A CHARACTERIZATION OF S^m BY MEANS OF TOPOLOGICAL GEOMETRIES

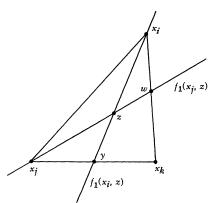
MICHAEL C. GEMIGNANI

In a recent paper in this Journal [1], the author characterized \mathbb{R}^m as a topological space using the concept of a topological geometry. The purpose of the present paper is to present a similar characterization for the m-sphere S^m . The terminology and propositions referred to by number are those of [1].

Theorem 1: Let X and G form an m-arrangement, $m \ge 2$, and suppose X is second countable. Then if $S = \{x_0, \ldots, x_m\}$ is a linearly independent subset of X and $T = \{p_0, \ldots, p_m\}$ is any maximal linearly independent subset of \mathbb{R}^m with the usual Euclidean geometry \overline{G} , then there is a homeomorphism d which maps C(S) onto C(T) and $F^iC(S)$ onto $F^iC(T)$, $i = 0, \ldots, m$, such that $d(G_{C(S)}) = \overline{G}_{C(T)}$.

Proof: Set $d(x_i) = p_i$, i = 0, ..., m. Let $S_1 = i \leq j$ $\overline{x_i x_j}$. By 3.27, $d \mid S$ can be extended to $d_1: S_1 \to K^1C(T)$, the *I*-skeleton of C(T) such that d_1 is a homeo-

morphism onto which carries $\overline{x_i x_j}$ onto $\overline{p_i p_j}$. Set $S_2 = i < j < k^{C(\{x_i, x_j, x_k\})}$ Define $d_2: S_2 \to K^2 C(T)$, the 2-skeleton of C(T) as follows: If $C(\{x_i, x_j, x_k\})$ $\subseteq S_2, d_2 = d_1$ on Bd $C(\{x_i, x_j, x_k\})$. Choose $z \in \operatorname{Int} C(\{x_i, x_j, x_k\})$. Then $f_1(x_i, z)$



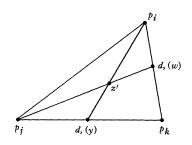


Fig. 1.

Received July 7, 1965

 $\cap \overline{x_j x_k} = \{y\}, f_1(x_j, z) \cap \overline{x_i x_k} = \{w\}, \text{ and } \overline{p_j d_1(w)} \cap \overline{p_i d_1(y)} \text{ contains a single point } z'. \text{ Set } z' = d_2(z).$

Set $S_3 = i < j < k < q^{C(\{x_i, x_j, x_k, x_q\})}$. Define $d_3: S_3 \rightarrow K^3C(T)$, the 3-skeleton of C(T), as follows: If $C(\{x_i, x_j, x_k, x_q\}) \subseteq S_3$, let $d_3 = d_2$ on Bd $C(\{x_i, x_j, x_k, x_q\})$. Choose $z \in \operatorname{Int} C(\{x_i, x_j, x_k, x_q\})$. $f_1(x_i, z)$ intersects $F^iC(\{x_i, x_j, x_k, x_q\})$ in a single point y; $f_2(\{x_i, x_i, y\}) \cap f_2(\{x_i, x_k, y\}) = \overline{yx_i}$, and $f_i(x_q, z) \cap F^qC(\{x_i, x_j, x_k, x_q\}) = \{w\}$. Then $f_2(\{x_i, x_q, w\}) \cap f_2(\{x_i, x_j, y\}) \cap f_2(\{x_i, x_k, y\}) = \{z\}$. Define $\{d_3(z)\} = f_2(\{p_j, p_q, d_2(w)\}) \cap f_2(\{p_i, p_j, d_2(y)\}) \cap f_2(\{p_i, p_k, d_2(y)\})$. This process can be continued until we obtain $d_m = d: C(S) \rightarrow C(T)$.

By the manner in which they were defined, each d_i , $i = 1, \ldots, m$, is 1-1, onto, has the property that $d_i(G_{S_i}) = G_{K^i C(T)}$ and is a homeomorphism. The proof of this latter fact is quite analogous to several of the proofs in chapter V of [1].

Definition 1: Let X have geometry G. By a triangulation of X (with respect to G) we mean a collection K of simplices $\{C_{\nu}\}$, $\nu \in N$, of X such that i) $\bigcup_{N} C_{\nu} = X$; ii) if C_{ν} and C'_{ν} are arbitrary elements of K, then $C_{\nu} \cap C'_{\nu}$ is a simplex; and iii) if C_{ν} , $C'_{\nu} \in K$, then $C_{\nu} \subseteq C'_{\nu}$ implies $C_{\nu} = C'_{\nu}$.

Definition 2: A space X with geometry G of length m-1 is called a spherical m-arrangement if:

1) Each 0-flat consists of precisely two points. If x and y are distinct points of the same 0-flat, we say they are antipodal.

2) G is semi-projective.

3) Every linearly independent subset of X has a convex hull.

4) If W is any convex subspace of X, then W with geometry G_W is a $(\delta(W)+1)$ -arrangement.

5) If f is a k-flat contained in a k+1-flat g, the f disconnects g into two convex components.

Unless specifying otherwise, all further statements will refer to a space X with geometry G such that X and G form a spherical *m*-arrangement, $m \ge 1$.

Lemma 1: X is connected.

Proof: Suppose $X = A \cup B$, $A \cap B = \phi$, A, B non-empty open subsets of X. Either A or B (or both) contains infinitely many points; assume card $A \ge \aleph_0$. Choose $x \in B$ and $y \in A - \mathbf{f}_0(x)$. Then \overline{xy} exists by definition 2, 3), is connected and contains both x and y, hence x and y are in the same component of X, a contradiction.

Lemma 2: If $\{x,y\}$ is linearly independent, then $\overline{xy} \subseteq f_1(x,y)$.

Proof: $\overline{xy} \cap f_1(x,y)$ is a convex set (2.3) which contains x and y, hence $\overline{xy} \cap f_1(x,y) \supseteq \overline{xy}$, therefore $\overline{xy} \cap f_1(x,y) = \overline{xy}$.

Lemma 3: A subset W of X is convex iff i) W contains no antipodal points, and ii) $\{x,y\} \subseteq W$ implies $\overline{xy} \subseteq W$.

Proof: The intersection of W with any 0-flat is connected if W is convex,

or if i) holds. Suppose f is any 1-flat and ii) holds. Then if $\{x, y\} \subseteq f \cap W$, $\overline{xy} \subseteq f \cap W$ (lemma 2), hence x and y are in the same component of $f \cap W$, therefore $f \cap W$ is connected. If W is convex, then by definition 2, 4), $\overline{xy} \subseteq W$. This suffices by 2.1.2.

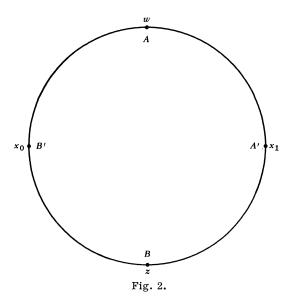
Lemma 4: G is a topological geometry.

Proof: If $\{W_{\lambda}\}$, $\lambda \in \Lambda$, is a family of convex sets and $\{x, y\} \subseteq W_{\lambda}$ for each λ , then $\overline{xy} \subseteq W_{\lambda}$ for each λ , hence since $\bigcap_{\Lambda} W_{\lambda} \subseteq W_{\lambda}$ for each λ , by lemma 3 $\bigcap W_{\lambda}$ is convex.

^A If f is an m-1-flat, then f is closed since X-f is open. Suppose we have shown that all flats of dimension greater than k are closed and suppose f is a k-flat, $0 \le k \le m-1$. Let g be any k+1-flat which contains f. Since g-f is open in g, f is closed in g, a closed set, hence f is closed. ϕ is always closed.

Lemma 5: If m = 1 and X is second countable, then X is homeomorphic to S^1 .

Proof: Let $f = \{x_0, x_1\}$ be an arbitrary 0-flat in X and A and B be the open



convex components of X-f. Since A is closed in X - f, but not in X (or lemma 1 would be contradicted), we may suppose $x_0 \in ClA$. Suppose $x_1 \notin ClA$. Let $g = \{w, z\} \neq f$ be some 0-flat in X and A' and B' be the open convex components into which g disconnects X; we may suppose $x_1 \in A'$. Now $x_1 \in ClB$, for if $x_1 \notin ClB$, then $\{x_1\}$ is both open and closed in X_{\bullet} contradicting lemma 1. But then $B \subseteq B \cup \{x_1\}$ \subseteq ClB, therefore $B \cup \{x_1\}$ is connected, hence is

convex. Thus, using lemma 4, we see that A' splits into components $A' \cap (B \cup \{x_1\})$ and $A' \cap A$, hence A' could not be convex. We have thus shown that $ClA = A \cup \{x_0, x_1\}$; a similar argument shows $ClB = B \cup \{x_0, x_1\}$. A simple argument shows that ClA and ClB are both irreducibly connected between x_0 and x_1 . Applying theorem 11.17 of Wilder [2], chapter I, we see that X is homeomorphic to S^1 .

Lemma 6: If f is a k-flat, then f with the subspace topology and geometry G_f forms a spherical k-arrangement.

Proof: The only part of definition 2 which is not clearly applicable is 3). We must show that if $S = \{x_0, \ldots, x_i\}$ is a linearly independent subset of f,

then $C(S) \subseteq f$: If i = 1, then the lemma follows from lemma 2 since $f_1(x_0, x_1) \subseteq f$. Suppose lemma 6 is true for $i - 1 \ge 1$. Then $C(S - \{x_0\}) \subseteq f$. But then by definition 2, 4) and lemma 2, $\bigcup_{x \in C(S - \{x_0\})} \overline{x_0 x} = C(S) \subseteq f$.

Theorem 2: If X is second countable, then X is homeomorphic to S^m .

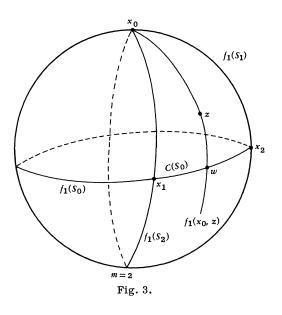
Proof: Lemma 5 proves this theorem for m=1. Assume theorem 2 has been proved for all spherical k-arrangements, $1 \le k \le m-1$, and suppose X and G form a spherical m-arrangement. Let $S = \{x_0, \ldots, x_m\}$ be a maximal linearly independent subset of X and $\{y_0, \ldots, y_m\}$ be the set of points such that y_i is antipodal to $x_i, i=0, \ldots, m$. Set $S_i = S - \{x_i\}$. Each $f_{m-1}(S_i)$ disconnects X into convex open components A_i and B_i ; we say suppose that $x_i \in A_i$ for each *i*. We first prove

Lemma 7: $f_{m-1}(S_i) = \operatorname{Fr} A_i = \operatorname{Fr} B_i$.

Proof: If m = 1, then the lemma has already been proved during the proof of lemma 5. Suppose lemma 7 is true for $m - 1 \ge 1$. Let $w \in f_{m-1}(S_i)$ and let g be any m - 1-flat distinct from $f_{m-1}(S_i)$ which contains w. Then since $f_{m-1}(S_i) \cap g$ disconnects $f_{m-1}(S_i)$, each neighborhood U of w intersects both components, hence w is both in $\operatorname{Fr} A_i$ and $\operatorname{Fr} B_i$, hence $f_{m-1}(S_i) \subseteq \operatorname{Fr} A_i$ and $f_{m-1}(S_i) \subseteq \operatorname{Fr} B_i$. However, since $X - f_{m-1}(S_i) = A_i \cup B_i$ and A_i and B_i are both open, the inclusions also go the other way and $f_{m-1}(S_i) = \operatorname{Fr} A_i = \operatorname{Fr} B_i$.

Lemma 9: $\bigcap_{i=0}^{m} \operatorname{Cl}A_{i} = C(S).$ Proof: $\bigcap_{i=0}^{m} \operatorname{Cl}A_{i} = \bigcap_{i=0}^{m} (A_{i} \cup \mathfrak{f}_{m-1}(S_{i})) = \bigcup \{Y_{0} \cap \ldots Y_{m} | Y_{i} = \mathfrak{f}_{m-1}(S_{i}) \text{ or } Y_{i} = A_{i}\}.$ Since G is semi-projective, $\bigcap_{i=0}^{m} \mathfrak{f}_{m-1}(S_{i}) = \phi.$ Suppose $\{x, y\} \subseteq \bigcap_{i=0}^{m} \operatorname{Cl}A_{i}$ with x and y antipodal. We may suppose that $x \in A_{i_{1}} \cap A_{i_{q}} \cap \mathfrak{f}_{m-1}(S_{j_{1}}) \cap \ldots \cap \mathfrak{f}_{m-1}(S_{j_{p}})$ and $y \in A_{k_{1}} \cap \ldots \cap A_{k_{s}} \cap \mathfrak{f}_{m-1}(S_{r_{1}}) \cap \ldots \cap \mathfrak{f}_{m-1}(S_{r_{i}}).$ Since all the $A_{i}, i = 0, \ldots, m$,
are convex, no A_{i} which contains x can also contain y. Therefore in the sets above containing x and y all $\mathfrak{f}_{m-1}(S_{j}), j = 0, \ldots, I$ are represented, and since y is contained in every m-1-flat which contains x, it follows that $\{x, y\}$ $\subseteq \bigcap_{j=0}^{m} \mathfrak{f}_{m-1}(S_{j}), \text{ a contradiction to the fact that this intersection must be empty.$ Suppose $\{x, y\} \subseteq \bigcap_{i=0}^{m} \operatorname{Cl}A_{i}$. $\mathfrak{f}_{1}(x, y) \cap \bigcap_{i=0}^{m} A_{i} \cup \{x, y\} \subseteq \operatorname{Cl}(\mathfrak{f}_{1}(x, y) \cap \bigcap_{i=0}^{m} A_{i}) \cup \{x, y\}$ is connected. Since x and y cannot be antipodal $(\mathfrak{f}_{1}(x, y) \cap \bigcap_{i=0}^{m} A_{i}) \cup \{x, y\}$ is convex, therefore $C(S) \subseteq \bigcap_{i=0}^{m} \operatorname{Cl}A_{i}.$ By lemma 3 then $\bigcap_{i=0}^{m} \operatorname{Cl}A_{i}$ is convex, therefore $C(S) \subseteq \bigcap_{i=0}^{m} \operatorname{Cl}A_{i}.$

A straightforward argument and the induction hypothesis of theorem 2 show that $C(S_i) = \bigcup \{Y_0 \cap \ldots \cap Y_m | Y_j = \mathbf{f}_{m-1}(S_j) \text{ or } Y_j = A_j, j \neq i; Y_i = \mathbf{f}_{m-1}(S_i)\}, i = 0, \ldots, m$, and for $i \neq k, C(S_i \cap S_k) = \bigcup \{Y_0 \cap \ldots \cap Y_m | Y_j = \mathbf{f}_{m-1}(S_j) \text{ or } Y_j = A_j, j \neq i, k; Y_i = \mathbf{f}_{m-1}(S_i) \text{ and } Y_k = \mathbf{f}_{m-1}(S_k)\}.$



Suppose $z \in (\bigcap_{i=0}^{m} ClA_i) - C(S_0)$. Then if $z \in \bigcap_{i=0}^{m} A_i$, $f_1(x_0, z)$ must intersect $C(S_0)$ in an interior point w; for if not, then it must intersect some $f_{m-1}(S_j)$, $j \neq 0$, in a point other than x_0 or y_0 , which would imply $f_1(x_0, z) \subseteq f_{m-1}(S_j)$, or $z \notin \bigcap_{i=0}^{m} A_i$. In this case then $z \in x_0 w$. If $z \in Y_0 \cap \ldots \cap Y_m$ where $Y_i = f_{m-1}(S_i)$, then there is $w \in C(S_i \cap S_0)$ such that $z \in \overline{x_0 w}$. Thus by definition 2, 4) and 3.6, $C(S) = \bigcap_{i=0}^{m} ClA_i$.

A similar argument can be used to show that if $D \cup E = \{0, \ldots, m\}$ and $D \cap E = \phi$, then $\bigcap_{i \in D} \operatorname{Cl} A_i \bigcap_{i \in I} \bigcap_E \operatorname{Cl} B_j = C(\{x_i\}_{i \in E} \bigcup \{y_j\}_{j \in D}).$

It is easy to see that this procedure gives a triangulation of X, and if applied to S^m , it will also give a triangulation of S^m (with respect to the usual "spherical" geometry on S^m). It should be noted that considering $S^m = \{(w_1, \ldots, w_{m+1}) \in \mathbb{R}^{m+1} | w_1^2 + \ldots + w_{m+1}^2 = I\}$, then the *i*-flats of S^m are the intersections of S^m with the *i*+1-dimensional vector subspaces of \mathbb{R}^{m+1} ; the geometry on S^m thus obtained is semi-projective because the lattice of vector subspaces of \mathbb{R}^{m+1} is modular. The triangulation of S^m contains exactly as many *m*-simplices related in precisely the same manner as in X. Using theorem 1, we can find a homeomorphism between X and S^m by defining the homeomorphism one simplex at a time. Using the techniques of theorem 1 we can insure the necessary matching on the boundaries of the simplices in the triangulation.

REFERENCES

- M. C. Gemignani; "Topological Geometries and a New Characterization of R^m", Notre Dame Journal of Formal Logic, V. VII (1966), pp. 57-100.
- [2] R. L. Wilder, Topology of Manifolds, Providence, AMS, 1963.

State University of New York at Buffalo Buffalo, New York