A HENKIN COMPLETENESS THEOREM FOR T

M. J. CRESSWELL

In [1] A. Bayart uses a method similar to that of Henkin [2] to prove a completeness theorem for the S5 modal predicate calculus.¹ We show how this method can be adapted to give completeness results for first order quantificational T and S4 with the *Barcan* formula.² T is a modal predicate calculus with propositional variables $p, q, r \ldots$ etc., individual variables $x, y, z \ldots$ etc., individual constants $u_1, u_2, u_3 \ldots$ etc., and predicate variables ϕ, ψ, χ etc., \sim , v, the universal quantifier and L (the necessity symbol). We assume usual formation rules and definitions of \supset , ., \equiv , \exists , and M. T has the following axioms and axiom schemata,

PC some set sufficient for the propositional calculus

LA1 $Lp \supset p$ LA2 $L(p \supset q) \supset (Lp \supset Lq)$

 $V_1(a) \alpha \supset \beta$ where *a* is an individual variable and β differs from α only in having some individual symbol *b* (variable or constant) everywhere where *a* occurs free in α provided *a* in α does not occur within the scope of (*b*). B (the *Barcan* formula) $(x)L\alpha \supset L(x)\alpha$ where α is any wff. and the following rules of transformation; Uniform substitution for propositional variables provided no variable is bound as a result of substitution. (If PC and LA1, LA2 are formulated as schemata this rule, and the propositional variables, are unnecessary)

 $\begin{array}{ll} \mathbf{MP} & \vdash \alpha, \vdash \alpha \supset \beta \rightarrow \vdash \beta \\ \mathbf{LR1} & (\text{Necessitation}) \vdash \alpha \rightarrow \vdash L\alpha \\ \mathbf{V}_2 \vdash \alpha \supset \beta \rightarrow \vdash \alpha \supset (\alpha)\beta & \text{where } a \text{ is some variable not free in } \alpha. \end{array}$

We obtain S4 by adding LA3 $Lp \supset LLp$ and S5 by adding LA4 $\sim Lp \supset L \sim Lp$ (If we have LA4 we may drop the *Barcan* formula; cf. [6]).

We say that a formula is *closed* (a cwff) if it contains no free variable. Where \wedge is a set of formulae and β a wff we say that $\wedge \vdash \beta$ iff there is some finite subset of \wedge , $\{\alpha_1, \ldots, \alpha_n\}$ such that $(\alpha_1 \ldots \alpha_n) \supset \beta$. The following are derivable;

T1 (The Deduction Theorem) If \land , $\alpha \vdash \beta$ then $\land \vdash (\alpha \supset \beta)$.

Received November 14, 1965

T2 Where \wedge is a set of wffs and β is a wff and β ' is obtained from β by replacing some variable x wherever it occurs free in β by some individual symbol not in β or in any member of \wedge then if $\wedge \vdash \beta$ ' then $\wedge \vdash (x)\beta$

T3 (subs eq.) If $\vdash \alpha \equiv \beta$ and γ differs from δ only in having α in some of the places where δ has β then $\vdash \gamma \equiv \delta$ (and hence $\vdash \gamma \longleftrightarrow \vdash \delta$)

T4 (L-distribution) $L(p \cdot q) \equiv (Lp \cdot Lq)$

T5 $(Lp \cdot Mq) \supset M(p \cdot q)$

T6 $\vdash \alpha \rightarrow \vdash M\beta \supset M(\beta \cdot \alpha)$

T7 (The Barcan formula) $M(\exists x)\alpha \equiv (\exists x)M\alpha$

We define validity for T as follows³. Assume two truth values 1 and 0. Assume a domain D of individuals $u_1, u_2, \ldots u_i, \ldots$ etc. We take u_1, u_2 etc. as the individual constants also, letting them designate themselves. Assume also a set W of 'worlds' $x_1, x_2, \ldots, x_i, \ldots$ etc. and a reflexive relation R over W. V is a T-assignment, giving a formula α the value 1 or 0 in a world x_i iff it satisfies the following;

i) If p is a propositional variable then for every $x_i \in W \vee (p, x_i) = 1$ or $\vee (p, x_i) = 0$

ii) Every individual variable is assigned an individual.

iii) For *n*-adic predicate variable ϕ and n-tuple $\langle a_1, \ldots, a_n \rangle$ of D $V[\phi(a_1, \ldots, a_n), x_i] = 1$ or 0. (i.e. ϕ is assigned a set of *n*-tuples in each world.)

iv) For any wff α and any $x_i \in W \vee (\sim \alpha, x_i) = 1$ iff $\vee (\alpha, x_i) = 0$, otherwise 0. v) For any wffs α and β and any $x_i \in W \vee ((\alpha \vee \beta), x_i) = 1$ iff either $\vee (\alpha, x_i) = 1$ or $\vee (\beta, x_i) = 1$ otherwise 0

vi) For any wff α and any $x_i \in W V((x)\alpha, x_i) = 1$ iff for every α' differing from α in having some constant replacing free x everywhere in α , $V(\alpha', x_i) = 1$, otherwise 0.

vii) For every wff α and every $x_i \in W \vee (L\alpha, x_i) = 1$ iff $\vee (\alpha, x_j) = 1$ for every $x_j R x_i$, otherwise 0.

A formula α is valid iff for every $x_i \in W$, every reflexive R and every T-assignment V; $V(\alpha, x_i) = 1$. That every theorem of T is valid follows from seeing that all the axioms are valid and that the rules are validity-preserving. We show that every valid formula is a theorem.

A formula α is consistent iff $\sim \alpha$ is not a theorem. A formula α is satisfiable iff $\sim \alpha$ is not valid. A set of formulae is consistent if it contains no finite subset $\{\alpha_1, \ldots, \alpha_n\}$ such that $\vdash \sim (\alpha_1, \ldots, \alpha_n)$.

We show that given a consistent formula \mathcal{H}, \mathcal{H} is satisfiable. We show how to construct from \mathcal{H} , a series of maximal consistent sets⁴ representing the 'real' world and 'possible' worlds related to the real world.

We first define the notion of a **C**-form

1) Where α is a wff containing x as its only free variable then $(\exists x)\alpha \supset \alpha$ is a **C**-form.

2) If α is a C-form and β is a cwff then $M\beta \supset M(\beta \cdot \alpha)$ is a C-form.

Clearly any C-form will have only one free variable (say x.) Further all C-forms are enumerable. Where α is a C-form then α ' is a C-formula of that form if some individual contant u replaces free x everywhere in $\alpha . u$ is called the *replacing constant*. Clearly every C-formula is closed.

Lemma I. Where α is a C-form containing free x then $\vdash (\exists x)\alpha$.

Proof by induction on the construction of **C**-forms. If α is $(\exists x)\beta \supset \beta$ then $(\exists x)\alpha$ is $(\exists x)[(\exists x)\beta \supset \beta]$ a theorem of quantification theory. If $\vdash (\exists x)\alpha$ then, by T6 $\vdash M\beta \supset M(\beta . (\exists x)\alpha)$. Now β is closed and so contains no free x. Hence $\vdash M\beta \supset M(\exists x)(\beta . \alpha)$, hence by the Barcan formula (T7) and T3 $\vdash M\beta \supset (\exists x)M(\beta . \alpha)$, hence $(\beta \text{ closed}) \vdash (\exists x)[M\beta \supset M(\beta . \alpha)]$. Hence by induction the lemma holds for all **C**-forms. QED.

Lemma II. Where \wedge is a consistent set of formulae and α' is a C-formula whose replacing constant does not occur in any member of \wedge or in the C-form α of α' then α' can be consistently added to \wedge .

Since the replacing constant does not occur in α or in any member of \wedge then by T2 if $\wedge \vdash \sim \alpha'$ (i.e. if α' cannot be consistently added to \wedge) then $\wedge \vdash (x) \sim \alpha$, i.e. $\wedge \vdash \sim (\exists x) \alpha$. Hence by Lemma I \wedge is inconsistent, contrary to hypothesis. QED

Given some consistent $\operatorname{cwff} \mathscr{V}$ let Γ_1 be a maximal consistent set of cwffs, containing \mathscr{V} , constructed as follows. For each C-form α add some C-formula α' whose replacing constant does not occur in α or earlier in the construction of Γ_1 . By Lemma II the set will remain consistent at each stage. Then increase the set to a maximal consistent set.

A set of cwffs \wedge is said to have the C-property iff for every C-form α there is in \wedge a C-formula of that form. Clearly Γ_1 has the C-property. We show that where Γ_i is a maximal consistent set of cwffs with the C-property we may construct, for each cwff α such that $M\alpha \in \Gamma_i$, a maximal consistent set Γ_i , containing α , with the C-property and such that for every cwff $L\beta \in \Gamma_i$, $\beta \in \Gamma_i$. Γ_j is called a subordinate of Γ_i .

Let the initial member of Γ_i be α . α is consistent for if not $\vdash \sim \alpha$ hence $\vdash L \sim \alpha$ hence $\vdash \sim M\alpha$. But $M\alpha \in \Gamma_i$ and Γ_i is consistent.

Given the first *n* members of Γ_j as α , α_1 , ..., α_{n-1} form the *n*+1'th by taking the *n*'th C-form β_n . By the C-property of Γ_i there will be some C-formula β_n^i of that form such that $[M(\alpha, \alpha_1, \ldots, \alpha_{n-1}) \supset M(\alpha, \alpha_1, \ldots, \alpha_{n-1}, \beta_n)] \in \Gamma_i$. Let β_n be the *n*+1'th member of Γ_j . Hence Γ_j has the C-property. Further, since $M\alpha \in \Gamma_i$ then for any finite subset of C-forms there will be a C-formula of each form in some set $\{\alpha_1, \ldots, \alpha_k\}$ of C-formula such that $M(\alpha_1, \ldots, \alpha_k) \in \Gamma_i$. Now add to Γ_j every formula β such that $L\beta \in \Gamma_i$. The set remains consistent for suppose not, then for some finite subset of $\Gamma_j \models \sim (\beta_1, \ldots, \beta_n, \alpha, \alpha_1, \ldots, \alpha_k)$ hence $\models \sim M(\beta_1, \ldots, \beta_n, \alpha, \alpha_1, \ldots, \alpha_k)$ where $L\beta_1, \ldots, L\beta_n \in \Gamma_i$ and $M(\alpha, \alpha_1, \ldots, \alpha_k) \in \Gamma_i$. But by T4 and T5 we have; $[L\beta_1, \ldots, L\beta_n, M(\alpha, \alpha_1, \ldots, \alpha_k)]$ would be inconsistent, i.e., Γ_i would be inconsistent contrary to hypothesis. Finally increase Γ_j to a maximal consistent set of cwffs. Hence Γ_j is a maximal consistent set of cwffs with the **C**-property such that for some $M\alpha \in \Gamma_i \alpha \in \Gamma_j$ and for every $L\beta \in \Gamma_i$, $\beta \in \Gamma_j$. For every Γ_i construct such a Γ_j for each $M\alpha \in \Gamma_i$.

We now give a T-assignment which gives \mathcal{H} the value 1 for some x_i . V is the following assignment. For each propositional variable p, $\mathbf{V}(p,x_i) = 1$ iff $p \in \Gamma_i$, otherwise 0. For each *n*-adic predicate variable ϕ , $\mathbf{V}[\phi(a_1, \ldots, a_n, x_1] = 1$ iff $\phi(a_1, \ldots, a_n) \in \Gamma_i$, otherwise 0. Let R be a relation such that $x_j R x_i$ if Γ_j is a subordinate of Γ_i , (i.e. if Γ_j is constructed from an initial member α such that $M \alpha \in \Gamma_i$) or is Γ_i (so that R is reflexive).

Lemma III. For any cwff $\alpha V(\alpha, x_i) = 1$ iff $\alpha \in \Gamma_i$, otherwise 0.

Proof by induction on the construction of α . Since each Γ_i is maximal consistent and has the C-property and since where $(\exists x)\beta$ is a cwff then $(\exists x)\beta \supset \beta$ is a C-form there is some β' having a constant wherever β has free x such that $(\exists x)\beta \supset \beta' \in \Gamma_i$. Hence if $(\exists x)\beta \in \Gamma_i$ then $\beta' \in \Gamma_i$. Thus by induction as in [2] p. 163 we may show that the lemma holds for truth functions and quantification. Suppose that α has the form $L\beta$. By the induction hypothesis $V(\beta, x_i) = 1$ iff $\beta \in \Gamma_i$ (for every Γ_i). We have to show that $V(L\beta, x_i) = 1$ iff $L\beta \in \Gamma_i$ (otherwise θ). Suppose $L\beta \in \Gamma_i$, then for every Γ_j subordinate to Γ_i (and for $\Gamma_i)\beta \in \Gamma_j$. Hence (induction hypothesis) for every $x_i Rx_i V(\beta, x_j) = 1$. Hence $V(L\beta, x_i) = 1$.

Suppose $L\beta \notin \Gamma_i$. Then $(\Gamma_i \text{ maximal}) \sim L\beta \in \Gamma_i$. Hence $M \sim \beta \in \Gamma_i$. Hence for some Γ_j subordinate to $\Gamma_i, \sim \beta \in \Gamma_j$. Hence (induction hypothesis) $V(\sim \beta, x_j) = 1$, hence $V(\beta, x_j) = 0$. But $x_j R x_i$. Hence $V(L\beta, x_i) = 0$. Hence the lemma holds. QED

Thus for any cwff α $V(\alpha, x_i) = 1$ iff $\alpha \in \Gamma_i$. But $\mathcal{H} \in \Gamma_1$. Hence $V(\mathcal{H}, x_1) = 1$. Hence \mathcal{H} is satisfiable. Hence any consistent cwff is satisfiable. Now if any cwff α is valid then $\sim \alpha$ is not satisfiable, hence inconsistent, hence $\vdash \alpha$. Further since any formula is valid iff its universal closure is valid and a theorem iff its universal closure is a theorem then for any formula α if α is valid then $\vdash \alpha$. I.e. T is complete. QED

We can extend this result to S4 and S5. The only change in the definition of validity is that R is transitive and reflexive for S4 and an equivalence relation for S5 (v. [4]). By LA3 and the maximal consistency of Γ_i if $L\beta \in \Gamma_i$ then $LL\beta \in \Gamma_i$ and hence $L\beta \in \Gamma_j$. (Of course 'consistent' now means consistent in S4 and S5 respectively.) Since if $L\beta$ appears in any set then it appears also in every subordinate of that set, an assignment can be constructed as before, but in which R is also transitive. For S5 we need, in addition, that R is symmetrical, i.e., we need to show that if Γ_j is subordinate to Γ_i then if $L\beta \in \Gamma_j$ then $L\beta \in \Gamma_i$. Suppose not; then (Γ_i maximal) $\sim L\beta \in \Gamma_i$, then by LA4 (Γ_i max) $L \sim L\beta \in \Gamma_i$. Hence $\sim L\beta \in \Gamma_j$, hence $L\beta \notin \Gamma_j$.

A simpler construction (essentially the one used in [1]) can be given for S5 in which all sets are subordinates of Γ_1 and the only **C**-forms which need to be considered are $(\exists x)\beta \supset \beta$ and $M\alpha \supset M(\alpha.(\exists x)\beta \supset \beta))$.

NOTES

- Kripke [3] has also proved the completeness of the S5 predicate calculus, using the method of semantic tableaux. In [4] he considers a semantics for quantificational T (M), S4 and the *Brouwersche* system which would lead to similar completeness results.
- 2. For the *Barcan* formula v. [5] p. 2 axiom number 11. For the propositional system T v. [7].
- 3. This is based on the semantics given in [4] though Kripke assumes a different domain of individuals for each world and thus gives a semantics which does not, as ours does, verify the Barcan formula. For a detailed account of these methods applied to propositional logics v. [8].
- 4. v. [2] A set Γ of cwffs is maximal consistent iff Γ is consistent and for every cwff α either $\alpha \in \Gamma$ or $\sim \alpha \in \Gamma$. Any consistent set of cwffs can be increased to a maximal consistent set by the process described in [2] p. 162.

REFERENCES

- A. Bayart; 'Quasi Adéquation de la logique modale de second ordre S5 et adéquation de la logique modale de premier ordre S5' Logique et Analyse No. 6-7, April 1959 pp. 99-121.
- [2] Leon Henkin; 'The Completeness of the First-Order Functional Calculus' The Journal of Symbolic Logic, Vol 14 (1949) pp. 159-165.
- [3] Saul A. Kripke; 'A Completeness Theorem in Modal Logic' The Journal of Symbolic Logic, Vol 24 (1959) pp. 1-14.
- [4] Saul A. Kripke; 'Semantical Considerations on Modal Logic' Acta Philosophica Fennica fasc XVI (1963) Modal and Many-valued Logics pp. 83-94.
- [5] Ruth C. Barcan; 'A Functional Calculus of First-Order Based on Strict Implication' The Journal of Symbolic Logic Vol 11 (1946) pp. 1-16.
- [6] A. N. Prior; 'Modality and Quantification in S5' The Journal of Symbolic Logic, Vol 21 (1956) pp. 60-62.
- [7] B. Sobociński, 'Note on a Modal System of Feys-Von Wright' Journal of Computing Systems, Vol 1, no. 3 (1953) pp. 171-178.
- [8] Saul A. Kripke, 'Semantical Analysis of Modal Logic I Normal Modal Propositional Calculi' Zeitschrifft für mathematische Logik und Grundlagen der Mathematik, Vol 9 (1963) pp. 67-96.

Victoria University of Wellington Wellington, New Zealand