Notre Dame Journal of Formal Logic
Volume VIII, Number 3, July 1967

A CHARACTERIZATION OF \mathbf{S}^{m} BY MEANS OF TOPOLOGICAL GEOMETRIES

MICHAEL C. GEMIGNANI

In a recent paper in this Journal [1], the author characterized \mathbf{R}^{m} as a topological space using the concept of a topological geometry. The purpose of the present paper is to present a similar characterization for the m-sphere \mathbf{S}^{m}. The terminology and propositions referred to by number are those of [1].

Theorem 1: Let X and G form an m-arrangement, $m \geq 2$, and suppose X is second countable. Then if $S=\left\{x_{0}, \ldots, x_{m}\right\}$ is a linearly independent subset of X and $T=\left\{p_{0}, \ldots, p_{m}\right\}$ is any maximal linearly independent subset of \mathbf{R}^{m} with the usual Euclidean geometry \bar{G}, then there is a homeomorphism d which maps $C(S)$ onto $C(T)$ and $F^{i} C(S)$ onto $F^{i} C(T), i=0, \ldots, m$, such that $d\left(G_{C(S)}\right)=\bar{G}_{C(T)}$.
Proof: Set $d\left(x_{i}\right)=p_{i}, i=0, \ldots, m$. Let $S_{1}=i<j \overline{x_{i} x_{j}}$. By 3.27, $d \mid S$ can be extended to $d_{1}: S_{1} \rightarrow K^{1} C(T)$, the 1 -skeleton of $C(T)$ such that d_{1} is a homeomorphism onto which carries $\overline{x_{i} x_{j}}$ onto $\overline{p_{i} p_{j}}$. Set $S_{2}=i<{ }_{j}^{U}<k^{C\left(\left(x_{i}, x_{j}, x_{k}\right\}\right)}$ Define $d_{2}: S_{2} \rightarrow K^{2} C(T)$, the 2 -skeleton of $C(T)$ as follows: If $C\left(\left\{x_{i}, x_{i}, x_{k}\right\}\right)$ $\subseteq S_{2}, d_{2}=d_{1}$ on $\operatorname{BdC}\left(\left\{x_{i}, x_{j}, x_{k}\right\}\right)$. Choose $z \in \operatorname{Int} C\left(\left\{x_{i}, x_{j}, x_{k}\right\}\right)$. Then $\mathrm{f}_{1}\left(x_{i}, z\right)$

Fig. 1.
$\cap \overline{x_{j} x_{k}}=\{y\}, \mathrm{f}_{1}\left(x_{j}, z\right) \cap \overline{x_{i} x_{k}}=\{w\}$ ，and $\overline{p_{j} d_{1}(w)} \cap \overline{p_{i} d_{1}(y)}$ contains a single point z^{\prime} ．Set $z^{\prime}=d_{2}(z)$ 。

Set $S_{3}=i<j<\cup_{k}<q^{C\left(\left\{x_{i}, x_{j}, x_{k}, x_{q}\right\}\right)}$ ．Define $d_{3}: S_{3} \rightarrow K^{3} C(T)$ ，the 3－skeleton of $C(T)$ ，as follows：If $C\left(\left\{x_{i}, x_{j}, x_{k}, x_{q}\right\}\right) \subseteq S_{3}$ ，let $d_{3}=d_{2}$ on $\operatorname{Bd} C\left(\left\{x_{i}, x_{j}, x_{k}, x_{q}\right\}\right)$ ． Choose $z \in \operatorname{Int} C\left(\left\{x_{i}, x_{j}, x_{k}, x_{q}\right\}\right)$ ． $\mathrm{f}_{1}\left(x_{i}, z\right)$ intersects $F^{i} C\left(\left\{x_{i}, x_{j}, x_{k}, x_{q}\right\}\right)$ in a single point $y ; \mathrm{f}_{2}\left(\left\{x_{i}, x_{i}, y\right\}\right) \cap \mathbf{f}_{2}\left(\left\{x_{i}, x_{k}, y\right\}\right)=\overline{y x_{i}}$ ，and $\mathbf{f}_{i}\left(x_{q}, z\right) \cap F^{q} C\left(\left\{x_{i}, x_{j}\right.\right.$ ， $\left.\left.x_{k}, x_{q}\right\}\right)=\{w\}$ ．Then $\mathrm{f}_{2}\left(\left\{x_{j}, x_{q}, w\right\}\right) \cap \mathrm{f}_{2}\left(\left\{x_{i}, x_{j}, y\right\}\right) \cap \mathrm{f}_{2}\left(\left\{x_{i}, x_{k}, y\right\}\right)=\{z\}$ ．Define $\left\{d_{3}(z)\right\}=\mathbf{f}_{2}\left(\left\{p_{j}, p_{q}, d_{2}(w)\right\}\right) \cap f_{2}\left(\left\{p_{i}, p_{j}, d_{2}(y)\right\}\right) \cap \mathbf{f}_{2}\left(\left\{p_{i}, p_{k}, d_{2}(y)\right\}\right)$ ．This process can be continued until we obtain $d_{m}=d: C(S) \rightarrow C(T)$ ．

By the manner in which they were defined，each $d_{i}, i=1, \ldots, m$ ，is 1－1，onto，has the property that $d_{i}\left(G_{S_{i}}\right)=G_{K}{ }^{i} C(T)$ and is a homeomorphism． The proof of this latter fact is quite analogous to several of the proofs in chapter V of［1］．

Definition 1：Let X have geometry G。By a triangulation of X（with respect to G ）we mean a collection K of simplices $\left\{C_{\nu}\right\}, \nu \in N$ ，of X such that i）$\cup_{N} C_{\nu}=X$ ；ii）if C_{ν} and C_{ν}^{\prime} are arbitrary elements of K ，then $C_{\nu} \cap C_{\nu}^{\prime}$ is a simplex；and iii）if $C_{\nu}, C_{\nu}^{\prime} \in K$ ，then $C_{\nu} \subseteq C_{\nu}^{\prime}$ implies $C_{\nu}=C_{\nu}^{\prime}$ ．

Definition 2：A space X with geometry G of length $m-1$ is called a spherical m－arrangement if：

1）Each 0－flat consists of precisely two points。If x and y are distinct points of the same 0－flat，we say they are antipodal．

2）G is semi－projective。
3）Every linearly independent subset of X has a convex hull。
4）If W is any convex subspace of X ，then W with geometry G_{W} is a $(\delta(W)+1)$－arrangement．

5）If f is a k－flat contained in a $k+1$－flat g ，the f disconnects g into two convex components．

Unless specifying otherwise，all further statements will refer to a space X with geometry G such that X and G form a spherical m－arrange－ ment，$m \geq 1$ ．

Lemma 1：X is connected．
Proof：Suppose $X=A \cup B, A \cap B=\phi, A, B$ non－empty open subsets of X ． Either A or B（or both）contains infinitely many points；assume card $A \geq \aleph_{0}$ ． Choose $x \in B$ and $y \in A-\mathrm{f}_{0}(x)$ ．Then $\overline{x y}$ exists by definition 2， 3 ），is connected and contains both x and y ，hence x and y are in the same component of X ， a contradiction．

Lemma 2：If $\{x, y\}$ is linearly independent，then $\overline{x y} \subseteq f_{1}(x, y)$ ．
Proof：$\overline{x y} \cap \mathrm{f}_{1}(x, y)$ is a convex set（2．3）which contains x and y ，hence $\overline{x y} \cap \mathbf{f}_{1}(x, y) \supseteq \overline{x y}$ ，therefore $\overline{x y} \cap \mathbf{f}_{1}(x, y)=\overline{x y}$ ．

Lemma 3：A subset W of X is convex iff i）W contains no antipodal points， and ii）$\{x, y\} \subseteq W$ implies $\overline{x y} \subseteq W$ ．

Proof：The intersection of W with any O－flat is connected if W is convex，
or if i) holds. Suppose f is any 1-flat and ii) holds. Then if $\{x, y\} \subseteq f \cap W$, $\overline{x y} \subseteq f \cap W$ (lemma 2), hence x and y are in the same component of $f \cap W$, therefore $f \cap W$ is connected. If W is convex, then by definition 2, 4), $\overline{x y} \subseteq W$. This suffices by 2.1.2.
Lemma 4: G is a topological geometry.
Proof: If $\left\{W_{\lambda}\right\}, \lambda \in \Lambda$, is a family of convex sets and $\{x, y\} \subseteq W_{\lambda}$ for each λ, then $\overline{x y} \subseteq W_{\lambda}$ for each λ, hence since $\cap_{\Lambda} W_{\lambda} \subseteq W_{\lambda}$ for each λ, by lemma 3 ${ }_{\Lambda}^{n} W_{\lambda}$ is convex.
Λ If f is an $m-1$-flat, then f is closed since $X-f$ is open. Suppose we have shown that all flats of dimension greater than k are closed and suppose f is a k-flat, $0 \leq k \leq m-1$. Let g be any $k+1$-flat which contains f. Since $g-f$ is open in g, f is closed in g, a closed set, hence f is closed. ϕ is always closed.
Lemma 5: If $m=1$ and X is second countable, then X is homeomorphic to S^{1}. Proof: Let $f=\left\{x_{0}, x_{1}\right\}$ be an arbitrary 0 -flat in X and A and B be the open convex components of

Fig. 2. $X-f$. Since A is closed in $X-f$, but not in X (or lemma 1 would be contradicted), we may suppose $x_{0} \in \mathrm{Cl} A$. Suppose $x_{1} \notin \mathrm{Cl} A$. Let $g=\{w, z\} \neq f$ be some 0 -flat in X and A^{\prime} and B^{\prime} be the open convex components into which g disconnects X; we may suppose $x_{1} \in A^{\prime}$. Now $x_{1} \in \mathrm{ClB}$, for if $x_{1} \notin \mathrm{ClB}$, then $\left\{x_{1}\right\}$ is both open and closed in X, contradicting lemma 1 . But then $B \subseteq B \cup\left\{x_{1}\right\}$ $\subseteq \mathrm{Cl} B$, therefore $B \cup\left\{x_{1}\right\}$ is connected, hence is convex. Thus, using lemma 4, we see that A^{\prime} splits into components $A^{\prime} \cap\left(B \cup\left\{x_{1}\right\}\right)$ and $A^{\prime} \cap A$, hence A^{\prime} could not be convex. We have thus shown that $\mathrm{Cl} A=A \cup\left\{x_{0}, x_{1}\right\}$; a similar argument shows $\mathrm{Cl} B=B \cup\left\{x_{0}, x_{1}\right\}$. A simple argument shows that $\mathrm{Cl} A$ and $\mathrm{Cl} B$ are both irreducibly connected between x_{0} and x_{1}. Applying theorem 11.17 of Wilder [2], chapter I, we see that X is homeomorphic to S^{1}.

Lemma 6: If fis a k-flat, then f with the subspace topology and geometry G_{f} forms a spherical k-arrangement.
Proof: The only part of definition 2 which is not clearly applicable is 3). We must show that if $S=\left\{x_{0}, \ldots, x_{i}\right\}$ is a linearly independent subset of f,
then $C(S) \subseteq f$: If $i=1$, then the lemma follows from lemma 2 since $\mathbf{f}_{1}\left(x_{0}, x_{1}\right) \subseteq f$. Suppose lemma 6 is true for $i-1 \geq 1$. Then $C\left(S-\left\{x_{0}\right\}\right) \subseteq f$. But then by definition 2, 4) and lemma 2, $\underset{x \in C\left(S-\left\{x_{0}\right\}\right)}{\cup} \overline{\bar{x}_{0} x}=C(S) \subseteq f$.

Theorem 2: If X is second countable, then X is homeomorphic to \mathbf{S}^{m}.
Proof: Lemma 5 proves this theorem for $m=1$. Assume theorem 2 has been proved for all spherical k-arrangements, $1 \leq k \leq m-1$, and suppose X and G form a spherical m-arrangement. Let $S=\left\{x_{0}, \ldots, x_{m}\right\}$ be a maximal linearly independent subset of X and $\left\{y_{0}, \ldots, y_{m}\right\}$ be the set of points such that y_{i} is antipodal to $x_{i}, i=0, \ldots, m$. Set $S_{i}=S-\left\{x_{i}\right\}$. Each $\mathbf{f}_{m-1}\left(S_{i}\right)$ disconnects X into convex open components A_{i} and B_{i}; we say suppose that $x_{i} \in A_{i}$ for each i. We first prove

Lemma 7: $f_{m-1}\left(S_{i}\right)=\operatorname{Fr} A_{i}=\operatorname{Fr} B_{i}$.
Proof: If $m=1$, then the lemma has already been proved during the proof of lemma 5. Suppose lemma 7 is true for $m-1 \geq 1$. Let $w \in f_{m-1}\left(S_{i}\right)$ and let g be any $m-1$-flat distinct from $\mathbf{f}_{m-1}^{1}\left(S_{i}\right)$ which contains w. Then since $\mathbf{f}_{m-1}\left(S_{i}\right) \cap g$ disconnects $\mathbf{f}_{m-1}\left(S_{i}\right)$, each neighborhood U of w intersects both components, hence w is both in $\operatorname{Fr} A_{i}$ and $\operatorname{Fr} B_{i}$, hence $\mathbf{f}_{m-1}\left(S_{i}\right) \subseteq \operatorname{Fr} A_{i}$ and $\mathrm{f}_{m-1}\left(S_{i}\right) \subseteq \operatorname{Fr} B_{i}$. However, since $X-\mathrm{f}_{m-1}\left(S_{i}\right)=A_{i} \cup B_{i}$ and A_{i} and B_{i} are both open, the inclusions also go the other way and $\mathrm{f}_{m-1}\left(S_{i}\right)=\operatorname{Fr} A_{i}=\operatorname{Fr} B_{i}$.
Lemma 9: $\bigcap_{i=0}^{m} \mathrm{Cl} A_{i}=C(S)$.
Proof: $\bigcap_{i=0}^{m} \operatorname{Cl} A_{i}=\bigcap_{i=0}^{m}\left(A_{i} \cup \mathbf{f}_{m-1}\left(S_{i}\right)\right)=\bigcup\left\{Y_{0} \cap \ldots Y_{m} \mid Y_{i}=\mathbf{f}_{m-1}\left(S_{i}\right)\right.$ or $\left.Y_{i}=A_{i}\right\}$. Since G is semi-projective, $\bigcap_{i=0}^{m} \mathrm{f}_{m-1}\left(S_{i}\right)=\phi$. Suppose $\{x, y\} \subseteq \bigcap_{i=0}^{m} \mathrm{Cl} A_{i}$ with x and y antipodal. We may suppose that $x \in A_{i_{1}} \cap A_{i_{q}} \cap \mathrm{f}_{m-1}\left(S_{j_{1}}\right) \cap \ldots \cap f_{m-1}^{\prime}\left(S_{i_{p}}\right)$ and $y \epsilon A_{k_{1}} \cap \ldots \cap A_{k_{s}} \cap \mathrm{f}_{m-1}\left(S_{r_{1}}\right) \cap \ldots \cap \mathrm{f}_{m-1}\left(S_{r_{t}}\right)$. Since all the $A_{i}, i=0, \ldots, m$, are convex, no A_{i} which contains x can also contain y. Therefore in the sets above containing x and y all $\mathbf{f}_{m-1}\left(S_{j}\right), j=0, \ldots, 1$ are represented, and since y is contained in every m-1-flat which contains x, it follows that $\{x, y\}$ $\subseteq \bigcap_{j=0}^{m} f_{m-1}\left(S_{j}\right)$, a contradiction to the fact that this intersection must be empty. Suppose $\{x, y\} \subseteq \bigcap_{i=0}^{m} \mathrm{Cl} A_{i} . \quad \mathrm{f}_{1}(x, y) \cap \bigcap_{m=0}^{m} A_{i}$ is convex (lemma $\underset{m}{m}$ and 2.3), hence is connected, therefore $\left(\mathrm{f}_{1}(x, y) \cap \bigcap_{i=0}^{m} A_{i}\right) \cup\{x, y\} \subseteq \mathrm{C} 1\left(\mathrm{f}_{1}(x, y) \cap \bigcap_{i=0}^{m} A_{i}\right)=\mathrm{f}_{1}(x, y) \cap$ $\bigcap_{i=0}^{m} \mathrm{Cl} A_{i}$ is connected. Since x and y cannot be antipodal $\left(\mathbf{f}_{1}(x, y) \cap \bigcap_{i=0}^{m} A_{i}\right) \cup\{x, y\}$ ${\underset{m}{i=0}}_{\substack{i s \\ m}} \bar{x} \bar{m}$, hence $\overline{x y} \subseteq \bigcap_{i=\overline{0}}^{m} \mathrm{Cl} A_{i}$. By lemma 3 then $\bigcap_{i=0}^{m} \mathrm{Cl} A_{i}$ is convex, therefore $C(S) \subseteq \bigcap_{i=0}^{m} \mathrm{Cl} A_{i}$.

A straightforward argument and the induction hypothesis of theorem 2 show that $C\left(S_{i}\right)=\bigcup\left\{Y_{0} \cap \ldots \cap Y_{m} \mid Y_{j}=\mathbf{f}_{m-1}\left(S_{j}\right)\right.$ or $\left.Y_{j}=A_{j}, j \neq i ; Y_{i}=\mathbf{f}_{m-1}\left(S_{i}\right)\right\}$, $i=0, \ldots, m$, and for $i \neq k, C\left(S_{i} \cap S_{k}\right)=\cup\left\{Y_{0} \cap \ldots \cap Y_{m} \mid Y_{j}=\mathbf{f}_{m-1}\left(S_{j}\right)\right.$ or $Y_{j}=A_{j}$, $j \neq i, k ; Y_{i}=\mathbf{f}_{m-1}\left(S_{i}\right)$ and $\left.Y_{k}=\mathbf{f}_{m-1}\left(S_{k}\right)\right\}$.

Fig. 3.

Suppose $z \epsilon\left(\bigcap_{i=0}^{m} \mathrm{Cl}_{1}^{m} A_{i}\right)-$
in
$\bigcap_{i=0}^{m} A_{i}$, $\mathrm{f}_{1}\left(x_{0}, z\right)$ must intersect $C\left(S_{0}\right)$ in an interior point w; for if not, then it must intersect some $f_{m-1}\left(S_{j}\right)$, $j \neq 0$, in a point other than x_{0} or y_{0}, which would imply $\mathbf{f}_{1}\left(x_{0}, z\right) \subseteq \mathbf{f}_{m-1}\left(S_{j}\right)$, or $z \notin \bigcap_{i=0}^{m} A_{i}$. In this case then $z \epsilon \overline{x_{0} w}$. If $z \in Y_{0} \cap$. . $\cap Y_{m}$ where $Y_{i}=\mathbf{f}_{m-1}\left(S_{i}\right)$, then there is $w \in C\left(S_{i} \cap S_{0}\right)$ such that $z \epsilon \overline{x_{0} w}$. Thus by definition 2,4) and 3.6, $C(S)=\bigcap_{i=0}^{m} \mathrm{Cl} A_{i}$.

A similar argument can be used to show that if $D \cup \underset{i}{i=0}=\{0, \ldots, m\}$ and $D \cap E=\phi$, then $\bigcap_{i \in D} \operatorname{Cl} A_{i} \bigcap_{i \in j} \bigcap_{E} \operatorname{Cl} B_{j}=C\left(\left\{x_{i}\right\}_{i \in E} \bigcup\left\{y_{j}\right\}_{j \in D}\right)$.

It is easy to see that this procedure gives a triangulation of X, and if applied to \mathbf{S}^{m}, it will also give a triangulation of \mathbf{S}^{m} (with respect to the usual "spherical" geometry on \mathbf{S}^{m}). It should be noted that considering $\mathbf{S}^{m}=\left\{\left(w_{1}, \ldots, w_{m+1}\right) \in \mathbf{R}^{m+1} \mid w_{1}^{2}+\ldots+w_{m+1}^{2}=1\right\}$, then the i-flats of \mathbf{S}^{m} are the intersections of \mathbf{S}^{m} with the $i+1$-dimensional vector subspaces of \mathbf{R}^{m+1}; the geometry on S^{m} thus obtained is semi-projective because the lattice of vector subspaces of \mathbf{R}^{m+1} is modular. The triangulation of \mathbf{S}^{m} contains exactly as many m-simplices related in precisely the same manner as in X. Using theorem 1, we can find a homeomorphism between X and \mathbf{S}^{m} by defining the homeomorphism one simplex at a time. Using the techniques of theorem 1 we can insure the necessary matching on the boundaries of the simplices in the triangulation.

REFERENCES

[1] M. C. Gemignani; "Topological Geometries and a New Characterization of $\mathbf{R}^{m} \boldsymbol{\prime}$, Notre Dame Journal of Formal Logic, V. VII (1966), pp. 57-100.
[2] R. L. Wilder, Topology of Manifolds, Providence, AMS, 1963.
State University of New York at Buffalo
Buffalo, New York

