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SYLLOGISTIC WITHOUT EXISTENCE1

JOHN BACON

Modern logic has been credited with exposing the so-called "existence"
assumptions implicit in Aristotelian logic and in many traditional brands of
syllogistic. There are, to be sure, dissenting voices. Bocheήski, for
example, has claimed ([11] p. 425) that the "existence" assumptions are
needed only for certain interpretations of syllogistic, interpretations that
are by no means the most appropriate. However, the alternative which
Bocheήski has in mind is -Lukasiewicz's axiomatization, a variant of which
Bocheήski himself has put forth [12]. Now, to refer to -Lukasiewicz's sys-
tem is to beg the question of "existential" import, since that system itself
has need of interpretation in terms of basic logical notions. And in fact,
one workable interpretation of -Lukasiewicz's system would analyze his
second axiom, Ίaa', as Ίx(Ax & Ax)9. In order, then, to make good the
claim that -Lukasiewicz's axiomatization of syllogistic avoids "existence"
assumptions, we must show that on some alternative interpretation the as-
sumptions are indeed avoided. But to give such an interpretation of
-Lukasiewicz's system is to give an "existence"-free interpretation of
syllogistic itself. The latter is what I shall do in this paper.

By 'syllogistic' I shall henceforth mean, when no further qualification
is added, Aristotle's theory of valid syllogisms for assertoric categorical
statements without negative terms. The interpretation offered is based on a
structural analysis of categorical statements which incorporates two fea-
tures, quantification of the predicate and a binding operator 'such that',
somewhat like that of Hailperin [19], which forms common nouns from
predicates. On this interpretation, the extension of Aristotle's fourteen
valid syllogisms to the traditional 24 is straightforward. On the other
hand, no such simple extension is possible to the full traditional theory of
negative terms, including obversion and contraposition, unless the system
is considerably strengthened.

I. Informal introduction. 1.1 Various closely related kinds of sen-
tences in everyday language are understood by Aristotle and others to ex-
press categorical propositions; e.g., 'All men are animalian', 'Everything
human is an animal', 'Every man is an animal', 'All men are animals'.
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Which of these are equivalent and how each is best analyzed are by no
means the matter-of-course questions they are often thought to be. But
Aristotle's decision to treat them all the same may be taken as a decision
to regard the form most perspicuously exhibited by one of them as standard
for them all. The form which, as we shall see, best fits Aristotle's syl-
logistic is that exhibited by such statements as

Every man is an animal.
Some dog is a biter.
No Earthling is a Martian.

In these statements, both the subject and the predicate terms are grammat-
ically common nouns. It has been pointed out (e.g. in [13] n. 6, [16] p. 68)
that common nouns in natural languages correspond most closely to vari-
ables in formalized languages.2 Thus 'man' may be thought of as a variable
ranging over men or, somewhat less informally, over the class3 λx (human
Λ;).4 And indeed, in the above examples the subject terms are fairly obvi-
ously variables bound by the initial quantifiers. A first step toward analy-
sis, then, gives us

V man (man is an animal)
3 dog (dog is a biter)
3* Earthling (Earthling is a Martian).

1.2 But what about the common nouns in the predicate ? They appear
modified by the indefinite article. Now, when the indefinite article ac-
companies the subject, we naturally translate by means of the particular
quantifier:

An animal has been caught.
3 animal (animal has been caught).

The same procedure is in order when the indefinite article modifies the
predicate term. However, considerations of scope require us to place the
quantifier farther away from the variable bound:

V man 3 animal (man is animal)
3 dog 3 biter (dog is biter)
1 Earthling 3 Martian (Earthling is Martian)

At this point it becomes clear that the 'is' in these statements is not a
copula at all, as so many logic textbooks would have us believe, but rather
the sign of identity (cf. [20] p. 510, 2°):

V man 3 animal (man = animal)
etc.

For mechanical convenience, I shall take not these but the trivially equiva-
lent forms exemplified by

V man 3 animal (animal = man)<
3 dog 3 biter (biter = dog)
V Earthling VMartian (Martian φ Earthling)
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as standard for A, I, and E categoricals respectively. 0, of course, looks
like this:

3 woman V wife (wife f woman).

1.3 Thus an analysis of one traditional ordinary-language form for
categoricals leads directly to what has been called "quantification of the
predicate". This appellation was meant to distinguish the above kinds of
statements from ones like

V man (animalian man)

in which only the subject term is quantified. Quantification of the predicate
in analyzing categoricals was first advocated in modern times by George
Bentham [10] in 1827. The technique was rediscovered, apparently inde-
pendently, by William Hamilton ([20] pp. 509-559) before 1840. Among the
precursors cited by Hamilton, the commentator Ammonius Hermiae of the
fifth century A.D. expressly noted the close connection between statements
with and those without quantified predicates ([2] pp. 101-8). But taking this
connection to be one of equivalence, Ammonius concluded that quantification
of the predicate is a superfluous embellishment ([2] p. 106, lines 26-36; tr.
[20] p. 550).5 Recently Timothy Smiley ([26] p. 69) and William T. Parry
[24] have called attention anew to the interest which attaches to this treat-
ment of categoricals. As Hamilton and Parry point out, for example, the
forms with quantified predicates permit a neat formulation of the tradi-
tional doctrine of distribution: 'distributed' =df 'universally quantified'.
More important, given elementary properties of quantification and identity,
it is easily seen that categoricals thus analyzed satisfy all the laws of the
square of opposition without the addition o£ any "existence" premisses. In
particular, subalternation simply becomes a case of the law that a particu-
lar quantification follows from a universal quantification.

1.4 These advantages of common-noun analyses of categoricals are
exploited by Timothy Smiley [26], who interprets syllogistic by means of
many-sorted logic. Smiley takes sortal variables corresponding to our
'man', 'animal', etc., as primitive. He also introduces predicates for each
sort, such as 'human', 'animalian'. He then is able to show that whether or
not categoricals are interpreted with quantified predicates, Lukasiewicz's
system of syllogistic is contained within his system. However, Smiley has
not avoided the "existence" assumption, but has kicked it upstairs into the
semantics of his system by stipulating a non-empty range for each sortal
variable. In a suitably enriched version of his system ([26] p. 68), this as-
sumption finds explicit reflection in such object-language theorems as
'3j\τ(humanx)', and so on for each sortal predicate. The peculiar twist
which enables us to get around this assumption is achieved by carrying the
analysis one step further. Instead of positing primitive sortal variables, I
take the corresponding predicates as basic and construct from them vari-
ables of restricted range as composite expressions.

1.5 This technique of forming restricted variables was first worked
out by Theodore Hailperin [19]. The system introduced below differs in
important respects from those of Hailperin (cf. §2.8), but much of its
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versatility rests on the notation which Hailperin invented. By prefixing the
operator6 'ξx* (Hailperin uses *vx9) to a propositional form ζFx9

9 we obtain
the restricted variable 'ζxFx' which, with an important reservation to be
explained later on (§3.3), may be thought of as ranging over λxFx. Thus,
for example, 'ξ ^(canine x)9 has the same role as the common noun 'dog'. It
is not required that *x9 occur free in the operand, which thus might be a
constant rather than a form. If the operand contains other free variables
besides V , as e.g. in ζFxy9, it is apparent that 'ξxFxy9 is going to be a
strange kind of variable: we might call it an "open variable" or a "vari-
able-form". If we need further variables concurrent with 'ξxFx9, we may
use ζζyFy9

9 'ξzFz9, etc. It is thus seen that relettering cannot in general
be permitted for the ξ -operator. Hailperin prohibits in his formation rules
the use of restricted variables as ^-operator variables. No such limitation
is imposed here. Thus from the restricted variable 'ζx(canine x)9 we can
form the still more restricted variable 'ξξ#(canine x) (brown ξ ̂ (canine x))\
i.e., 'brown dog'. In fact, many syllogistic terms are nested in this way.7

1.6 By means of the ξ-formalism, then, common nouns are analyzed
into composite terms containing, apart from improper symbols and unre-
stricted variables, either primitive predicates or complex predicative con-
texts. I would not want to try to justify this step in the analysis by recourse
to ordinary language. Ordinary language contains both a range-restricting
mechanism and a great many primitive common nouns. It would be easy
enough to set up our formal system so as to reflect this situation. But by
assuming only one primitive sort of common nouns, the summum-genus
individual variables, we effect a formal simplification in the total theory.
It may be suspected that this ploy amounts to reparsing ordinary common
nouns in much the same way as Quine reparses ordinary proper names.
But Quine reparses proper names precisely so that they will not behave as
logically primitive proper names would. Our reparsed common nouns, on
the other hand, receive the same syntactical treatment as the primitive
sortal variables of many-sorted logic.

1.7 It is interesting to note that the natural languages contain equiva-
lents of 'ξ\ Its most literal English translation is 'such', as in 'such men
as are mortal' — 'ξ men (men are mortal)'. This use of 'such' is idiomati-
cally restricted to certain contexts, however. Of more general application
is 'such that' used between the operator variable and the operand: 'man
such that he is mortal'.8 Άsher' in literary Hebrew (as Geach points out,
[18] p. 120) and Yiddish 'vos' in one of its uses are one-word equivalents of
'such that': 'mentsh, vos er iz shterblekh'. In simple contexts, natural
languages collapse the operator variable of a quantifier and the variable
bound into one common noun: 'V man (man is mortal) ' — ' Every man is
mortal'. The same is true for another translation of 'ξ': 'man who is
mortal', 'ξ9 thus provides a fitting formalization of essential relative
clauses. In consideration of this correspondence to qualifying pronouns and
conjunctions in the natural languages, it seems appropriate to call 'ξx9 a
qualification operator or qualifier? The most common expression of c Λl for
qualification in the natural languages, though it only works in simple con-
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texts, is the qualifying adjective: 'mortal man'. We begin to see how much
more closely the ξ-formalism enables us to parallel the logical structure
of ordinary language than do the customary functional calculi.

1.8 Having accustomed ourselves to restricted variables, it is natural
next to introduce restricted constants as substituends for the various re-
stricted variables. A primitive constant of our formalized language, say
'a\ will of course be substitutable for an unrestricted variable V , but not
in general for a restricted variable, say *ξ#(canine # ) \ For the latter we
are evidently only warranted in substituting proper names of dogs, such as
'Fido\ In order to construct corresponding proper names for our
formalized language, we may use a constant-forming operator10 (Zx' which,
like 'ζx\ is prefixed to propositional forms or sentences. Thus, if 'F9 in
our formalism translates 'canine', we might use 'ΈxFx* to denote Fido,
'ZyFy' for Lassie, 'ZzFz' for Argos, etc. These are all substituends for
the variables 'ζxFx', 'ζyFy',... As with 'ξ', relettering is obviously not
permissible. In formalized languages we are accustomed to proper names
which are bare labels, unrestricted individual constants. But in ordinary
language it seems that restricted constants such as dog constants and girl
constants and river constants are much more common than bare labels.

1.9 After this informal explanation of the present approach and its
motivations, we are ready to proceed to an axiomatization of qualification.
We could start with the two-valued propositional calculus as our base logic.
However, the method introduced here is of special interest for interpreting
syllogistic in non-classical logic systems which involve a more restrictive
notion of implication than the truth-functional one. For besides the usual
difficulties of interpreting syllogistic, intensional logics pose the problem
of whether to render categorical statements with intensional or with exten-
sional sentence connectives. In the present interpretation, as we have seen,
this problem is solved by using no sentence connectives to'analyze categor-
icals. The treatment is then easily carried over to the two-valued calculus,
for whatever holds in a more restrictive system holds a fortiori in two-
valued logic.

Π. Formal development. The calculus given below is based upon rele-
vance implication, as we may call11 the implication relation formalized
almost simultaneously by Moh Shaw-Kwei [23], and then by Church in his
weak positive implicational propositional calculus [14, 15]. Although rele-
vance implication has much to recommend it philosophically, I shall not
enter into a discussion of its merits here. To the system R of relevance
implication with truth functions are added a theory of qualification and a
theory of identity.

The system RXIX

2.1 Primitives
Proper: x y z . . . (unrestricted individual variables)

a b c . . . (unrestricted individual constants)
Fn Gn Ήn . . . where n is a finite positive integer (n-ary func-

tional constants)
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Improper: -» & - = ξ Ξ ( )

2.2 Formation rules, cTy and *Δ ' range over expressions of the ob-
ject language. Improper symbols and juxtaposition are used autonymically.

1. If Γ is an n-ary functional constant and Δ a series ofn individual
variables or constants, then ΓΔ is wf.

2. If Γ is an individual variable and Δ a wff, then IΓΔzs a restricted
individual variable and ΞΓΔα restricted individual constant.

3. If Γ and Δ are individual variables or constants, then Γ= Δ is wf.
Ϊ.IfΓ and A are wf, so are -Γ, (Γ & Δ), and (Γ -» Δ).

Individual variables and constants together are called terms, which are
spoken of as restricted or unrestricted in the same way as variables and
constants.

2.3 Metadefinitions. As further syntactical notation, let A, B, C, . . .
range over wffs and x, y, z , . . . (without subscripts) over terms of the object
language, u will occasionally be used as a metavariable ranging over un-
restricted (or "universal") terms only. X and X' range over the two sym-
bols I and Ξ.

An occurrence of a variable x in a term or wff Γ is a bound occurrence
of x in Γ if it is a non-stuck occurrence in a term XxA which is a part of Γ.
All occurrences of x in Γ which are neither bound nor stuck are free oc-
currences of x in Γ.

A non-bound occurrence in B of a term XxA, where y is free in A, is a
stuck occurrence of XxA in XτyB; it is also a stuck occurrence in any term
or wff of which X'yB is a part. (Unrestricted variables never get stuck.)12

An occurrence of a term is encumbered iff it is either bound or stuck.
(An occurrence of a variable is thus unencumbered iff it is a free occur-
rence.)

All unencumbered occurrences of a variable x in A are, in XxA, occur-
rences which are bound up with each other and with the occurrence of x as
operator variable of X.

Before proceeding, let us extend our syntactical notation to express re-
sults of substitution and replacement. Where the same formula variable
'A' occurs more than once in a given context but with different term ex-
pressions 'x', (y9 in the argument position, it is to be understood that A(x)
is identical with A(y) except for having unencumbered occurrences of x just
where A(y) has unencumbered occurrences of y. A(y/x) is the result of re-
placing all unencumbered occurrences of x in A or A(x) by unencumbered
occurrences of y. A(y:x) is the result of replacing any number of unencum-
bered occurrences of x in A or A(x) by unencumbered occurrences of y,
subject to two restrictions. (1) If a replaced occurrence of x is an occur-
rence in a restricted variable z, then the corresponding occurrence of x in
any other occurrence of z which is bound up with the first occurrence is
also to be replaced by y. (2) If a replaced occurrence of x is in a free oc-
currence of a restricted variable z, then the corresponding occurrence of x
in any other free occurrence of z in A is likewise to be replaced by y.
Where no ambiguity arises, the parentheses in such notations as the fore-
going will be omitted (but not abbreviated by dots).
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Alphabetic variant is defined recursively as follows. All unrestricted

terms are alphabetic variants of one another. If x and y are variables

which are alphabetic variants, then XxAx is an alphabetic variant of XfyAy.

The notation xu x2, . . . will be used for alphabetic variants of x.

From the formation rules, it is evident that any term x will begin with

zero or more occurrences of X's one after the other, followed by an occur-

rence of an unrestricted term u. Every term an occurrence of which begins

with one of these occurrences of an X, as well as u itself, is said to be

buried in x. Let the metavariables [x], [y], . . . range over terms in which

respectively x, y, . . . are buried.

2.4 Punctuation conventions. Parentheses will be omitted under con-

ventions similar to those of Church ([13] pp. 74ff.). It will suffice for the

reader to know how to restore them:

1. Moving from left to right, replace successively each dot which

occurs at the left side of a binary connective by a), putting its com-

( at the beginning of the formula or of the parenthetical part in which

the dot occurs.

2. Moving from right to left, replace successively each remaining dot

by a (, putting its mate at the end of the formula or of the parenthet-

ical part in which the dot occurs.

3. Taking account in the usual way of parentheses already present,

restore parentheses for *->~9s by association to the left, treating

clusters of symbols not containing a •*-*> as units.

4. Repeat (3) successively for —% v, and &.

The application of these rules may give rise to superfluous brackets, but

that should cause no trouble. The connective ' - ' will often be placed over

part or all of the negand.

2.5 Definitions

(A — B) = df A^> B._&.B — A

(A v B) =df -.A & B

x / y = df -x = y

3xA = df AHxA/x

VxA = df AΞxA/x

2.6 Rules of inference

mp. A, A -* B t- B

adj. A, B i- A & B where A and B are either both theorems or

both (deduced from) hypotheses.

2.7 Axiom schemata. Henceforth a syntactical formula is to be un-

derstood as standing for only those of the formulas which would otherwise

be in its range which are wffs or parts of wffs. Thus, e.g., 'ζaFd is not a

value of 'XxA'.

Implication

R2. A -> .A — B — B
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R3. A -> B -* .B --> C — .A — C
R4. A — .A -> B. -> .A -> B

Conjunction

R6. A & B — B

R7. A -> B.&.A -> C.- .̂A — B & C

Relating conjunction and negation

R8. A &.B v C.->A & B v C

Negation

R9. A_τ>—B — .B —A
RIO. A -> A -> A

Qualification

XI. A[xi]/x -*A[XxA]/x

X2. A[xJ/ξxB & B[xJ/x — 3ξxBA

Identity

11. x = x

12. x = y —>y = x
13. A & x = y —Ay:x

2.8 Historical notes. Two axiom schemata needed for the system R
in isolation have been omitted: A ->A is an instance of XI, and A & B -»A
of X2. The implication axioms with A -*A are those of Moh, [23] p. 63.
The conjunction axioms with A & B —*A are as modified by Ackermann ([1]
p. 119) from the well-known system of Hubert and Bernays. Ackermann
was also forced to add a variant of R8. The negation axioms are modified
from Belnap, [9] p. 1. The qualification axioms are closely related to those
used by Hubert for his ε-operator. XI is simply a generalization of Hu-
bert's basic ε-formula, (in our notation) Ax/u D AεuA/u ([21] p. 13).
Since X2 is inessential for characterizing our Ξ-operator, the formal
properties of Ξ and ε are very close indeed. The crucial difference is that
Hubert allows relettering for ε. εxFx is thus the same jp-thing as εyFy,
whereas ΈxFx and ΈyFy are not necessarily identical. It is this close re-
lation between ε and Ξ which enables us to take over Hubert and Bernays's
definitions of the quantifiers ([21] p. 15f.). And for quantifiers thus defined
relettering is derivable. XI may also be regarded as a weakened form of
Smiley's A5 ([26] p. 59). X2 is essentially the left-to-right half of Hailperin
QR4 ([19] p. 23), which corresponds to Smiley A4 (loc. cit). In comparing ξ
with Hailperin's v9 we must first take into account a number of differences
of detail between the two systems. Hailperin's systems are based on two-
valued logic, and he prohibits stuck variables and restricted ^-operator
variables. But allowing for these details, it could roughly be said that ξ is
to the v of Hailperin's system 3Jfv ([19] pp. 114ff.) as ε is to Hubert's 77-
operator ([21] p. 10f.; cf. [19] p. 124).
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2.9 Theorems. If we were working with material implication, we
would need only to deduce Lukasiewicz's axioms for syllogistic in order to
show that it is contained in our system. But since RXIX is intensionally
based, it will be necessary to show how to prove all the syllogisms. We
recall that the four categorical forms are taken to be the following:

A. Vy3x x = y E. VyVx x ^ y
I. 3y3x x = y 0 . 3 yVx x f y

Instances of XI in which x is not free in A (and hence [XxA] not unen-
cumbered in A[XxA]/x) will be cited as " r e f l " . Instances of X2 in which
neither ξxB occurs unencumbered in A nor x in B will be cited as " s i m p " .

T h l . A -> B, B - > C h A - » C

By R3, mp twice. Hereafter cited as "cha in" .

T h 2 . A & B -> B & A

By R7 from R6 and simp.

Th 3. // hA -> B then hA & C — B & C.

0. A -» B given

1. A & C -> A simp
2. A & C -» B 1,0, chain
3. A & C -> C R6
4. A & C - B & C 2, 3, R7

Forms of Th 3 with either the antecedent or the consequent of the conclu-
sion commuted will also be used, on the authority of Th 2.

Th 4. If \-A — C and hB — D, then hA & B -> C & D.

0. A -* C B -» D given
1. A & B - * C & B C & B - + C & D 0, Th 3

2. A & B - + C & D 1, chain

Again, commutations will also be assumed.

Th 5. A — —A

By R9 on ---A -> ---A (refl).

Th 6. --A —A

1. A -> ---A Th 5

2. A -* A 1, Th 5, chain
3. --A — A 2, R9

It will be seen that with the aid of the double-negation theorems, the
various forms of contraposition rules follow straightforwardly from R9.
These will be used below under the name 'epos*.

T h 7 . // h A & B - * C then KB & A -» C {mutatio praemίssarum).
From the premiss by Th 2, chain.
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Th 8. // H-D -* A and hA & B -> C, then f-D & B -* C (replacement of
major premiss) .

0. D —* A given
1. A & B -* C given
2. D & B -> A & B 0, Th 3
3. D & B -» C 2, 1, chain

Replacement of minor premisses is a corollary by Th 2.

Th 9. 3y 3x x = y ~* 3x3y y = x, where x zs not free in y nor z fce versa
(conversion of I).

1. Ξx x = ΞyΞx x = y = y = ΞyΞx x = y = y —*
ΞyΞx x = y = y = Ξx x = ΞyΞx x = y = y 12

(Let A abbreviate Ξx x = y = y and
B abbreviate x = ΞyA.)

2. 3y3x x = y -* ΞyA = ΞxB 1, df
3. -> 3y y = ΞxB 2, XI, chain
4. -> 3x3y y = x 3, XI, chain

The last two steps illustrate the use of XI to give as a special case the
principle of existential generalization.

Th 10. VxA —> A[xχ]/x (universal instantiation).

1. A[Xi]/x -> AΞxA/x XI
2. AΞxA/x -» A[xJ/x 1, epos
3. VxA -> A[Xi]/x 2, df

Th 11. VyVx x / y - * VxVy y f x, where x is not free in y n o r vice

versa (convers ion of E).

1. VyVx x f y -> Vx x φ Ξy-y f ΞxΞy-y fxfx Th 10

(L#ί A abbreviate -y ^ ΞxHy-y φ xf x.)
2o VyVx x / y ~ » ΞxΞy-y / x / x / ΞyA 1, Th 10, chain

(L#ί B abbreviate Ξy-y / x / x . )
3. ΞyA = ΞxB —> ΞxB = ΞyA 12
4. ΞxB / ΞyA -> ΞyA / ΞxB 3, epos
5. VyVx x f y -» ΞyA / ΞxB 2, 4, chain
6. VyVx x f y -* VxVy y / x 5, df

Theorems 7-11 give us all that is needed to reduce syllogisms to the
first figure except for subalternation and reductio ad impossibile. Sub-
alternation will be seen to be an instance of XI. The simple conversions
proved, together with subalter nation, yield the two forms of conversion per
accidens. Reductio ad impossibile, however, is not permissible in R. The
principle on which it is_based, A& B — > C ~ > . A & C —» B, would take us
from A& B ~ * A t o A & A -» B, an implicational paradox. I now proceed to
the first-figure syllogisms.

Th 12. VyAy & Vz3y y = z —* VzAz (y not free in A nor z; z not free in
A nor y).
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1. Vz3y y = z -* 3y y = ΞzAz _ Th 10
2. Vz3y y = z -* Ξy y = ΞzAz = ΞzAz 1, df

(Let B abbreviate y - HzAz.)
3. VyAy -> AΞyB _ Th 10
4. VyAy & Vz3y y = z -> AΞyB & ΞyB = ΞzAz 3, 2, Th 3
5. -*AΞzAz 4, 13, chain
6. -> VzAz 5, df

Putting 3x x = . . . such that x is not free in y nor z for A(...) in Th 12 gives
us Barbara; putting instead Vx x /. . . gives Celarent.

Th 13. VyAy & 3z3y y = z —> 3zAz (same restrictions as for Th 12).

1. VyAy —• AΞy y = Ξz3y y = z Th 10
(Let B abbreviate y = Ξz3y y = z.)

2. VyAy & 3z3 y y = z -> AΞyB & 3z3y y = z 1, Th 3
3. — AΞyB & ΞyB = Ξz3y y - z 2, df
4. —* AΞz3y y = z 3, 13, chain
5. -» 3zAz 4, XI, chain

Putting 3 x x = . . . and Vx x / . . . for A(...) in Th 13 yields respectively
Darii and Ferio.

The usual procedures of reduction given by Aristotle and codified in the
traditional mnemonic names may now be applied to all but two of the
fourteen Aristotelian syllogisms. The same goes for the ten syllogisms
added after Aristotle's time, including the entire fourth figure. The two
exceptions are Baroco and Bocardo, in which the ' c ' indicates that Aristotle
proved them by reductio ad impossibile. Since this procedure is not open
to us in RXIi, we must prove the two syllogisms independently.

Th 14. Vy3x x = y & 3zVx x / z —* 3zVy y f z (Baroco; x, y, z not free
in each other).

1. Vx x f ΞzVx x f z -* Ξx x = Ξy-y f ΞzVx x f z ± ΞzVx x f z Th 10
(Let A abbreviate Vxx/z and

B abbreviate x = Ξy-y / ΞzA.)
2. 3zA -* ΞxB ί ΞzA 1, df
3. Vy3x x = y —* 3x x = Ξy-y / ΞzA Th 10
4. Vy3x x = y -> ΞxB = Ξy-y f ΞzA 3, df
5. Vy3x x = y & 3zVx x f z

-» ΞxB ί ΞzA & ΞxB = Ξy-y f ΞzA 4, 2, Th 4
6. -» Hy-y f ΞzA f ΞzA 5, 13, chain
7. -> Vy y ϊ ΞzA 6, df
8. -» 3zVy y f z 7, XI, chain

Th 15. 3zVx x / z & Vz3y y = z -* 3yVx x / y (Bocardo; same r e -
s t r ic t ions as for Th 14).

1. Vz3y y = z -* 3y y = ΞzVx x f z Th 10
(Let A abbreviate V x x / z α^d

B abbreviate y = HzA.)
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2. Vz3y y = z -» ΞyB = ΞzA 1, df
3. Vz3y y = z -> EzA = ΞyB 2, 12, chain
4. 3zVx x / z & Vz3y y = z -> 3zVx x ^ z & ΞzA = ΞyB 3, Th 3
5. -^Vxx/ ΞzA & ΞzA = ΞyB 4, df
6. -^Vxx/ ΞyB 5, 13, chain
7. -> 3yVxx^y 6, XI, chain

III. Significance of the results. 3.1 Principles used. In order to
prove the syllogisms, we have by no means used all of the axioms of RXIχ.
The reflexivity of implication was used only to get contraposition for use in
Th 10 and 11. Of the implication axioms themselves, only R3 was used.
Since R3 is needed only for chain, minimal transivity, A —* B.&.B —• C.—*. A
-* C, would do as well. A great many non-truth-functional implications
have been proposed, but I know of none so "s tr ict" as to lack transitivity.
This means that our rendering of syllogistic will work for virtually any
system of implication, provided one is willing (as many are not) to assume
certain of our axioms for the other primitives.14

Of the conjunction axioms, all three were used, though not the one re-
lating conjunction and negation (R8). Of the two negation axioms, only R9
was used, but in a form which together with A —* A gives rise to the double
negation equivalence.15 The reflexivity of identity (II) was not used.

Of the qualification axioms, X2 was not used, and XI was used only to
yield properties of quantification. The essential qualifier in XI is the X,
and in the cases of XI we used, this was always Ξ. Ξ in turn was used
only to build quantifiers. This means that we could have got the same re-
sults by using ordinary quantificational axioms and no axioms at all for ξ.
This fact may afford some comfort to those who were repelled by the unin-
tuitive definitions of the quantifiers.

3.2 Existential import. But what then is the point of introducing the
ξ-apparatus? Why not simply put primitive sortal variables in place of our
composite restricted variables? The answer is that we want to avoid
"existence" assumptions; and as we saw above (§1.4), the many-sorted
approach fails to do so. In order to gain a clear view of the differences
among the various interpretations of syllogistic, we shall do well at this
point to recall the ways in which a system may involve "existence" as-
sumptions. For this purpose, it will be useful to speak of syllogistic terms
and syllogistic predicates. Syllogistic predicates are predicates such as
ζF' and 'G' in the categorical form * Everything F is G\ Syllogistic terms
are variables (common nouns) such as x and y in the categorical form
Every x is ay. If a syllogistic term x has approximately the same meaning
as 'thing that isJ^', then ζF9 will be called the associated predicate of x and
x the associated term of tF9. We may then distinguish the following kinds
of "existence" assumptions, where Φ is a syllogistic predicate and φ is its
associated syllogistic term:

1. 3uΦu is a theorem of the system.
2. 3uΦu follows from a categorical in which Φ is a syllogistic predi-

cate or φ is a syllogistic term.
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3. A syllogism in which Φ is one of the syllogistic predicates (or 0 one
of the syllogistic terms) requires 3uΦu as an additional premiss.

4. It is semantically stipulated that Φ has application.
5. It is semantically stipulated that the range of φ is not empty.

In a more exhaustive enumeration, assumptions of the form 3uΦu would
also be taken into account. Under the currently widespread interpretation
of syllogistic more or less after the manner of Principia Mathematical we
must assume either (1) or, more parsimoniously, (2) for I and 0 and (3) for
some syllogisms involving A and E. Smiley's narrower system makes as-
sumptions (5) and (4); and when he adds universal variables, (1) and certain
forms of (2) also come in. The present interpretation of syllogistic as-
sumes only (5), though in a rather peculiar way which I shall now explain.

3.3 Semantics. In Smiley's system, assumption (4) goes hand in hand
with (5). We can now zero in on the difference between his system and ours
by noticing that a restricted variable 'ξxFx' does not stand in precisely the
same relationship to F as one of Smiley's sortal variables a does to the
class denoted by the associated predicate A. To pinpoint the difference: a
ranges over the class denoted by A and that class is non-empty, whereas
'ξxFx' ranges over F iff F is non-empty. What does 'ζxFx* range over if
F is empty? Over the complement of F, λxFxl Thus 'ξxFx' is in either
case semantically well-interpreted; but except when 'Fx' is provable or
contradictory, the interpretation depends upon a matter of contingent fact.
The meaning but not the meaningfulness of a restricted variable may be
contingent on what happens to be the case. This peculiarity in the seman-
tics of RXIX guarantees a non-empty range for a restricted variable 'ξpcFx'
whether or not ixFx.16 It is this semantical feature of RXIi, reflected in
the axiom XI, which permits an "existence"-free interpretation of syllo-
gistic in the system. The interpretation is free of "existence" assumptions
in the following senses. For no predicative context Φ used in constructing
a syllogistic term (or part thereof) ξxΦx need 3xΦx be assumed, whether
as an axiom or as a premiss or as a semantical rule. Nor does 3xΦx
follow from any categorical containing as (a part of) its subject or predicate
term ξxΦx.

3.4 Comparison with Aristotle. That Aristotle did admit terms the
associated predicates of which have no application is clear from the follow-
ing passage:

. . . when in the adjunct [composing a subject term] there is some opposite
which involves a contradiction, the predication of the simple term is impossible.
Thus it is not right to call a dead man a man. When, however, this is not the
case, it is not impossible. ([5] 21a21-23)

Our interpretation of_ syllogistic enables us to make some sense of this
passage. Let ξx.A & A, for short^c, be a self-contradictory term. For this
term we cannot prove both 3ξxA ξxA = c_and 3ξxA ξxA = c, since the only
way to get these_would be from hAc/x & Ac/x as follows:

0. Ac/x & Ac/x _ given
1. Ac/x Ac/x 0, simp/R6
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2. c = c _ II
3. c = c & Ac/x c = c_& Ac/x 2, 1, adj
4. 3ξxA ξxA = c 3ξxA ξxA = c 3, X2

But of course the premiss is a contradiction. Nevertheless, we can prove
3ξxA ξxA = c v 3ξxA ξxA = c from excluded middle, Ac/x v Ac/x. (I omit
the proof here; it follows similar lines to the deduction just given, but-de-
pends on various standard properties of disjunction as well.) Thus we must
disagree with Aristotle to this extent: one of the simple terms is predic-
able of the self-contradictory term. But this is just a consequence of ex-
cluded middle, which holds for all terms. Notice by the way that in our
system the simple term ξxA may fail to be predicable of ξx.A & B even
though A & B is not contradictory, namely when, on whatever grounds,
3x.A & B fails. Aristotle allows for this possibility in the sequel to the
passage already quoted:

Yet the facts of the case might rather be stated thus: when some such opposite
elements are present, resolution is never possible, but when they are not pres-
ent, resolution is nevertheless not always possible. (21a23-25)

Thus some of the peculiarities of RXIt approximate Aristotle's own doc-

trines.17

ΓV. Negative terms. After Aristotle's time syllogistic was extended to
include the possibility of negative terms in categoricals. In the extended
theory, the equivalences of obversion and contraposition play an essential
role. Aristotle himself considers negative terms in some detail and ex-
pressly recognizes certain modes of obversion ([5] 20a20-40; 51b41-52a8).
In spite of this, he never develops a syllogistic theory of negative terms.
Not even in the positive syllogistic, where obversion could cut the number
of syllogisms to be dealt with in half (by subsuming Celarent under
Barbara, etc.), does Aristotle avail himself of this tool. This reason seems
to be that he regarded obversions as valid in only one direction, so that no
equivalences arose.18 But whatever the historical explanation may be for
Aristotle's abstinence from obversion and contraposition, these "equiva-
lences" take on a problematic character in our interpretation of syllogistic.
In fact, they seem to fail entirely in RX^. I can offer no proof of this con-
jecture, but I shall support it indirectly in the following way. I present two
systems involving stronger (looser) theories of identity in which certain
forms of obversion become provable. The proofs of obversion are then
seen to depend essentially on principles not available in RXI1# At the con-
clusion of this part I present a still stronger system based on material im-
plication.

4.1 Term-negation. The syllogistic presented so far has been highly
general as to the sorts of terms admitted. For a treatment of negative
terms, we must introduce some limitations. To begin with, there is no
direct way to form the negatives of unrestricted variables, so these will
have to be excluded as syllogistic terms. For restricted variables, we
must distinguish two kinds of negatives, & relative and an absolute negative.
For example, the negative of 'brown dog' relative to the class of dogs is
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'non-brown dog', whereas the absolute negative would be 'non-(brown dog)'.
For a term of the form ξuA (u unrestricted), the two negatives coincide in
ξuA. But for terms of the form ξξxAB, only the relative negative ξξxAB
can be formulated in our notation. Since the theory of negative terms has
traditionally taken term-negation in the absolute sense, the only variables
we can construct corresponding to the terms of that theory are of the form
ξuA. However, the theory can be extended to cover relative term-negation
in certain circumstances. Consider, e.g., the statement

Every calico cat is a female cat.

If the absolute contraposition of this statement to

Every non-(female cat) is a non-(calico cat)

is a valid inference, then so too, it would seem, is the relative contraposi-
tion to

Every non-female cat is a non-calico cat.

On the other hand, to contrapose

Every calico cat is a female animal

to

Every non-female animal is a non-calico cat

is patently wrong. We notice that in the first case, both negations are rela-
tive to the class of cats, a condition not satisfied by the second example.
We can generalize this condition by requiring that if a categorical with sub-
ject term ξyB and predicate term ξxA is to be obverted or contraposed, then
x and y must be alphabetic variants. Then the negatives ξyB and ξxA will
always be relative to the same class, the domain of x and y.

Let us use a, a, b, b as abbreviations for ξxA, ξxA, ξXiB, ξXiB respec-
tively, where a is not free in B nor b in A. The obverses of the four cate-
gorical forms may then be stated as follows:

obverse of A: VbVa a ^b obverse of E: Vb3a a Φ b
obverse of I: 3bVa a £ b obverse ofO: 3b3a a ^ b

We need not treat contraposition specially, for it would be derivable from
obversion and conversion. To contrapose A{0}, first obvert it to E{l}, apply
simple conversion, and then obvert the result back to A{0} again.

4.2 The system RXI2. The first strengthened system we shall consider
is just like RXIX except that in place of II and 12 it has the following axiom
schema for identity:

I l\ A -> x = x

The next two theorems suffice to show that RXI2 contains RXIχ:

Th216. x = x (II)
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Let A in IV be any theorem and detach.

Th217. x = y — y = x (12)

1. x = y —• x = x IV
2. x = y - * x = y refl
3. x = y - + x = x & x = y 1, 2, R7
4. x = y —* y = x 3, 13, chain

Since RXI2 contains RXIX, we have at our disposal all the theorems thus far
proved for use in RXI2.

Th218. AtxJ/x — 3a a = [x j

1. A[Xl]/x -> LxJ = [X l] II '
2. A[Xi]/x — A[xJ/x refl
3. ALxJ/x — [xi] = [xi] & ALXi]/x 1, 2, R7
4. AjxJ/x - > 3 a a = [xj 3, X2, chain

The intuitive import of Th218 is best seen in such instances as 'runs
x —* 3ξ;y(runs y) ξ^(runs y) = x\ i.e. 'If x runs, then x is a runner.' It is
interesting to note that R plus XI, Th218, and 13 constitute a sufficient axiom
system for RXI2. I chose to start with the less economical axiomatization
because it separates the properties of qualification from those of identity.

Th219. Va a φ [xx] — A[xx]/x

1. A[x!]/x — 3 a a = [xx] Th218
2. A[xx]/x - Ea a = [xj = [Xl] 1, df
3. Ha a = [xj # [x^ -• A[xL]/x 2, epos
4. Va a t [xx] — Ea a = [xx] ί [xx] Th 10
5. Va a # [xx] -* A[xx]/x 4, 3, chain

We are now in a position to prove certain modes of obversion in
RXI2:

Th220. VbVa a φ b —• Vb3a a = b (converse obversion of E).

1. VbVa a τ f b - » V a a ί Ξbla a = b Th 10
2. — -AΞbla a = b/x 1, Th219, chain
3. -»AΞbϊa a = b/x 2, Th 6, chain
4. -> 3 a a = Ξbla a = b 3, Th218, chain

5. — Vb3a a = b 4, df

By a similar proof, which I do not give here, we have

Th221. VbVaa^b-* Vb3a a = b (obversion of E).

I shall assume that A and 0, I and E are contradictories; proof is left to the
reader. Given this assumption, the last two theorems contrapose respec-
tively to

Th222. 3bVa a ψ b -» 3b3a a = b (obversion of 0).
Th223. 3bVa a ψ b —* 3b3a a = b (converse obversion of O).
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In RXI2, then, we can prove one half of each obversion equivalence,
viz. the half which takes us from a negative to an affirmative statement.
But these proofs cannot be made to work in RXIi, depending as they do on
Th218, which makes essential use of I l \ The closest we can come in RXIX

to Th220, e.g., is Sb?a a = b = Ξblϊa a = b & VbVa a + b -» Vb3a a = b v
Ξb3a a = b ^ Eb3a a = b. Unfortunately, the forms of obversion which work
in RXI2 are in the main just the opposite of those recognized by Aristotle.
However, curiously enough, there is one passage where he accepts obver-
sion from the negative to the affirmative:

Thus, if the question were asked Ίs Socrates wise?' and the negative answer
were the true one, the positive inference 'Then Socrates is unwise' is correct.

(20a25-7)

The inference countenanced here is of the form

la a = x f-3a a = x.

If this general form is valid, it is enough to give us (in the contect of RXIi)
Th220-23. The trouble is that Aristotle elsewhere explicitly denies the
general validity of such an inference (52a4, 20f.). The other halves of the
obversion equivalences, viz. obversion and converse obversion of affirma-
tive statements, do not seem to be provable even in RXI2.

4.3 The system RXI3. This system contains a still different strength-
ened theory of identity. RXI3 is just like RXIX except that in place of 12 and
13 it has

13*. x = y -> .A -> Ay:x

It is easily seen that RXI3 contains RXIi, with the help of an auxiliary
theorem from R:

Th316. A - ^ . B — C h B - » . A — C (permutation).

1. A -* .B —» C hypothesis
2. B -> C — C -» .A — C 1, R3
3. B — .B ->C— C R2
4. B -* .A -> C 3, 2, chain

Th317. x = y -> y = x (12)

1. x = y—>.x = χ—*y = x I31

2. x = χ - > . x = y - » y = x 1, Th316
3. x = x II
4. x = y -• y = x 3, 2, mp

Th318. A & x = y -> Ay:x (13)

1. x = y -> .A -» Ay:x I3T

2. A & x = y - * x = y R6
3. A & x = y—>.A-* Ay:x 2, 1, chain
4. A - » . A & x = y-» Ay:x 3, Th316
5. A & x = y —» A simp
6. A & x = y ^ . A & x = y-» Ay:x 5, 4, chain
7. A & x = y — Ay:x 6, R4
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We therefore have at our disposal for RX13 Th 1-15.

Th319. A - > B - » . C - » A - » . C - * B

By Th316 on R3.

Th320. A -» B -• .B -» A

1. B — —B Th 5

2. B — B 1, Th 5, chain
3. —A — B — .--A -> B 2, Th319
4. —A -» B -> .B — A 3, R9, chain
5. —A -» A Th 6
6. A -> B — .--A — B 5, R3
7. A -* B -» .B -» A 6, 4, chain

Th s21. A[x2]/x — .A[xx]/x — Va a φ [ x j

1. Ξa-a * [xx] = [x j -* .AHa-a Φ [xx]/x -* A[xL]/x I3T

2. AΞa-a # [x^/x — .Ξa-a φ [X l] = [X l] — Afx^/x 1, Th316
3. A[x2]/x -> AΞa-a * [xj/x XI
4. A[x2]/x -* .Ha-a φ [xx] = [xx] -> A[xL]/x 3, 2, chain
5. A[x2]/x -> .A[x!]/x -» Ξa-a # [xx] ^ [xx] 4, Th320, chain
6. A[x2]/x — .A[Xi]/x - ^ V a a ί [x j 5, df

Th322. A — .B -* C, D -* .C — E \-Ό -» .A -• .B -» E

1. A —» .B -* C hypothesis
2. D -* .C — E hypothesis
3. A -> .C -• E -* .B -» E 1, R3, chain
4. C -* E — .A -» .B -» E 3, Th316
5. D -* .A -* .B -* E 2, 4, chain

In the following theorem, let a stand for ξxAx (rather than for ξxA):

Th323. A[x2]/x -• .A[x3]/x - > . V b 3 a a = b ~ > VbVa a f b
(obversion of A).

1. Vb3a a = b -» 3a a = ΞbVa a Φ b Th 10
( L ^ C abbreviate Va a ^ b.)

2. Vb3a a = b -> Ξa a = ΞbC = ΞbC 1, df
3. Vb3a a = b -» .AΞa a = ΞbC -* AΞbC 2, I3T, chain
4. AΞa a = ΞbC -• .Vb3a a = b -* AΞbC 3, Th316
5. A[x3]/x -» AΞa a = ΞbC XI
6. A[x3]/x ->1Vb3a a = b -> AΞbC 5, 4, chain
7. AΞbC — -AΞbC Th 5
8. Vb3a a = b -> AΞbC -» .Vb3a a = b — -AΞbC 7, Th319
9. A[x3]/x -• .Vb3a a = b — -AΞbC 6, 8, chain
10. A[x2]/x -> .-AΞbC -> Va a # ΞbC Th321
11. A[x2]/x -* .A[x3]/x — .Vb3u a = b — Va a * ΞbC 9, 10, Th322
12. -* VbVaa φ b 11, df

Here, then, is an example of the sort of obversion which is provable in
RXI3. Notice that the conditions A[x2]/x and A[x3]/x are in effect "exis-
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tential"premisses; Th323 is deductively equivalent to 3xAx -».3xAx - * . . . ,
which is in fact an instance of it. By a similar proof, differing mainly in
details of double negation, we can get

Th324. A[x2]/x -> .A[x3]/x -> .Vb3a a = b -> VbVa a φ b
(converse obversion of A).

Assuming again the relations of contradiction, we can apply Th320 to trans-
form the last two theorems respectively to

Th325. A[x2]/x -» .A[x3]/x -» .3b3a a = b -* 3bVa a φ b
(converse obversion of I).

Th326. A[x2]/x -» .A[x3]/x -» .3b3a a = b -»3bVa a φ b(obversion of I).

Thus in RXI3 we can prove the other half of each obversion equivalence,
the half which takes us from an affirmative to a negative statement, though
only for categoricals whose predicate term a is neither universal nor null
in application relative to the range of x. The proofs depend essentially on
the exported form of I3 f, which is available in neither RXIX nor RXI2. The
closest we can come to, say, Th327 in those two systems is A[x2]/x & Vb3a
a = b —» VbVa a φ b v A[x3]/x. The modes of obversion provable in RXI3 are
the ones that correspond most closely to those recognized by Aristotle. In
20a20f. he gives an example of converse obversion of A(Th324), and in
20a22f. he accepts an instance of abversion of l(Th326). In 51b41-52al
Aristotle gives as valid the inference scheme

3a a = x |— la a = x

and farther down(52a6-8) he approves its contrapositive. (Notice that this
is the converse of the inference cited in the previous section.) In the con-
text of RXIi, all forms of obversion and converse obversion from affirma-
tive to negative statements could be derived from this principle. That is
just the situation we have in RXI3, with the important exclusion of universal
and null terms. In other words, we can interpret in RXI3 what seems to be
Aristotle's predominant view on negative terms. From this standpoint, his
theory of negative terms differs from his positive syllogistic in that it re-
quires "existence" assumptions.

4.4 Two-valued logic. Since contraposition requires obversion in both
directions, it may be presumed to fail in both RXI2 and RXI3. Neither of the
strengthened systems, then, permits an interpretation of the full traditional
theory of negative terms. The move which naturally suggests itself is to
combine RXI2 and RXI3 into one system in which the theorems of both will
be available. The resulting system—call it TXI—turns out to be none other
than the two-valued propositional calculus (T) extended to qualification and
identity. To see that this is so, we have only to note that IV, B —> x = x, and
I3T, x = x —* .A —* A, together give B —* .A —> A, which permutes by Th316 to
A —» .B —* A. The latter suffices to turn relevance implication into material
implication. Seeing this, we can proceed to give a much more economical
formulation of TXI as follows. Formation rules are the same as for RXIX,
except that z> replaces —> and the clause for & drops out. To the definitions
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is added a definition of &. Adj is deleted from the rules of inference. The
R axioms are replaced by some suitable formulation of T, say Lukasiew-
icz's. The qualification axioms are the same, though X2 may now be given
in exported form. The identity axioms are II and I3T. I leave it to the
reader to verify the following theorem of TXΓ.

A[x2]/x & A[x3]/x & B[x4]/X! & B[x5]/x! D . Vb3a a = b = Va3b b = a
(contraposition of A)

A similar conditioned equivalence is provable for 0. Thus syllogistic
with negative terms is interpretable in TXI if for each term a we make two
"existence" assumptions, 3xA and 3xA. If we are content to use exten-
sional logic, then, we may say that Aristotelian syllogistic differs from
syllogistic with negative terms in requiring no "existence" assumptions.
But if we interpret the main connective of syllogisms to be relevance im-
plication, then it seems we must reject the traditional theory of negative
terms as invalid. This is one of the ways in which such an interpretation
fits Aristotle's practice.

V. Concluding remarks. 5.1 Drawbacks. The system R and its extension
to quantification were developed in an attempt to eliminate various unintui-
tive theorems of the classical calculi. These include the much discussed
paradoxes (or "paradoxes") of material and strict implication, Peirce's
law, and others. One such theorem which is avoided in the most natural
quantificational extension of R19 is

3y . Ay —» VxAx

for the case when Ax contains free x. Aside from its intuitive oddness, it
is natural to reject this principle from an extension of R because its ana-
logue in terms of disjunctive and conjunctive expansions, viz.

(A -> A & B &. . .)v(B-* A & B &. . . )v . . . ,

is not provable in R. But the offending principle is a theorem of RXI2: it
follows by "existential" generalization (i.e. XI) from AΞxAx -*AΞxAx (it-
self an instance of XI). It is of course evident that this "paradox" is
directly bound up with our definition of the universal quantifier. But even if
we took universality as primitive, we would still get an equivalence corre-
sponding to that definition.

A still graver difficulty with XI rears its head when we try to extend
RXIi (or any of the stronger systems) to include a treatment of modalities.
Standard systems of quantification and modality contain theorems analogous
to

3xDA -» D3xA

and

OVxA -» VxOA

but, for obvious reasons, reject the converses. Now, the above theorems
would follow straightforwardly in a modal extension of RXIi, but so would
their converses. For
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ϋ3xA -> 3xDA

is by definition the same as

DAΞxA/x — 3xDA,

an instance of "existential" generalization (XI). Similarly,

VxOA -> OVxA

is just

VxOA -> OAΞxA/x,

which is a case of Th 10, universal instantiation. These theorems, which
would in no way depend on the particular principles of modality used in the
system, clearly conflict with our intuitive notions of necessity and possibil-
ity. It is interesting to note that their quantificational analogue,

Vx3yA -• 3yVxA

i.e., by definition,

VxAΞyA/y — 3yVxA

or

Vx3yA —* 3yAHxA/x,

is rejected in RXIX for the case where A contains free x and y. For in that
case, ΞyA { ΞxA} would be stuck in VxAEyA/y { 3yAΞxA/x}, and the form-
ula would fail to fall under XI {Th 10}. The modal analogue of stuckness
and bondage is obliqueness. We might consider restricting XI (and hence
Th 10) to prohibit instantiation into oblique contexts, but such a restriction
would block many desirable modal principles as well. The conclusion ap-
pears inescapable that qualification of the brand formalized in RXIX is in-
compatible with modality.

5.2 Further tasks. The exact significance of the above interpretation
of syllogistic will not be clear until a satisfactory semantics is developed
for qualification. In the case of RXIi_3, this task is aggravated by our
present lack of a semantics for R. But it is reasonable to call for an attack
on the problem in regard to TX and TXI. In §3.3 I gave a rough sketch of
how we might approach the semantics of RX^. The approach involved the
possibility of two different ranges for a restricted variable 'ζxFx9, depend-
ing upon whether or not ixFx. For TX, however, it seems likely that a
simpler interpretation might be possible, according to which 'i xFx' would
always range over λx. lyFy D Fx, and similarly for more complicated re-
stricted variables. This would open up the prospect of interpreting TXI in
an enriched version of Hailperin's !L<ίv by means of the definition

ξxA = df vx. 3xA D A.

It is, however, questionable whether X2 would follow on the basis of this
definition. Such an interpretation might in turn permit the elimination of
ξ -operators as a corollary of a generalization of Hailperin's ^-elimination
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theorem. Needless to say, this result would trivialize our "existence"-free
interpretation of syllogistic as far as TXI were concerned; for a categorical
such as Vb3a a = b would come out equivalent to Vx. 3X 1BDBX/X 1D. 3XADA.
The latter would seem a rather far-fetched rendering of All b's are a's.

5.3 Summary. An interpretation which closely fits Aristotle's de-
velopment of syllogistic can be achieved if we take subject and predicate
terms to be real terms, i.e. common nouns or variables of various ranges
(1.1 -2). If the predicate term is to be a variable, its quantity must be made
explicit (quantification of the predicate, 1.3). Although common nouns are
primitive in ordinary language, we gain better control over the "existen-
tial" commitment involved in their use if we analyze them as qualification
expressions—'man' as 'thing such that it is human' or 'ξΛ;(human x)' and so
on (1.4-7). Using the qualification axioms put forth, with identity and the
system of relevance implication as a base logic (2.1-7), we can prove all
the syllogisms of Aristotelian and traditional positive syllogistic (2.9) with-
out any "existence" assumptions so far as the syllogistic predicates are
concerned (3.2). From the conventional point of view, the syllogistic terms
range over non-empty domains; but what those domains are depends upon
whether or not the associated syllogistic predicates have application (3.3).
Obversion and contraposition do not work, but they become derivable in
successive strengthenings of the system (4.2-4). These strengthenings cul-
minate in classical two-valued logic with qualification and identity, which is
capable of subsuming the full traditional theory of negative terms, though
only with extensive "existence" assumptions (4.4). Although the semantics
of qualification remain to be worked out (5.2), the results already attained
open up new perspectives on the long-standing problem of interpreting
syllogistic. These results are offered as one example of the many fruitful
applications of qualification theory to the philosophy of language.

NOTES

1. I am indebted to Professors Alan Ross Anderson, Milton Fisk, and Rulon S.
Wells for helpful discussion of earlier drafts of parts of this paper. A summary
[7] of parts II and III was read before the Association for Symbolic Logic, New
York, 28 December 1965.

2. Cf. note 8 below.

3. I use 'class* in Church's sense, [13] p. 29, to mean a one-valued singularly
propositional function in extension. It may well be that a sufficiently sophisti-
cated semantics would demand a specification of the sense range for complete
characterization of a variable. In the case of the above example, the sense
range of 'man* would be the property humanity or manhood, in a certain sense of
these words. My resorting to the 'class* locution, then, is not meant to suggest
any identification of properties with classes.

4. Throughout the informal presentation I allow myself for heuristic purposes to
mix English with the formalism. For similar reasons I follow the familiar
practice of using adjectives as if they were verbs, an identification which might
turn out on a finer-grained analysis to be insupportable. The operator 'λ', which
is not part of any system presented here, is to be understood in the usual way.
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5. In the cases where quantification of the predicate gives rise to statements

entirely different from the conventional A, I, 0, and E, Ammonius finds other

objections. Since Hamilton (and more recently Parry) was specially interested

in these unorthodox forms, he was justified in claiming not to have been antici-

pated by Ammonius. What Ammonius did clearly see was the possibility of

expressing categorical propositions by -means of statements with quantified

predicate terms.

6. As Church points out, [13] n. 112, this is not an operator in his sense, since it

yields neither a constant nor a form as usually conceived. But it seems appro-

priate to follow Hailperin in calling it an operator, since it shares with accus-

tomed operators the feature of containing the occurrence of a variable whose

function is to bind other occurrences of that variable in the expression to which

it is prefixed.—See also the historical reference in Church's note.

7. Although they are not treated in this paper, we should not overlook the fact that

ordinary language also contains common nouns ranging over polyadic proposi-

tional functions, e.g. 'married couple', which we might formalize as 'ξ2xy(x is

married to y)\ Cf. on this subject [6], p. 331.

8. In parsing 'x such that . . . ' as a qualification operator forming restricted indi-

vidual variables, I consciously oppose the practice which has arisen of con-

struing it as an abstraction operator forming predicates or class expressions.

Thus it is misleading to read (λx{Fx)y* as 'y is an x such that Fx\ This prac-

tice is based on the same confusion as the treatment of common nouns such as

'man' in 'Socrates is a man' as predicates. The little quantifier 'a' must not be

passed over lightly.

9. This term is not perfect, since it is not the operand but rather the operator

variable (or what that variable stands for, its range) which gets qualified. The

suggested terminology also conflicts with the traditional use of 'quality' to refer

to the affirmative or negative status of statements.

10. Interestingly enough, 'H#\ unlike ζζx\ is an operator in Church's sense. Cf. n.

6 above.

11. The name makes reference to Anderson and Belnap's syntactical completeness

proof for systems involving this brand of implication. (The gist of the proof is

sketched in [3] p. 38.) This appellation is to be preferred to 'weak implication',

as it is the calculus which is weakened by strengthening the implication relation

thereof. Cf. a review by W. T. Parry, [25] p. 257.

12. These prima facie circular characterizations of 'bound' and 'stuck' are con-

densed recursive definitions. A basis clause arises when the occurrence of

'stuck' in the characterization of 'bound' drops out for the case in which x is

unrestricted. Our "stuck" variables arise when Hailperin's "subordinate"

variables are bound. In Hailperin's system, this is ruled out by the formation

rules. As Church points out, [13] n. 94, the admission of stuck variables pre-

sents semantic difficulties, the gravity of which I do not mean to minimize.

However, the stuck variables (as opposed to stuck constants) play no essential

role in the present interpretation of syllogistic.

13. For the system as given, I have not been able to derive a rule of replacement of

equivalents. Though such a rule is not needed for syllogistic, it may be that the

rule or a third qualification axiom is necessary if £ and Ξ are to have their

intended properties. Candidates might be Vu.Au —-Bu.& C— C[XxBx] : [XxAx]

or the stronger Vu.Au -*-* Bu. -* [XxAx] = [XxBx], where [XxBx] is the result of

replacing Ax in [XxAx] by Bx.
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14. In particular, our interpretation of syllogistic works for the system E of Ander-
son and Belnap (e.g. [4] p. 14), which differs from R only in having A •— A.&.B
-*• B. -—.C — C in place of R2.

15. The interpretation thus works for the system of Fitch [17], whose negation is of
just this sort. (Viz., RIO and the ensuing reductio variants fail, but contraposi-
tion and double-negation elimination hold.)

16. In order not to introduce too many strange considerations at once, the semantic
sketch just given is based on the conventional interpretation of the unrestricted
variables 'x\ 'y\ . . . as ranging over a non-empty domain. However, following
Lejewski [22] I hold that ordinary quantification theory, as well as the system
presented here, is equally valid for empty domains. Thus, I would not ultimately
admit even to assumption (5) of §3.2. Now, if the range of 'xf is empty, it
follows that the ranges of 'ξxFx' and of all other common nouns will likewise be
empty. But in this case, 'ΞxFx' no longer holds iff λxFx is non-empty: the
former may be true, while the latter is false. Thus the account given above may
be rendered valid for empty domains too by replacing clauses of the form λxA
is non-empty by clauses of the form 3xA. This standpoint accounts for my use
of double quotes around 'existence'.

17. It was these passages in Aristotle which first suggested to me as an axiom an
instance of XI, 3uA •— AξuA/u.

18. Textual evidence on this point seems somewhat conflicting. For a detailed
discussion of the relevant passages, see Manley Thompson [27].

19. The system referred to is the one suggested at the end of [8], viz. R" minus the
axiom there numbered (15). (15) is in fact deductively equivalent to the shorter
(3 :y)(/3>-(*)/*).
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