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A CHARACTERIZATION OF Sm BY MEANS OF
TOPOLOGICAL GEOMETRIES

MICHAEL C. GEMIGNANI

In a recent paper in this Journal [1], the author characterized Rm as a
topological space using the concept of a topological geometry. The purpose
of the present paper is to present a similar characterization for the
m -sphere Sm. The terminology and propositions referred to by number are
those of [1],

Theorem 1: Let X and G form an m-arrangement, m ^ 2, and suppose X is
second countable. Then if S={x0, . . . , xm} is a linearly independent subset
of X and T = {po, . β , pm} is any maximal linearly independent subset of Rm

with the usual Euclidean geometry G, then there is a homeomorphism d
which maps C(S) onto C(T) and F*C(S) onto F'C(Γ), i = 0, . . . , m, such that
d(Gc(s)) = Gc(τ)

Proof: Set d(xi)= piy i = 0,. . . , m. Let Sx= i< j XiXj. By 3.27, d\s can be
extended to dί:S1-*K1C(T), the I-skeleton of C(T) such that d i i s a homeo-
morphism onto which carries x&j onto "pϊpϊ Set S2 = i < j <kC:(*xi'xJ'xk^
Define d2:S2->K2C(T),the 2-skeleton of C(T) as follows: If C{{xi9xi?xk})
<Ξ 5 2 , d2 = d\ on BdC({x/9Xj,xk}). Choose ze Int C({xifxj,xk}). Then ίi(xi9z)

/ / jX^fi^rz) y / / )k d, (w)

/ ^ h I Pi dΛy) Pk
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Fig. 1.
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Π XjXk = {y}, U(xj,z) Π Xi%k = {w}, and pjdi(w) Πpidi(y) contains a single
point zr. Set zf = d2 (z).

Set S3 = i<j <k <qc{{xi>xi'xk'xi]\ Define d3:53->iΓ3€(Γ), the 3-skeleton of
C(Γ), as follows: If C({xi,Xj,Xk,xq}) £ S3, let d3 = A on BdC ({#,-, # ; ,tf*,#f}).
Choose zelntC({xi,Xj,Xk,Xq}). ii(xi,z) intersects FiC({xi9xμXk,xq}) in a
single point y , fa({ΛΓ, ,AΓ, ,3;}) Π f2 ({^,^,3;}) = ^ , and f , (# f ,2) ΠFqc({xifXj,
Xk,Xq}) = {w}. Then f2 ({Λ:/ ,*?, w}) Π f2 ({#* ,#/, 3>}) Π f2 ({#,-,Xk,y}) = {ε}. Define
{d3(β)} = i2{{pj,pq,d2{w)})C\ί2{{pi,pj,d2{y)})(λU{{pi,pk,d2{y)}). This process
can be continued until we obtain dm = d: C(S)—> C(Γ).

By the manner in which they were defined, each di, i = 1, . . . , m, is
1-1, onto, has the property that di(GSi) = GκiC(τ) and is a homeomorphism.
The proof of this latter fact is quite analogous to several of the proofs in
chapter V of [l].

Definition 1: Let X have geometry Go By a triangulation of X (with respect
to G) we mean a collection K of simplices {cv}f veN, of X such that
i) UCj, =X; ii) if Cv and c'v are arbitrary elements of K, then Cv Γ\Cl is a

simplex; and in) if Cv, CleK, then Cv ^. Cl implies Cv =Cl.

Definition 2: A space X with geometry G of length m-1 is called a spherical
m-arrangement if:

1) Each O-flat consists of precisely two points. If x and y are distinct
points of the same O-flat, we say they are antipodal.

2) G is semi-projective,
3) Every linearly independent subset of X has a convex hulh
4) If W is any convex subspace of X, then W with geometry Gw is a

(δ(W)+l)-arrangement.
5) If f is a k-flat contained in a k +l-flat g, the f disconnects g into

two convex components.

Unless specifying otherwise, all further statements will refer to a
space X with geometry G such that X and G form a spherical m-arrange-
ment, m ^ 1.

Lemma 1: X is connected.

Proof: Suppose X = AUB, AΠB = φ, A, B non-empty open subsets of X.
Either A or B (or both) contains infinitely many points; assume card A> No

Choose xeB and yeA-10(x). Then ~xy exists by definition 2, 3), is connected
and contains both x and y, hence x and y are in the same component of X,
a contradiction.

Lemma 2: If{x,y} is linearly independent, then x~y ζU(x,y)

Proof: ~xy (Λii(x,y) is a convex set (2.3) which contains x and y,hence
xy Π fi(x,y) 2 x~y, therefore xy Π fi(x,y) =xy.

Lemma 3: A subset W of X is convex iff i) W contains no antipodal points,
and ii) {x,y} c. W implies x~y c W.

Proof: The intersection of W with any O-flat is connected if W is convex,
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or if i) holds. Suppose / is any I-flat and ii) holds. Then if {x,y} Q /(Ί W,
xyQfΠW (lemma 2), hence x and y are in the same component of fΠWf

therefore / ΠW is connected. If W is convex, then by definition 2, 4),
xy <Ξ W. This suffices by 2.1.2.

Lemma 4: G is a topological geometry.

Proof: If {W\}9 λeA, is a family of convex sets and {x,y} ζLW\ for each λ,
then xyQW\ for each λ, hence since dW\QW\ for each λ, by lemma 3

Λ
Π W\ is convex.

If / is an m-i-flat, then / is closed since X-f is open. Suppose we
have shown that all flats of dimension greater than k are closed and
suppose / is a k-flat, 0 — k ̂ m-1. Let g be any k +i-flat which contains /.
Since g-f is open in g, f is closed in g, 2L closed set, hence / is closed.
φ is always closed.

Lemma 5: If m = 1 and X is second countable, thenX is homeomorphic to S1.

Proof: Let/= {#0>#i}be an arbitrary 0-flat in Xand A and B be the open
c o n v e x components of

^^JL-.^ x~f- S i n c e A i s c l o s e d i n

^ ^ A ^ ^ X-fy but not in X (or
/^ >v lemma 1 would be con-

/ \^ tradicted), we may sup-
/ \ pose xoe CIA. Suppose

/ \ x^ClA. Letg={w,z}Φf
I \ be some 6>-flat in X and

1 Af and B1 be the open
*o( B' A'.xi convex components into

/ which g disconnects X;
\ / w e may suppose xxeAf.
\ / Now x^ C\B, for if

\ / x^ CIB, then {xx} is both
\ . / open and closed in X,

\ . ^ / contradicting lemma 1.
^^-_f_^-^^ But then B£Bu{xx}

C C1J5, therefore B \j{xx}
l g * * is connected, hence is

convex. Thus, using lemma 4, we see that Ar splits into components
A* nlBU-ftfi}) and A'ΠA, hence A' could not be convex. We have thus shown
that CIA =Λ U{# 0 >*A}; a similar argument shows C1.B = 5 U { % Λ : ] L } . A
simple argument shows that CIA and C1I? are both irreducibly connected
between xQ and xx. Applying theorem 11.17 of Wilder [2], chapter I, we see
that X is homeomorphic to S1.

Lemma 6: If f is a k-flat, then f with the subspace topology and geometry
Gf forms a spherical k-arrangement.

Proof: The only part of definition 2 which is not clearly applicable is 3).

We must show that if S = {xQ , . . . , # / } is a linearly independent subset of /,
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then C(S)Qf: If i = I, then the lemma follows from lemma 2 since
fi(#o,#i)<Ξ/ Suppose lemma 6 is true for ί-1^1. Then C(S-{#(})Q/.
But then by definition 2, 4) and lemma 2, U 3^J = C(S)Q f.

xeC(S-{xo\)

Theorem 2: If X is second countable, then X is homeomorphic to Sm.

Proof: Lemma 5 proves this theorem for m=l. Assume theorem 2 has
been proved for all spherical ^-arrangements, 1 —k —m-1, and suppose
X and G form a spherical m-arrangement. Let S={x0, . . . , xm} be a
maximal linearly independent subset of X and {y0, . . . , ym} be the set of
points such that yι is antipodal to Xj9 i = 0, . . . , m. Set Si =S-{xi}. Each
tm~i(Si) disconnects X into convex open components A; and Bi; we say sup-
pose that XiβAi for each u We first prove

Lemma 7; \m.^i) = FrA; = Fr J5, .

Proof. If ra = I, then the lemma has already been proved during the proof
of lemma 5. Suppose lemma 7 is true for m- 1^1. Let wefw_i(S* ) and let
g be any ra-i-flat distinct from fOTΛ( Sί) which contains w. Then since
fra-i(S/)ng disconnects f^.^S/), each neighborhood U of w intersects both
components, hence w is both in Fr Ai and FrBi, hence im-!(Si) QFrA^ and
ffl*-i(Sz') ^FrBi. However, since X-f .̂̂ S1/) = AiUBi and ̂ 4/ and .δ/ are both
open, the inclusions also go the other way and f m-^Si) = Fr Ai = FrBi.

m

Lemma 9: Q C1A, = G(S).
m m

Proof: Π CIA, = f| (A< U f,,.^)) = \J {Yon . . . Ym\Yi= f.-^S,) or 7έ =Af}.

Since G is semi-projective, Π f ^-i( s ^) = Φ Suppose {Λ;,3;}Q. Π c l ^ ί ' w i t n

ί=0 ί=0

A: and 3; antipodal. We may suppose that xeAj1 Π A^Πf^tS/j) Π . . . mm-i(Sjp)
and yeAk^ ... ^AksC\1m-l(Sri)n...Π im-i(Srt). Since all the Λ, , z = 0 , . . . , w ,

are convex, no Λ, which contains x can also contain y. Therefore in the
sets above containing x and 3; all fm-ι(Sj), j = 0,.. . . , 1 are represented, and
since y is contained in every ra-I-flat which contains x, it follows that {̂ ,3;}

m

^ Π f w-i(S ), a contradiction to the fact that this intersection must be empty.
j-0 m rn

Suppose {ΛΓ,3;}C(J CIΛ . f iU^πfjΛ/ is convex (lemma 4 and 2.3), hence
i=o mi=o m

i s c o n n e c t e d , t h e r e f o r e (i ̂ x , y ) n \ \ Ai)\j\x fy} QCl(ί ^ x , y ) n \ \ Ai) = ί^x^y) n
j I'CIA/ is connected. Since x and y cannot be antipodal (fiU,3>)n(|A;)u{#,3;}
i=o ZL Ί=o
i s convex and t h e r e f o r e contains xy, hence xy c | J ClAi. By l e m m a 3 then

Λ A '=°
I I CIΛ is convex, therefore C(S)Q\ | CIA/.

A straightforward argument and the induction hypothesis of theorem 2
show that C(Si) = \J{γon. . .Π Ym \Yj= f*-i(S, ) or F ; =Ay,j^z; 7, = V-i(S, )},
z = 0, . . . , m, and for i^k,C(Sif)Sk) = u{Yon. . . n . y j γ ; = f^.^Sy) or7 ; =A7 ,"
jti,k; Yi = f̂ -xίS,) and Yk =Ίm^(βk)}.
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m

χ0 Suppose se(QCIA,) -

s^ ! \ \ ^ " \ C(S0). T h e n if ze \\AU

/ , \ \ \ /i(̂ i) i=o

/ i \ \ \ fi(#o,z) must intersect
/ / \ \ \ C{S0) in an interior point

/ / \ \ \ w' * o r ^ n 0 *> ^ e n ^ m u s *
/ [ V \ intersect some 1m-i(Sj),

, j V ^ \ 7V ^ in a point other than
^ *~~~ | ^ l ^ 2 ^ 0 o r ^0 > w n i c n would

<" ί ccso^r^^ '^/ imply ix{xo,z) Q fw_i(S; ),

\ /ΐosα) /^i / / o r ^ ^ Π Λ In this case
\ \ / / / ί>=^

\ \ I / then ^eΛΓo^. If zeY0Π. . .

\ \ I (ς , / l (X0' y Π F - W h e r β F^ = 1m-llSi h
\^^ ^ IfύH) / then there is we C (S, Π So)

^ ^ s ^ ^ ^ v

x / ^ ^ ^ ^ such that£€#ow. Thus by
™ = 2 definition 2, 4) and 3.6,

Fig 3 as)=n CIA.
A similar argument can be used to show that if DUE={θ, . . . , m} and

DΠE = φ, then f | c i Λ f) Πβ ClJBy = C({^}&E U {v/W

It is easy to see that this procedure gives a triangulation of X, and if
applied to Sm, it will also give a triangulation of Sm (with respect to the
usual "spherical" geometry on Sm). It should be noted that considering
Sm = {(wl9 . . . , wm+1)e Rm+1 \w\ + . . . + M £ + 1 = l}, then the z-flats of Sm are
the intersections of Sm with the i+1 -dimensional vector subspaces of Rm+1;
the geometry on Sm thus obtained is semi-projective because the lattice of
vector subspaces of Rm+1 is modular. The triangulation of Sm contains
exactly as many m-simplices related in precisely the same manner as in X.
Using theorem 1, we can find a homeomorphism between X and Sm by
defining the homeomorphism one simplex at a time. Using the techniques
of theorem 1 we can insure the necessary matching on the boundaries of the
simplices in the triangulation.
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