional calculus. For functional calculus, Church demonstrated that there was no model by which we can determine whether a well-formed formula of the predicate calculus is true or false.

In classical logic a formula " α " is a tautology if for the propositional variables:

$$p_1, p_2, \ldots, p_n$$

in " α " we can make correspond the truth values:

$$a_1, a_2, \ldots, a_n$$

(where each of " a_i " are constant, $\mathbf{v} = true$, and $\mathbf{f} = false$) and the substitution of the variable p_i by a_i conduct to " α " true). In our paper we shall say that " α " is a tautology if its logical value is \mathbf{v} , where *logical value* of a formula means the result which we get making the substitution of the propositional variables by \mathbf{v} or \mathbf{f} in all possible ways and making all the operations connected.

The purpose of this article is to present a new method for the resolution of the decision problem, a method which is an immediate result of our studies on normal forms in propositional calculus. The work is treated in this way: I. For forms made with equivalence. II. For forms made with equivalence, negation, reciprocity. III. For forms made with equivalence, reciprocity and alternation. IV. For a general form of classical logic.

For all these we use the notation of J. $\pounds ukasiewicz$. The idea of form is defined in this way:

1. Each propositional variable is a form;

2. If " α " is a form and "F" is a unary functor, then "F α " is a form;

3. If " α " and " β " are forms and "F" is a binary functor, then " $F\alpha\beta$ " is a form. The set of the forms made by the means of the functors F_1, F_2, \ldots, F_n is to be written: $S(F_1, F_2, \ldots, F_n)$. For simplicity, we denote by S the set of all forms from classical logic. Two forms " α " and " β " are equipollent

Received May 29, 1965

 $\alpha \sim \beta$

if $E\alpha\beta$ is a tautology.

1. In the work 1 we considered the axioms:

A1. EEpqEqp A2. EEEpqrEpEqr,

and we proved that the set of consequences is non-contradictory and complete. The rules of deduction are: 1. The rule of substitution; and 2. The "modus ponens" rule.

$$\vdash \alpha \\ \vdash \underline{E\alpha\beta} \\ \vdash \beta$$

Remark: If " α " is a tautology then the form " β ", which we obtain applying the rule of substitution of the "modus ponens" rule from " α " is also a tautology. If " β " is not a tautology then " α " also is not a tautology.

The axioms A1-A2 being tautologies, it means that all the consequences (theses) which we obtain by application of rules of deduction are also tautologies.

The normal forms of the system: Each form $\alpha \in S(E)$ which contains 2n propositional variables p_i , q_i (i = 1, 2, ..., n) admits the normal form

$$\mathbf{N}_1(E) = E^{n-1}Ep_1q_1Ep_2q_2\ldots Ep_nq_n$$

Each $\alpha \in S(E)$ which contains 2n+1 propositional variables p_i ; q_j $(i = 1, 2, \ldots, n; j = 1, 2, \ldots, n+1)$ admits the normal form

$$\mathbf{N}_{2}(E) = E^{n-1}Ep_{1}q_{1}Ep_{2}q_{2}\ldots Ep_{n}Eq_{n}q_{n+1}$$

in which the letters p_i, q_i may be permuted and $\alpha \sim N_1(E); \alpha \sim N_2(E)$.

Remark 2. If: $\alpha \sim \beta$ and $\alpha = \mathbf{v}$ then also $\beta = \mathbf{v}$, and $\alpha = \mathbf{f}$ then also $\beta = \mathbf{f}$.

Indeed: If $\alpha \sim \beta$ then $E\alpha\beta = \mathbf{v}$ and therefore if $E\mathbf{v}\beta = \mathbf{v}$, then $\beta = \mathbf{v}$, and if $E\mathbf{f}\beta = \mathbf{v}$, then $\beta = \mathbf{f}$.

Theorem I. The form " α " is a tautology only if each propositional variable of " α " occurs an even number of times.

We show that each form " α " which contains each propositional variable an even number of times is a tautology. The form " α " admits indeed the normal form:

$$\mathbf{N}_{1}(E) = E^{\sum_{i}^{n} h_{i} - 1} (Ep_{1}p_{1})^{h_{1}} (Ep_{2}p_{2})^{h_{2}} \dots (Ep_{n}p_{n})^{h_{n}}$$

and

$$\alpha \sim N_1(E)$$

But $N_2(E)$ is a tautology because:

240

$$E p_i p_i = \mathbf{v} \qquad (i = 1, 2, \ldots, n)$$

and therefore:

$$E^{\sum_{j=1}^{n}h_{j}-1}(\mathbf{v})^{h_{1}}(\mathbf{v})^{h_{2}}\ldots\ldots(\mathbf{v})^{h_{n}}=\mathbf{v}$$

and therefore $\alpha = \mathbf{v}$, that is a tautology.

Now let us show that other forms $\alpha \in S(E)$ having at least one propositional variable which occurs an odd number of times, it is not a tautology. Indeed take the variable p_{n+1} of " α ", which occurs 2h+1 times.

We have a normal form:

$$\mathbf{N}_{2}(E) = E^{\sum_{1}^{n} h_{i}} (Ep_{1}p_{1})^{h_{1}} (Ep_{2}p_{2})^{h_{2}} \dots (Ep_{n}p_{n})^{h_{n}} (Ep_{n+1}p_{n+1})^{h_{n+1}} p_{n+1}$$

 $= E\omega p_{n+1}$

where

$$\omega = E^{n+1}_{1} (E p_1 p_1)^{h_1} (E p_2 p_2)^{h_2} \dots (E p_n p_n)^{h_n} (E p_{n+1} p_{n+1})^{h_{n+1}}$$

is a tautology. Then we have $\omega = \mathbf{v}$ and therefore

$$E\omega p_{n+1} = E\mathbf{v}p_{n+1} = \begin{cases} \mathbf{v} & \text{if } p_{n+1} = \mathbf{v} \\ \mathbf{f} & \text{if } p_{n+1} = \mathbf{f} \end{cases}$$

and therefore:

$$\mathbf{N}_{2}(E) = \begin{cases} \mathbf{v} & \text{if } p_{n+1} = \mathbf{v} \\ \mathbf{f} & \text{if } p_{n+1} = \mathbf{f} \end{cases}$$

and:

$$\alpha = \begin{cases} \mathbf{v} & \text{if } p_{n+1} = \mathbf{v} \\ \mathbf{f} & \text{if } p_{n+1} = \mathbf{f} \end{cases}$$

That is, " α " is not a tautology.

Conclusion. Each form $\alpha \in S(E)$ is a decision only if each propositional variable of " α " is included by an even number (we shall call a tautological formula a decision).

§2. In the work [2] we take the axiomatic system L(E,R,N) given by the axioms:

- *A1. EEpqEqp*
- A2. EEEpqrEpEqr,
- A3. EERpqRrsEEpqErs,
- A4. ENpERppp,

in which the functors E, R and N are defined by the matrix

<i>p</i> , <i>q</i>	Epq	Rpq	NÞ
f, f	v	f	v
v, f	f	v	
f, v	f	v	
v, v	v	f	f.

We have demonstrated that this system is non-contradictory and incomplete.

The normal forms of the system. Each form: $\alpha \in \mathbf{S}(E,R,N)$ which includes 2n propositional variables p_i , q_i (i = 1, 2, ..., n) admits a normal form of the type

$$N_1(E,R) = E^{n-1}Ep_1q_1Ep_2q_2...Ep_nq_n$$

if the number of the functors "R" and "N" which are included in " α " is an even number, and a normal form of the type

$$N_{2}(E,R) = R^{n-1} (R p_{1} q_{1}) (R p_{2} q_{2}) \dots (R p_{n} q_{n})$$

if the functors "R" and "N" appear an odd number of times. The form " α " is equipollent with $N_1(E, R)$, respectively, $N_2(E, R)$, and the letters p_i , q_i may be permuted. Each form $\alpha \in S(E, R, N)$ which contains 2n+1 variables p_i , q_j (i = 1, 2, ..., n; j = 1, 2, ..., n, n+1) admits a normal form of the type

$$N_{3}(E,R) = E^{n-1}(Ep_{1}q_{1})(Ep_{2}q_{2}) \dots (Ep_{n}q_{n+1})$$

if " α " includes an even number of the functors R and N and a normal form of the type

$$N_{4}(E,R) = R^{n-1} (R p_{1}q_{1}) (R p_{2}q_{2}) \dots (R p_{n}R q_{n}q_{n+1})$$

if " α " contains an odd number of the functors "R" and "N"; $N_3(E,R)$ being equipollent with the form " α " and the letters p_i , q_j being able to be transferred.

Theorem II. A form " α " is a tautology only if each propositional variable occurs an even number of times and the number of the functors "R" and "N" is also an even number.

Indeed, if " α " contains each propositional variable an even number of times and the number of the functors "R" and "N" is also an even number, then " α " admits the normal form

$$\mathbf{N}_{1}(E,R) = E^{\sum_{1}^{n} h_{i} - 1} (E p_{1} p_{1})^{h_{1}} (E p_{2} p_{2})^{h_{2}} \dots (E p_{n} p_{n})^{h_{n}}$$

which is a tautology according to *Theorem* 1. If " α " contains each propositional variable an even number of times, and the number of functors "R" and "N" is an odd number, then " α " admits the normal form

$$\mathbf{N}_{2}(E,R) = R^{\sum_{1}^{n} h_{i} - 1} (R p_{1} p_{1})^{h_{1}} (R p_{2} p_{2})^{h_{2}} \dots (R p_{n} p_{n})^{h_{n}}$$

which is not a tautology, i.e. $N_2(E,R) = f$. Indeed, the form

$$E \mathsf{N}_2(E,R) Rpp$$

is a tautology according to the preceding case. But:

$$Rpp = \mathbf{f} \text{ and } \mathbf{N}_2(E,R) = Rpp = \mathbf{f}$$

and therefore $N_2(E,R) = f$ and $\alpha = f$, that is " α " is not a tautology.

If " α " contains at least one propositional variable which occurs an odd number of times then " α " is not a tautology. We have two subcases:

1. The number of the functors "R" and "N" is an even number. In this case " α " admits the normal form

$$\mathbf{N}_{3}(E,R) = E^{\sum_{1}^{n} h_{i}} (Ep_{1}p_{1})^{h_{1}} (Ep_{2}p_{2})^{h_{2}} \dots (Ep_{n+1}p_{n+1})^{h_{n+1}} p_{n+1}$$

then according to *Theorem I* " α " is not a tautology.

2. The number of the functors "R" and "N" is an odd number. In this case the form " α " admits the normal form

$$\mathbf{N}_{1}(E,R) = R^{\sum_{i=1}^{n+1}} (Rp_{1}p_{1})^{h_{1}} (Rp_{2}p_{2})^{h_{2}} \dots (Rp_{n+1}p_{n+1})^{h_{n+1}} p_{n+1} = R\omega p_{n+1}$$

where

$$\omega = R^{\frac{n+1}{\sum h_i - 1}} (Rp_1p_1)^{h_1} (Rp_2p_2)^{h_2} \dots (Rp_{n+1}p_{n+1})^{h_{n+1}} = \mathbf{f}$$

It follows

$$\mathbf{N}_{1}(E,R) = R\omega p_{n+1} = R \mathbf{f} p_{n+1} = \begin{cases} \mathbf{v} & \text{if } p_{n+1} = \mathbf{f} \\ \mathbf{f} & \text{if } p_{n+1} = \mathbf{v} \end{cases}$$

and therefore $N_1(E,R)$ is not a tautology and therefore " α " is not a tautology.

Conclusion. Each form $\alpha \in S(E,R,N)$ is a decision only if each propositional variable of " α " occurs an even number of times and the number of the functors "N" and "R" is also an even number.

3. In [3] we considered the axioms:

- A1. EEpqEqp
- A2. EEEpqrEpEqr
- A3. EKKpqrKKqpr
- A4. EKKpqrKpKqr
- A5. EKKppqKpq
- A6. EApqEEpqKpq
- A7. EARpqrEEAprAqrr.

This system is non-contradictory and incomplete. The following forms

- 1. EKRpqrRKprKqr
- 2. EKEpqrEEKprKqrr
- 3. EAEpqrEAprAqr

are theses (tautologies). Indeed:

1. KRpqr ~ EERpqrARpqr ~ EERpqrEEAprAqrr ~ EERpqEAprAqr ~ EERpqEEprKprEEqrKqr ~ RE⁶prqrpqKprKqr ~ RKprKqr

that is the form 1. (We used the thesis EKpqEEpqApq of sub-system L(E,K,A)).

2. We have:

 $AEpqr \sim EEEpqrKEpqr \sim E^{s}pqrE^{2}KprKqrr \sim E^{2}pqEKprKqr$ ~ $EEpqEEEprAprEqrAqr \sim E^{7}ppqqrrAprAqr \sim EAprAqr$

and therefore the form 3.

3. We have:

 $KRRpqrr \sim RKRpqrKrr \sim RRKprKqrKrr \sim EEKprKqrKrr \sim EEKprKqrr$ and therefore form 2.

The functors "E", "R", "A", "K" are defined by the matrix:

þ, q	Kpq	Apq	Epq	Rpq
f, f	f	f	v	f
v, f	f	v	f	v
f, v	f	v	f	v
v, v	v	v	v	f
	•	•	•	

Theorem III. Each form $\alpha \in S(K)$ which contains $\sum_{i=1}^{n} h_i$ propositional variables $p_i(i = 1, 2, ..., n)$ each letter p_i being included respectively h_i times admits a normal form of the type:

$$\mathbf{N}(K) = K^{n-1} p_1 p_2 \dots p_n$$

and in this form all the letters p_i can be permuted (cf. [4]).

Theorem IV. Each form $\alpha \in S(A)$ which contains $\sum_{i=1}^{n} h_i$ propositional variables $p_i(i = 1, 2, ..., n)$ each letter p_i being included respectively h_i times admits the normal form of the type

$$\mathbf{N}(A) = A^{n-1}p_1p_2\ldots p_n,$$

and in this form all letters p_i can be transferred.

Theorem V. Each form $\alpha \in S(E,K,A,R)$ admits a normal form of the type:

$$\mathbf{N}(E,R,A) = E^k R^h \alpha_1 \alpha_2 \dots \alpha_{h+k+1},$$

in which $\alpha_i \in \mathbf{S}(A)$

$$\alpha \sim \mathsf{N}(E,R,A).$$

Theorem VI. Two forms $\alpha, \beta \in S(A)$ are equipolent if each variable p of of " α " is a variable of " β " and vice versa.

Theorem VII. Each form $\alpha \in S(E,R,K,A)$ is a tautology only if it admits the normal form of the type

$$*\mathbf{N}(E,A) = E^{\prod_{1}^{n} 2n_{i}-1} (\alpha_{1}^{1}\alpha_{2}^{1} \dots \alpha_{2n_{1}}^{1}) (\alpha_{1}^{2}\alpha_{2}^{2} \dots \alpha_{2n_{2}}^{2}) \dots (\alpha_{1}^{h}\alpha_{2}^{h} \dots \alpha_{2n_{h}}^{h})$$

in which $\alpha_{1}^{i} \sim \alpha_{2}^{i} \sim \dots \sim \alpha_{2n_{i}}^{i}$ $(i = 1, 2, \dots, n)$

We shall prove that if " α " permits the normal form *N(E,A) then it is a tautology and if " α " does not permit a normal form of the type *N(E,A) then it is not a tautology.

Case 1. " α " admits the normal form *N(E,A). But according to Theorem IV, the forms

$$\alpha_1^i \sim \alpha_2^i \sim \ldots \sim \alpha_{2n_i}^i \sim \mathsf{N}_i(A)$$
 $(i = 1, 2, \ldots, h)$

admit the normal forms $N_i(A)$ and:

$$\alpha_1^i \sim \alpha_2^i \sim \ldots \sim \alpha_{2n_i} \sim \mathsf{N}_i^2(A) \qquad (i = 1, 2, \ldots, h).$$

It follows that

*N(E,A) ~
$$E^{\sum_{1}^{h} \sum_{2n_i - 1}^{n}} [N_1(A)]^{2n_1} [N_2(A)]^{2n_2} \dots [N_{h}(A)]^{2n_h}$$

and

$$\alpha \sim *\mathbf{N}(E,A)$$
.

But the form

(1)
$$E^{\sum_{1}^{k} 2n_{i}-1} (p_{1})^{2n_{2}}$$

is a tautology. We make in the form (1) the following substitution:

$$p_i/N_i(A)$$
 (*i* = 1, 2, ..., *h*)

and we obtain the form " ω ". It follows that " ω " is a tautology and it is " α ".

Case 2. The form " α " does not admit the normal form *N(E,A). It means that " α " admits one of the following normal forms

I.
$$\mathbf{N}(E,A) = E^M \prod_{i=1}^{h} \prod_{j=1}^{2n_i} \alpha_j^i \prod_{l=1}^{m} \beta_l \cdot [\alpha_j^i, \beta_l \in \mathbf{S}(A)]$$

and in which

$$M = \sum_{\substack{i=1\\2n:}}^{h} 2n_i + m - 1$$

The forms $\prod_{i=1}^{m_i} \alpha_i \ (i = 1, 2, ..., n)$ are equipolent and the forms $\beta_1, \beta_2, \ldots, \beta_i$ are not equipolent.

II.
$$\mathbf{N}(R,A) = R^{\frac{h}{\sum 2n_i - 1}} (\alpha_1^1 \alpha_2^1 \dots \alpha_{2n_1}^1) \dots (\alpha_1^h \alpha_2^h \dots \alpha_{2n_h}^h)$$

$$\alpha_1^i \sim \alpha_2^i \sim \ldots \sim \alpha_{2n_i}^i \qquad (i = 1, 2, \ldots, h)$$

III. $\mathbf{N}(E,R,A) = E^M R^N(\alpha_1^1 \alpha_2^1 \dots \alpha_{2n_1}^1) \dots (\alpha_1^h \alpha_2^{h} \dots \alpha_{2n_h}^h)(\beta_1 \beta_2 \dots \beta_m)$ in which

$$M + N = \sum_{i=1}^{h} 2n_i + m - 1$$
$$\alpha_1^i \sim \alpha_2^i \sim \ldots \sim \alpha_{2n_i}^i \qquad (i = 1, 2, \ldots, h)$$

and the forms $\beta_1, \beta_2, \ldots, \beta_m$ are not mutually equipolent.

I. Let

$$\omega = E^{\stackrel{h}{\sum}_{2n_i}} (\alpha_1^1 \alpha_2^1 \dots \alpha_{2n_i}^1) (\alpha_2^2 \alpha_2^2 \dots \alpha_{2n_2}^2) \dots (\alpha_1^h \alpha_2^h \dots \alpha_{2n_h}^h)$$

We have

$$N(E,A) = E\omega E^{m-1}\beta_1, \beta_2, \ldots, \beta_m$$

But " ω " is a tautology and according to the "modus ponens" rule, it follows that:

$$\gamma = E^{m-1} \beta_1 \beta_2 \ldots \beta_m$$

By the first remark N(E,A) is not a tautology if " α " is not. We have two cases:

1. m = 2k + 1. In this case replacing all the propositional variables in the form " β_i " by "p" and according to the formula $App \sim p$ we have

$$\gamma^{i} = E^{2k}(p)^{2k} p = E\mathbf{v}p = \begin{cases} \mathbf{v} & \text{if } p = \mathbf{v} \\ \mathbf{f} & \text{if } p = \mathbf{f} \end{cases}$$

and therefore " γ " is not a tautology, also " γ " and N(E,A) and " α ".

2. m = 2k. Let be $p_1 \varepsilon \beta_1$ and $p_1 \not{\varepsilon} \beta_2$. We make the substitution p_1 by q and the other propositional variables by p. According to the formulas

$$App \sim p; \quad AAppq \sim Apq; \quad A^{2k}(p)^{2k}q \sim Apq$$

it follows that:

$$E^{2k}(Apq)^{2k} q \sim q = \begin{cases} \mathbf{v} & \text{if } q = \mathbf{v} \\ \mathbf{f} & \text{if } q = \mathbf{f} \end{cases}$$

whence we have

$$\gamma' = E^{2k+1} (Apq)^{2k+1} q \sim EApqq = \begin{cases} \mathbf{v} & \text{if } p = \mathbf{f}, q = \mathbf{f} \\ \mathbf{v} & \text{if } p = \mathbf{v}, q = \mathbf{v} \\ \mathbf{v} & \text{if } p = q, q = \mathbf{v} \\ \mathbf{f} & \text{if } p = \mathbf{v}, q = \mathbf{f} \end{cases}$$

and therefore " γ " is not a tautology, also " γ " and N(E,A) and " α ".

II. " α " permits the form N(R,A). According to the theorem IV, we have

$$\alpha_i^j \sim \mathbf{N}_j(A) \qquad (j = 1, 2, \ldots, h)$$

and therefore

$$N(R,A) = R^{\sum_{1}^{h} 2n_{i}-1} [N_{1}(A)]^{2n_{1}} [N_{2}(A)]^{2n_{2}} \dots [N_{h}(A)]^{2n_{h}}$$

But

$$E \mathbf{N}(R,A)Rpp$$

is a tautology, therefore

$$N(R,A) \sim Rpp$$

and N(E,A) is not a tautology and also " α ".

III. " α " admits the normal form N(E,R,A). In this case N is an odd number. We have two possibilities:

1. M = 2k. Then we have:

$$\mathbf{N}(E,R,A) = E^{2k}R^{N}(a_{1}^{1}a_{2}^{2}\dots a_{2n_{1}}^{1})(a_{1}^{2}a_{2}^{2}\dots a_{2n_{2}}^{2})\dots (a_{1}^{h}a_{2}^{h}\dots a_{2n_{h}}^{h}) (\beta_{1}\beta_{2}\dots \beta_{l}) \sim R^{2k+N}(a_{1}^{1}a_{2}^{1}\dots a_{2n_{1}}^{1})(a_{1}^{2}a_{2}^{2}\dots a_{2n_{2}}^{2})\dots (a_{1}^{h}a_{2}^{h}\dots a_{2n_{h}}^{h})(\beta_{1}\beta_{2}\dots \beta_{l})$$

in which l is an even number because 2k+N is an odd number. It follows that N + 2k + 1 is an even number and therefore we have

$$\mathsf{N}(E,R,A) \sim E^{N+2k+1}(\alpha_1^{\ 1}\alpha_2^{\ 2}\ldots \alpha_{2n_1}^{\ 1})(\alpha_1^{\ 2}\alpha_2^{\ 2}\ldots \alpha_{2n_2}^{\ 2})\ldots (\alpha_1^{\ h}\alpha_2^{\ h}\ldots \alpha_{2\bar{n}_h}^{\ h}) (\beta_1\beta_2\ldots \beta_{l-2}R\beta_{l-1}\beta_l) \sim E\gamma E^{l-2}(\beta_1\beta_2\ldots \beta_{l-2})R\beta_{l-1}\beta_l$$

in which

$$\gamma = E^{\sum_{1}^{h} 2n_{i}-1} (\alpha_{1}^{1} \alpha_{2}^{1} \dots \alpha_{2n_{1}}^{1}) (\alpha_{1}^{2} \alpha_{2}^{2} \dots \alpha_{2n_{2}}^{2}) \dots (\alpha_{1}^{h} \alpha_{2}^{h} \dots \alpha_{2n_{h}}^{h})$$

is a tautology, and therefore, according to the "modus ponens" rule, we shall deduce

$$\gamma^{q} = E^{l-2} (\beta_1 \beta_2 \dots \beta_{l-2}) R \beta_{l-1} \beta_l$$

Let be $p_1 \varepsilon \beta_1$ and $p_1 \not\in \beta_2$. We make the substitution for p by q and for the other variables by p. Then we have

$$E^{l-2}(Apq)^{2n}(p)^{l-2n-2}Rpp \sim EpRpp = Ep\mathbf{f} = \begin{cases} \mathbf{f} & \text{if } p = \mathbf{v} \\ \mathbf{v} & \text{if } p = \mathbf{f} \end{cases}$$

whence we have

$$\gamma'' = E^{l-2} (Apq)^{2n+1} (p)^{l-2n-2} Rpp \sim EApqRpp = EApqf = \begin{cases} \mathbf{v} & \text{if } p = \mathbf{f}; q = \mathbf{f} \\ \mathbf{f} & \text{if } p = \mathbf{v}; q = \mathbf{v} \\ \mathbf{f} & \text{if } p = \mathbf{f}; q = \mathbf{v} \\ \mathbf{f} & \text{if } p = \mathbf{f}; q = \mathbf{v} \\ \mathbf{f} & \text{if } p = \mathbf{v}; q = \mathbf{f} \end{cases}$$

and therefore " γ "" is not a tautology and also " γ ", N(E,R,A) and " α ".

2. M = 2k + 1. In this case M + N is an even number and therefore h is an odd number. We make the substitution of all propositional variables by p and there results a form of the type

$$\gamma = ER^{M+N-1}(p)^{2n_1}(p)^{2n_2}\dots(p)^{2n_h}(p)^{l-1}p \sim ERppp = \begin{cases} \mathbf{v} & \text{if } p = \mathbf{f} \\ \mathbf{f} & \text{if } p = \mathbf{v} \end{cases}$$

and therefore is not a tautology and also N(E,R,A) and " α ".

Conclusion. Each form $\alpha \in S(E,R,A,K)$ is a decision only if " α " admits the normal form

*N(E,A) =
$$E^{\sum_{1}^{n} 2n_i - 1} (\alpha_1^1 \alpha_2^1 \dots \alpha_{2n_1}^1) (\alpha_1^2 \alpha_2^2 \dots \alpha_{2n_2}^2) \dots (\alpha_1^h \alpha_2^h \dots \alpha_{2n_h}^h)$$

where $\alpha_1^i \in \mathbf{S}(A)$ and $\alpha_1^i \sim \alpha_2^i \sim \dots \sim \alpha_{2n_i}^i$ $(i = 1, 2, \dots, h)$

§4. We consider the functors of the classical logic defined as follows:

þ, q	Apq	Kpq	Cpq	Epq	Rpq	Dpq	Hþq	Bpq
f, f	f	f	v	v	f	f	f	V
v, f	v	f	f	f	v	v	f	v
f, v	v	f	v	f	v	f	v	f
v, v	v	v	v	v	f	f	f	v
3.4.4.		1 766		1 - 1 +	1 77	1	1 D	1 374
Mpq	Gpq	$\overline{M}pq$	<u> </u>	$\overline{A}pq$	Kpq	Vpq	Fþq	NÞ
v	f	f	v	V	v	v	f	v
f	f	v	v	f	v	v	f	
v	v	f	f	f	v	v	f	
f	v		_	2	1 4	v	e (4

The system L is the set of consequences of the axioms of the system L(E,R,A,K) and of the axioms

A8. EACpqrAEApqqr

L

- A9. EADpqrARApqqr
- A10. EAHpqrARApqpr
- A11. EAGpqrAEEppqr
- A12. EAMpqrAERpqqr
- A13. EANprAERpppr
- A14. $EA\overline{A}pqrANApqr$
- A15. $EA\overline{K}pqrANKpqr$
- A16. $EA\overline{G}pqrANGpqr$
- A17. $EA\overline{M}pqrANMpqr$
- A18. EABpqrAEApqpr

For demonstration of the theorems we use the following theses: The forms

1. EEAprAqrAEpqr

2. EAppp
are theses of the system $L(E,R,A,K)$
1¢/Cþq,q/EAþqq,*EA8-3r/ECþqEAþqq 3. AECþqEAþqqECþqEAþqq 2þ/ECþqEAþqq*E3-4
4. ECpqEApqq 1p/Dpq, q/RApqq * EA9-5r/EDpqRApqq
5. AEDpqRApqqEDpqRApqq 2p/EDpqRApqq * E5-6
6. EDpqRApqq 1p/Hpq,q/RApqp * EA10-7r/EHpqRApqp
7. ΑΕΗρqRΑρqρΕΗρqRΑρqρ * ΕΑΙΟ-777ΕΗρqRΑρqρ 2ρ/ΕΗρqRΑρqρ * Ε7-8
8. EHpqRApqp. 1p/Bpq, q/EApqp * EA18-9r/EBpqEApqp
9. ΑΕΒραΕΑραρΕΒραΕΑραρ
2p/EBpqEApqp * E9-10 10. $EBpqEApqp$
1p/Gpq, $q/EEppq * EA11-11r/EGpqEEppq11. AEGpqEEppqEGpqEEppq$
2p/EGpqEEppq * E11-12 12. EGpqEEppq
1p/Mpq, q/ERpqq * EA12-13r/EMpqERpqq 13. AEMpqERpqqEMpqERpqq
2p/EMpqERpqq * 13-14 14. EMpqERpqq
12. EmpqEnpqq 1p/Np, q/ERppp * EA13-15r/ENpERppp 15. AENpERpppENpERppp
2p/ENpERppp * E15-16
 ENPERppp 1p/Apq, q/NApq * EA14-17r/EApqNApq AEApqNApqEApqNApq
2p/EApqNApq * E17-18
18. $E\overline{A}pqNApq$ $1p/\overline{K}pq, q/NKpq * EA15-19r/E\overline{K}pqNKpq$
19. $AE\overline{K}pqNKpqE\overline{K}pqNKpq$ $2p/E\overline{K}pqNKpq * E19-20$
20. $E\overline{K}pqNKpq$
1p/Gpq,q/NGpq * EA16-21r/EGpqNGpq 21. AEGpqNGpqEGpqNGpq 2p/EGpqNGpq * E21-22
22. $E\overline{G}pqNGpq$.
$1p/\overline{M}pq, q/NMpq * EA17-23r/E\overline{M}pqNMpq$ 23. $AE\overline{M}pqNMpqE\overline{M}pqNMpq$
$2p/E\overline{M}pqNMpq$ * E23-24 24. $E\overline{M}pqNMpq$

According to these theses we have the following forms

$Cpq \sim EApqq$	(I)
$Dpq \sim RApqq$	(II)
$Hpq \sim RApqp$	(III)
$Bpq \sim EApqp$	(IV)
$Gpq \sim EEppq$	(V)
$Mpq \sim ERpqq$	(VI)
$Np \sim ERppp$	(VII)
\overline{A} p $q \sim NA$ p $q \sim ERA$ p qA p qA p q	(VIII)
\overline{K} þ $q \sim NK$ þ $q \sim ERK$ þ q Kþ q Kþ q	(IX)
\overline{G} þ $q~\sim NG$ þ $q~\sim ERG$ þ qG þ qG þ q	(X)
\overline{M} þ $q\sim NM$ þ $q\sim ERM$ þ qM þ qM þ q	(XI)

and therefore each form $\gamma \varepsilon \mathbf{S}$ is an equipolent with a form of the type $E\alpha\beta$ or $R\alpha\beta$.

We denote by $\boldsymbol{\mathsf{S}}$ the set of forms made with all the functors of classical logic.

Theorem VIII. Each form α is equipolent with a form $\beta \in S(E, R, A)$.

To demonstrate this theorem we use the theses:

a. EEpqEEprEqr

b. EEpqERprRqr

which are the theses of the system N(E,R)

	$ap/Ca\beta$, $q/EAa\beta\beta$, $r/\gamma * E4 p/a$, $q/\beta - a_1$
a1.	ΕΕCαβγΕΕΑαββγ
	$bp/C\alpha\beta$, $q/EA\alpha\beta\beta$, $r/\gamma * E4p/\alpha$, q/β - b_1
b1.	ΕRCαβγREAαββγ
	$ap/Dlphaeta, q/RAlphaetaeta, r/\gamma * E6p/lpha, q/eta - a_2$
a_2 .	$EEDlphaeta\gamma ERAlphaetaeta\gamma$
	$bp/Dlphaeta, q/RAlphaetaeta, r/\gamma * E6p/lpha, q/eta - b_2$
b_2 .	$ERD\alpha\beta\gamma RRA\alpha\beta\beta\gamma$
	$ap/Hlphaeta, q/RAlphaetalpha, r/\gamma * E8p/lpha, q/eta - a_3$
a3.	ΕΕΗαβγΕRΑαβαγ
	$bp/Hlphaeta,q/RAlphaetalpha,r/\gamma$ * E $bp/lpha,q/eta$ - b_3
b3.	ΕRΗαβγRRΑαβαγ
	$ap/Ba\beta$, $q/EAa\beta a$, $r/\gamma * E10p/a$, $q/\beta - a_4$
a ₄ .	ΕΕΒαβγΕΕΑαβαγ
	$bp/B\alpha\beta$, $q/EA\alpha\beta\alpha$, $r/\gamma * E10p/\alpha$, $q/\beta - b_4$
b ₄ .	ΕRΒαβγRΕΑαβαγ
	$ap/Ga\beta, q/EEaa\beta, r/\gamma * E12p/a, q/\beta - a_5$
a5.	$EEG\alpha\beta\gamma EEE\alpha\alpha\beta\gamma$
1.	$bp/G\alpha\beta, q/EE\alpha\alpha\beta, r/\gamma * E12p/\alpha, q/\beta - b_5$
D ₅ .	$ERG\alpha\beta\gamma REE\alpha\alpha\beta\gamma$
	$ap/M\alpha\beta$, $q/ER\alpha\beta\beta$, $r/\gamma * E14 p/\alpha$, $q/\beta - a_6$
a_6 .	$EEM\alpha\beta\gamma EER\alpha\beta\beta\gamma$
	$bp/Mlphaeta, q/ERlphaetaeta, r/\gamma * E14 p/lpha, q/eta - b_6$

250

b ₆ .	$ERM \alpha \beta \gamma RER \alpha \beta \beta \gamma$
	$ap/Nlpha,q/ERlphalphalpha,r/eta$ * E16 $p/lpha,q/eta$ - a_7
a7.	ΕΕΝαβΕΕRαααβ
	bp /Na, q /ERaaa, r/β * E16 p/a , q/β - b_7
b7.	$ERN\alpha\beta RER\alpha\alphalphaeta$
	$ap/Alphaeta, q/NAlphaeta, r/\gamma * E18 p/lpha, q/eta - a_8$
a ₈ .	$EE\overline{A}lphaeta\gamma ENAlphaeta\gamma$
	$bp/\overline{A}lphaeta, q/NAlphaeta, r/\gamma * E18 p/lpha, q/eta - b_8$
b ₈ .	$ER\overline{A}lphaeta\gamma RNAlphaeta\gamma$
	$ap/\overline{K}lphaeta, q/NKlphaeta, r/\gamma$ * E20 $p/lpha, q/eta-a_{s}$
a ₉ .	$EE\overline{K}lphaeta\gamma ENKlphaeta\gamma$
	$bp/\overline{K}lphaeta, q/NKlphaeta, r/\gamma$ * E20 $p/lpha, q/eta-b_{9}$
b ₉ .	$ER\overline{K}lphaeta\gamma RNKlphaeta\gamma$
	$ap/Glphaeta, q/NGlphaeta, r/\gamma * E22 p/lpha, q/eta - a_{10}$
a ₁₀ .	$EE\overline{G}lphaeta\gamma ENGlphaeta\gamma$
	$bp/\overline{G}\alpha\beta$, $q/NG\alpha\beta$, r/γ * E22 p/α , q/β - b_{10}
b ₁₀ .	$ERGaeta\gamma ENGaeta\gamma$
	$ap/\overline{M}lphaeta, q/NMlphaeta, r/\gamma * E24 p/lpha, q/eta - a_{11}$
a ₁₁ .	$EE\overline{M}lphaeta\gamma ENMlphaeta\gamma$
	$bp/\overline{M}lphaeta, q/NMlphaeta$, r/γ * E24 $p/lpha, q/eta-b_{11}$
b11.	$ER\overline{M}lphaeta\gamma RNMlphaeta\gamma$

According to these theorems we have the following formulas

$EClphaeta\gamma\sim EEAlphaetaeta\gamma$	(XII)
$RClphaeta\gamma\sim REAlphaetaeta\gamma$	(XIII)
$E D lpha eta \gamma \sim E R A lpha eta eta \gamma$	(XIV)
$RDlphaeta\gamma \sim RRAlphaetaeta\gamma$	(XV)
$EHlphaeta\gamma\sim ERAlphaetalpha\gamma$	(XVI)
$RHlphaeta\gamma \sim RRAlphaetalpha\gamma$	(XVII)
$EBlphaeta\gamma\sim EEAlphaetalpha\gamma$	(XVIII)
$RBlphaeta\gamma \sim REAlphaetalpha\gamma$	(XIX)
$EGa\beta\gamma \sim EEEaa\beta\gamma$	(XX)
$RGa\beta\gamma \sim REEaa\beta\gamma$	(XXI)
$EMlphaeta\gamma \sim EERlphaetaeta\gamma$	(XXII)
$RM\alpha\beta\gamma \sim RER\alpha\beta\beta\gamma$	(XXIII)
$EN\alpha\beta \sim EER\alpha\alpha\alpha\beta$	(XXIV)
$RN\alpha\beta \sim RER\alpha\alpha\alpha\beta$	(XXV)
$E\overline{A}lphaeta\gamma\sim ENAlphaeta\gamma$	(XXVI)
$R\overline{A}lphaeta\gamma\sim RNAlphaeta\gamma$	(XXVII)
$E\overline{K}lphaeta\gamma\sim ENKlphaeta\gamma$	(XXVIII)
$R\overline{K}lphaeta\gamma\sim RNKlphaeta\gamma$	(XXIX)
$E\overline{G}lphaeta\gamma\sim ENGlphaeta\gamma$	(XXX)
$R\overline{G}lphaeta\gamma\sim RNGlphaeta\gamma$	(XXXI)
$E\overline{M}lphaeta\gamma\sim ENMlphaeta\gamma$	(XXXII)
$R\overline{M}lphaeta\gamma\sim RNMlphaeta\gamma$	(XXXIII)

On the other hand, according to the axioms A8-A18 we have

$A C lpha eta \gamma \sim A E A lpha eta eta \gamma$	(XXXIV)
$A D \alpha \beta \gamma \sim A R A \alpha \beta \beta \gamma$	(XXXV)
$AHlphaeta\gamma \sim ARAlphaetalpha\gamma$	(XXXVI)
$A B \alpha \beta \gamma \sim A E A \alpha \beta \alpha \gamma$	(XXXVII)
$A G \alpha \beta \gamma \sim A E E \alpha \alpha \beta \gamma$	(XXXVIII)
$AMlphaeta\gamma \sim AERlphaetaeta\gamma$	(XXXIX)
$A\overline{A}lphaeta\gamma\sim ANAlphaeta\gamma$	(XXXX)
$A\overline{K}lphaeta\gamma\sim ANKlphaeta\gamma$	(XXXXI)
$A\overline{G}lphaeta\gamma\sim ANGlphaeta\gamma$	(XXXXII)
$A\overline{M}lphaeta\gamma\sim ANMlphaeta\gamma$	(XXXXIII)

We continue with the demonstration of the theorem. Any form can belong to one of the following types

1.	E lpha eta	2.	Rlphaeta	3.	Ααβ
4.	Καβ	5.	Cαβ	6.	Dαβ
7.	Ηαβ	8.	Βαβ	9.	Gαβ
10.	Μαβ	11.	Να	12.	$\overline{A} \alpha \beta$
13.	$ar{K}lphaeta$	14.	$\overline{G} lpha eta$	15.	$\overline{M}lphaeta$

each form containing m_i (i = 1, 2, ..., n) functors C, D, H, B, G, M, N, \overline{A} , \overline{K} , \overline{G} and \overline{M} .

As to the formulas (I)-(XI), the forms of the type 5-15 are equipolent with the forms of the type 1 and 2.

According to commutation and association of the functors E, R, the forms of type 1 and 2 can be of one of the following particular types

1.1.	$EClphaeta\gamma$	1.2.	$EDlphaeta\gamma$	1.3.	ΕΗαβγ
1.4.	$EBlphaeta\gamma$	1.5.	$EGlphaeta\gamma$	1.6.	$EMlphaeta\gamma$
1.7.	ΕΝαβ	1.8.	ΕΆαβγ	1.9.	$E\overline{M}lphaeta\gamma$
1.10.	$E\overline{K}lphaeta\gamma$	1.11.	$E\overline{G}lphaeta\gamma$	2.1.	$RG lpha \beta \gamma$
2.2.	$RDlphaeta\gamma$	2.3.	$RHlphaeta\gamma$	2.4.	$RBlphaeta\gamma$
2.5.	$RGlphaeta\gamma$	2.6.	RMαβγ	2.7.	RNlphaeta
2.8.	RĀαβγ	2.9.	$R\overline{K}lphaeta\gamma$	2.10.	$R\overline{G}lphaeta\gamma$
2.11.	$R\overline{M}lphaeta\gamma$				

According to the formulas (XII)-(XXXII), it results that these forms are equipolent with the forms of the type 1 and 2, in which C, D, H, B, G, $M, \overline{N}, \overline{A}, \overline{K}, \overline{G}$ and \overline{M} are containing of m_i -j (i = 1, 2, ..., n).

Repeating this argument a finite number of times it results that the forms of the types 1.1-1.11, 2.1-2.11 are equipolent with the forms of the set S(E,R,A).

The forms of the type 3 are further specified as of the following types:

3.1.	ΑСαβγ	3.2.	$A D \alpha \beta \gamma$	3.3.	ΑΗαβγ
3.4.	$A B \alpha \beta \gamma$	3.5.	ΑGαβγ	3.6.	ΑΝαβ
3.7.	ΑΜαβγ	3.8.	$A\overline{A} \alpha \beta \gamma$	3.9.	$A\overline{K}lphaeta\gamma$
3.10.	$A\overline{G}lphaeta\gamma$	3.11.	$A\overline{M}lphaeta\gamma$		

According to the formulas (XXXIV)-(XXXXIII) these forms will be equipolent with forms which contain one less occurrence of the functors $C-\overline{M}$.

Repeating the reasoning we come to the conclusion that each form of the set **S** is equipolent with a form of the set $\alpha \in S(E,R,A)$ and hence it admits a normal form of the type N(E,R,K) or N(E,R,A).

Conclusion. A form " α " is a tautology if and only if its normal form is of the type *N(E,A) of §3.

BIBLIOGRAPHY

- [1] Eugen Mihăilescu: Recherche sur un seus-système du calcul des propositions. Annales scientifiques de l'Université de Jassy, t. XXIII, année 1937, pp. 106-124.
- [2] Eugen Mihăilescu: Recherches sur l'équivalence et la réciprocité dans le calcul des propositions. Ann. sc. de l'Univ. Jassy, t. XXIV, année 1938, fasc. 1, pp. 116-153.
- [3] Eugen Mihăilescu: Recherches sur l'équivalence et la négation dans le calcul des propositions. Ann. Sc. Univ. Jassy, t. XXIII, année 1937, pp. 369-408.
- [4] Eugen Mihăilescu: Recherches sur l'équivalence, la négation et la réciprocité dans les calculs des propositions. *Mathematica* V.XV, année 1939, pp. 81-148.
- [5] Eugen Mihăilescu: Sur les formes normales par rapport a l'équivalence la réciprocité et la conjonction. *Acta Logica* 1965, pp. 150-172.
- [6] Eugen Mihăilescu: Recherches sur quelques systemes du calcul des propositions. Acta Logica 1958, pp. 173-185.
- [7] Eugen Mihăilescu: Recherches sur les formes normales par rapport a l'équivalence et la disjonction dans le calcul des propositions. Ann. sc. Univ. Jassy, t. XXIV, année 1938, fasc. II, pp. 1-81.

Centre de Logique Académie de la République Populaire Roumaine Bucarest, Rumania