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FUNCTIONALS DEFINED BY RECURSION

LUIS ELPIDIO SANCHIS

Recursive functionals of finite type have been studied by several
authors in recent years. The class of functionals that can be defined by
primitive recursion of finite type is certainly more constructive than
other more inclusive classes, as the general recursive functionals studied
by Kleene. Moreover functionals defined by recursion are sufficient for the
interpretation of formal systems of number theory in the manner described
by Godel in [3].

In this paper we study a formalization of the class of functionals which
are closed under explicit definition and recursion. Combinators, first
studied in combinatory logic, play a central role in this formalization.
They are used first to obtain closure under explicit definition and second to
formalize definitions by recursion. For this purpose new operators of a
special kind must be introduced. But they behave in a manner quite similar
to ordinary combinators, and we intend to use the same name for both kinds
of operators. The system is constructed as an equation calculus in the
usual way in combinatory logic. It is proved that the rules are complete in
the sense that whenever an equation with variables is derivable, the corre-
sponding equation (without variables) of higher type is also derivable with-
out using variables. This generalizes the well known principle of
extensionality in combinatory logic.1 We also analyse a kind of reduction
of terms by means of replacements. It is shown that every constant term
of the type of natural numbers can be reduced in that way to a numeral.
This can be generalized for constant terms of higher type and the result is
applied to prove the consistency of the equation calculus. Results of the
same sort, were obtained by Tait in [11].

We have used several ideas and methods that are current in combina-
tory logic, but the paper is self contained. In the work of Curry it has been
customary to avoid the assignment of a definite type to the combinators.
We shall depart from this procedure by requiring every entity of the system
to have a definite type. We need in this way to assume an infinite number of
combinators. Grzegorczyk has studied in [4] a very similar formalism.
The standpoint there is mainly semantical. We plan to discuss in a forth-
coming paper the possibility of formalizing the arguments of [4] in our
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system. We must mention also that the application of combinators to re-
cursive functionals appears also in the work of Curry [1] and Lercher [8].

1 Types and terms. We shall define a set of entities called types, and
a set of entities called terms. Each term will be of a definite type.

1.1 There is one primitive type, denoted with the letter N, which
corresponds to the set of natural numbers. If a and β are types, then (Faβ)
is also a type which corresponds to functionals with argument in a and
value in β. We shall use the notation

F Λ + 1 «i. ..an+1β for Fαi(Fnα2 . -an+1β)
Foβ for β

It is clear that every type has a unique representation in the form
F»α?i... anN with n ^ 0.

1.2 The terms are obtained from some given primitive atoms by a
binary operation called application. The primitive atoms are combinators,
constants and variables.

1.2.1 Combinators. If a,β and γ are types there are combinators

lα of type Faa
Kaβ of type F 2 βaβ
Saβγ of type F3(F2aβy)(Faβ)aγ
Ra of type F3(F2Naa)aNa

1.2.2 Constants. There are only two constants:

0 of type N
J of type FNN

1.2.3 Variables. For each type there are infinitely many variables of
that type.

1.2.4 Application. If X is a term of type Faβ and Y is a term of type
a, then (XY) is a term of type j3.

Parentheses will be omitted with the usual conventions in combinatory
logic. For instance in place of (((XY)Z)U) we shall write XYZU. In this
way every term has a unique representation in the form Xx. . ,Xn, n ^ 1,
where Xx is a primitive atom.

1.3 Letters U,V,W,X,Y and Z, with or without subscripts, are used
for terms; letters x,y and z, with or without subscripts, are used for vari-
ables. Most of the time we shall not indicate the type of terms or variables
we are talking about; we shall also omit the subscripts of the combinators.
In that case it must be understood that the assertions about the terms and
combinators hold for every reasonable assignment of types and subscripts.

The expression X = Y means that X and Y are exactly the same term.
Terms of type N are called numerical terms. A constant term is a term
which does not contain variables; the combinators are constant terms, but
are not constants in the sense of 1.2.2.

1.4 Numerals. O is a numeral. If X is a numeral then JX is also a
numeral. We denote with On the numeral containing exactly n occurrences
of J.
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1.4.1 Closed terms. A term of the form X1. . . Xn, n^ i, where Xγ is
either a constant or a variable, is called a closed term. The terms
X2, . . . ,Xn are called the arguments.

1.4.2 Substitution. Let X,Yι,..., Yn, n = 1, be terms and xλ,. .. ,xn

be distinct variables such that Y{ and Xj are of the same type. The expres-
sion

[Y1,...,Yn/x1,...,xn]X

denotes the term obtained by simultaneous substitution of Yl9... ,Yn for
# ! , . . . , # „ , respectively, in X.2

2. Conversion. A redex is a term of one of the forms in the list below.
With each redex we associate a term of the same type which is called,the
contractum of the redex. Letters X, Y and Z in the list stand for arbitrary
terms of the corresponding types. We recall the convention stated in the
first paragraph of 1.3.

REDEX CONTRACTUM

IX X
KXY X
SXYZ XZ(YZ)
RXYO Y
RXYOk+1 XOk{RXYOk)

Let X be a term containing disjoint redexes Ux,.. ., Un, n ^ 0. Here Ui
denotes a definite occurrence in X. Let Vx, . . . , Vn be the contracta of
those redexes. If Y is the result of replacing each Ui by F, in X, we say
that Y is a contraction of X. If n = 1 we say that Y is a simple contraction
of X.

We say that X reduces to Y with length &, and we write X red& F o r l
red y, if there is a finite sequence of terms Xx,..., Xk such that X Ξ Xλ,
y Ξ Yk and for every z > 1, X{ is a contraction of -X7-1.

The following properties of the reduction relation follow easily from
the definition.

I r e d l
X red 7 and Y red Z #zerc X red Z
X red Y then [X/z] Z red [ Y/x] Z
X red Y then [ Z/x]X red [ Z/x] Y

2.1 Abstraction. Let X be a term of type a and # a variable of type 0.
The term [x]X of type Fβa is defined by the following rules:

(Al) UX=x then [x]X = I
(A2) If X is atomic distinct from x, then [x]X = KX
(A3) ΊiX= YZ, U=[x]Y, V=[x]Z, then[x]X= SUV

Reduction and abstraction are related by the following property that
can be proved easily by induction on the structure of X:

([x]X)V red [V/x]X
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The preceding definition can be generalized for several variables:

O i , . . ,Xn+i]X = lXί > >X»][Xn+i]X

Ίi Xι,..., xn are distinct variables we have

([xιί...,Xu]χ)Vι...Vn red [Vι,...JV*/xι,...,xn]X

2.2 Residuals. Let X be a term and Ut,..., Un, n = 0, be disjoint
redexes in X. Let Y be the contraction of X obtained by replacing each Vi
by its contractum Vi. Suppose Z is some redex in X. We define the
residuals of Z in Fby the following rules:

(Rl) If Z is one of the redexes Uι,... ,Un there is no residual of Z in Y.
(R2) If Z is disjoint from all redexes Ulf... ,Un then the residual of Z is
the corresponding part of the same form which is not affected by the re-
placement.
(R3) If z is a part of Vi there are in V{ no, one or two parts that corre-
spond to Z. Since Vi is a part of Y those parts are also in Y and are the
residuals of Z in Y.
(R4) // Z contains Ui , . . . , Uik and Zλ is obtained by replacing those
redexes in Z by their contracta, then Zt is a part of Y and is the residual
of Z in Y.

We note that every residual of Z is a redex which corresponds to the
same combinator as Z\ also two residuals of Z are disjoint in Y. Further-
more if Zx and Z2 are disjoint redexes in X then the residuals of Zx and Z2

in Y are also disjoint.
Now let X be a term, Ui,...,Un disjoint redexes in X and Vl9...,Vm

also disjoint redexes in X, n = 0, m = 0. Let Yx be the contraction of X
corresponding to the redexes Vx,..., U» and Y2 the contraction of X corre-
sponding to Vlf...Vm. Then if we replace in Yx the residuals of
Vi,..., Vm by their contracta, and we replace in Y2 the residuals of
U\,..., Un by their contracta, we get the same term Z. For suppose n = i;
if Z7i is a part of Vj and we consider all possible forms of Vj we shall see
that it is the same to contract first Ux and then the residual of Vj or to
contract Vj and then the residuals of Ux. If Ux contains Vjχ, . . . , Vjk again
considering the possible forms of Uλ we get the same result. The same
analysis can be made if m = 1. Now if both n > 1 and m > 1 we can take the
redexes in one group that are not contained in redexes of the other group
and in this way the situation is reduced to cases of the form n= 1. From
this property follows the following Lemma.

Lemma 1. If Yx and Y2 we contractions of X there is a term Z which
is a contraction of Yλ and also a contraction of Y2 .

2.3 The result of Lemma 1 holds if we take reductions in place of
contractions. This is called in the literature the Church-Rosser property.3

Lemma 2. If X red^ Y and U is a contraction of X, then there is a Z
which is a contraction of Y and U red& Z.
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The proof is by induction on k. For k = 1 we take U = Z. If. k > 1
there is a term V which is a contraction of X and V red&.j F. By Lemma 1
and the induction hypothesis the Lemma follows.

Lemma 3. If X red Y and X vedk Z then there is a term U such that Y
red U and Z red U.

Proof by induction on k. For k = 1 we take U = F. For & > i there is a
term F which is a contraction of X and F r e d ^ Z. By Lemma 2 there is a
term Fx which is a contraction of F and V red F x . By the induction hypoth-
esis there is a term U such that Vλ red £/ and Z red £/. It follows that
F red ί/.

2.4 We say that a term X is convertible to a term F, and we write
X conv F, if there is a term Z such that X red Z and F red Z.

The following properties can be easily proved using the definition and
the properties of reduction.

X conv X
X conv F then Y conv X
X red F flten X conv F
X conv F tfzen [ Z/x]X conv [ Z/# ] F
X conv F tfzέm [Jζ/#] Z conv [ Y/x] Z

Lemma 4.I/X conv F β?zd F conv Z #z£?z X conv Z.

By hypothesis there are terms U and V such that

X red U Y red V
Y red U Z red F

By Lemma 3 there is a term ί/i such that

U red tfi V red 1/χ

It follows that X red ^ , Z red ί/i, hence X conv Z.

Theorem 1. X conv Y if and only if there is a finite sequence of terms
Xλ,..., Xk, k ^ 1, such that X = Xl9 Y = Xk and for i> 1, either Xi is a
contraction of Xi-γ or Xi_ι is a contraction of Xi.

If X conv F it is clear that the sequence exists. Conversely if the
sequence exists we can prove by induction on k, using Lemma 4, that
Xconv F.

We say that a term is irreducible if it does not contain redexes. From
the definition it is clear that if X and F and irreducible then X conv F if and
only if X = F. This entails the consistency of the conversion relation. Note
that the result of Lemma 4, which is a completeness result, requires an
analysis of the forms of the redexes and their contracta. This can be com-
pared with the predicate calculus with Gentzen rules; in fact Lemma 4 is a
kind of elimination theorem.

3. Equality. We have shown that conversion is an equality relation
between terms. It is easy to give an example of terms representing (exten-
sionally) the same functional, which are not convertible. For instance take
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SK and Kl, of type F(Faβ)(Fββ). We introduce now a much stronger relation
which is complete in the sense that whenever Xχ = Yx is derivable, where x
does not occur in X or F, then X = F is derivable.

3.1 The relation of equality, written as usual X = F, is defined given
several axioms, (El)-(Ell) and rules of derivation (I)-(ΓV). In the axioms
and rules letters U,V,X,Y and Z stand for arbitrary terms, and letters
x,y and z for distinct arbitrary variables, provided the types correspond in
such a way that both terms in each equation take the same type.

(El) X = X
(E2) \X=X
(E3) KXY=X
(E4) SXYZ = XZ(YZ)
(E5) [x,y]RxyO= Kl
(E6) [x,y,z]Rxy(Jz)= [x,y,z]xz(Rxyz)
(E7) [χ,y] S(S(KK)x)y = K
(E8) [χ,y,z] S(S(S(KS)x)y)z = [x,y,z] S(Sxz)(Syz)
(E9) S(KI) = I
(E10) [*]S(K*)I= I
(Ell) [x,y]K(xy) = [x,y]S(Kx)(Ky)

Note that the terms in axioms (E5)-(E11) do not contain variables. The
variables appearing in the notation are used only to make explicit the re-
duction properties of the terms involved. Note also that each of the axioms
is only a schema; proper axioms are obtained by an assignment of type to
the variables and subscripts to the combinators. Given such an assignment
the terms of the equations take some type. We list below the most general
types the terms in axioms (E5)-(E11) can take

(E5); F2(F2Naa)aa
(E6): F3(F2Naa)aNa
(E7): Fa(Fyα)(Fyj3)(Fyα)
(E8): F3(F3δaβγ)(F2δaβ)(Fδa)(Fδγ)
(E9): F(Faβ)(Faβ)
(E10): F(Faβ)(Faβ)
(Ell): F3(Faβ)aγβ

3.2 The rules are given as usual by inserting the premises above, and
the conclusion below, a line.

Rule (I) X= Y
F = X

Rule (Π) X= Y Y= Z
X - Z

Rule (ΠI) X= Y U= V
XU = YV

Rule (IV) S(KY)J= SXY
RX(YO) = F
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Rule (IV) is called the induction rule. Note that if Y is of type FNa
then X must be of type F2Naa; we say in this case that a is the type of the
induction.

A derivation of X = Y is an arrangement of equations showing which
are the axioms and how the rules are applied, terminating inX = Y. If in
such derivation every occurrence of a variable x is replaced by a given
term U, we obtain a derivation of [U/x]X= [ϋ/x] Y Hence if X and Y are
constant terms there is a derivation of X = Y in which the terms of every
equation are constant terms.

3.3 Lemma 5. If X = Y, then [X/x] U = [Y/x] U.

The proof is by induction on the structure of £/. The case U is x is
trivial; if U is not atomic we apply the induction hypothesis and rule (III).

Lemma 6. If X red Y then X = Y can be derived without using rule (IV).

First note that if U is a redex and V is its contractum, and the combi-
nator of the redex is I,K or S, then U = V is an axiom. Hence if in the re-
duction from X to Y only such redexes are contracted, from Lemma 5 it
follows that X = Y. To complete the proof we need only to show that U = V
also in the case in which the combinator of the redex is R, This follows
from axioms (E5) and (E6) noting that in the reductions corresponding to
the abstraction operator only redexes of I,K and S are contracted.

Lemma 7. if x conv Y then X = Y can be derived without using rule
(IV).

Immediately from Lemma 6.

3.4 Now let U = K be a case of (E7); let X and Y be terms of the same
type as the variables x and y in the axiom. Hence UXY = KXΫ and from
this using reductions we get without using rule (IV)

(E7*) S(S(KK)X)Y=X

By the same procedure we get from (E8)-(E11)

(E8*) S(S(S(KS)X)7)Z= S(SXZ)(SYZ)

(E9*) S(K\)X=X
(E10*) S(KX)\ = X
(Ell*) K(XT) = S(KX)(KΫ)

3.5 /Lemma 8. If X does not contain the variable x then [x]X = KXand
[x] (Xx) = X without using rule (IV).

That [x]X = KX follows by induction on the structure of X using (Ell*).
Hence

[x](Xx) = S(KX)\

= X (by(E10*))

Theorem 2. If U = V is derivable without using rule (IV) then [x] U=
[x] V is derivable without using rule (IV).
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The proof is by induction on the derivation of U=V. The case of (El)
is trivial. Suppose U = V is a case of (E2) say \X = X. Ίϊ Y = [x]X we must
prove S(KI)F= Y and this is (E9*). The cases of axioms (E3) and (E4)
follow in the same way using (E7*) and (E8*). The other axioms do not
contain variables, hence they follow by Lemma 8. For rules (I), (Π) and
(III) we use the induction hypothesis and again the same rule.

Theorem 3. IfXx = Yx is derivable without using rule (IV) then X - Y
is derivable without using rule (IV), provided x does not occur in X or Y.

Using Theorem 2 and Lemma 8 we have

X = [x] (Xx)
= [x](Yx)
= Y

3.6 We define now several special terms.

Caβγ = [*]S(K(S*))K of type F(F2aβγ)(F2βaγ)
0aβ = [x,y] S(K(xy)) of type F4 (F2Nβa)N(Fββ)βa

Lemma 9. C(CX) = X

We have C(CJθxyz conv Xxyz, hence by Lemma 7 and Theorem 3 we
get C(CX) = X.

Lemma 10. If CX = CY then X = Y.

From CX = CY we get C(C3θ = C(CF), hence X = Y.

Theorem 4. If U = V, then [x] U = [x]V.

We complete the proof of Theorem 2 considering the case in which rule
(IV) is used. Suppose we have

S(KY)J= SXY
RX(YO) = Y

We set:

X, = [x]S(KY)J
Yι = [x]SXY
Uλ = [x]RX(YO)
Vλ=[x]Y

By the induction hypothesis we know that Xι = Yι we want to prove

tf i = Vi

First note that CUiOx conv CViOx, hence

(1) CUχO =CV1O

Also S(K(CVχ))Jyxcar\v CXxyx, hence

(2) S(K(C71))>/ = CXi = CY,

Furthermore CY^yx conv SiDX^CV^yx, hence
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(3) S(K(CV1))J= Cίί =S(DX)(CV1)

and from (3), using rule (IV) we get

(4) RiDX^CV.O) =CVι

Furthermore SiKiCU^Jyx = SiDX^CU^yx without rule (IV), hence

(5) S(K(CCΓ1)y = S(DX)(Cl71)

and from (5) using rule (IV) we get

(6) R(DX)(Ctfiθ) =Ci7!

From (1), (4) and (6) we obtain CCΛL = CV1, hence by Lemma 10 Ux = V1

holds.

Theorem 5. IfXx = Yx where x does not occur in X or Y, then X = Y.

Proof as in Theorem 3.
3.7 From the proof of Theorem 4 we see that if the given induction

was of type a and the variable x is of type β, then we need new inductions of
type Fβa.

4. Regularity. Given a term we may try to get an irreducible form by
means of repeated contractions. It is not clear now that the rules given in
section 2 are sufficient for that purpose. We shall show that this is the
case, hence that every term reduces to some irreducible term. Note that
an irreducible constant numerical term must be a numeral.

4.1 Let X be a term. We define the sucessors of X by the following
rules:

(51) If X is of type Faβ and x is a variable of type a not occurring in X, then
Xx is a successor Of X.
(52) If X is a numerical term of the form \Xλ.. .Xn, then Xλ.. ,Xn is a suc-
cessor of X.
(53) If X is a numerical term of the form KXΣ. . .Xn, n Ξ 2 then X2 and
XiX3.. ,Xn are successors of X.
(54) If X is a numerical term of the form SXi. . .Xn, n=3, then
X1X3(X2X3)X4.. .Xn is a successor of X.
(55) If X is a numerical term of the form RXXX2 OX3. . .Xn , n ^ 2 then Xx

and X2X3.. ,Xn are successors of X,
(56) If X is a numerical term of the form RX±X2 Ok+1X3. . .Xn n^ 2, then
Xx Ok(RX1X2 Ok)X3 ...Xn is a successor ofX.
(57) If X is a numerical term of the form RXλX2 UX3. . .Xn, n ^ 2, and U is
not a numeral then U and RXλX2 OkX3.. ,Xn for k - 0,1, . . . are successors
ofX.
(58) If X is a numerical term of the form yXλ... Xn , n ^ 1, then Xγ, ..., Xn

are successors of X.
(59) If X is a numerical term of the form JY, then Y is a successor of X.

4.2 A fundamental sequence of a term X, is a sequence Xl9 X2, . . .
where Xx = X, and Xi+1 is a successor of X . We say that X is regular if
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every fundamental sequence of Xterminates. Hence a termX is regular if
and only if all the successors of Xare regular.

4.2.1 Numerical variables are regular since they have no successor.
The same is true for O and for J by rules (SI) and (S9). We can prove also
that any variable is regular, using induction on the type of the variable and
rules (SI) and (S8). It is easy to show that numerals and terms containing
only variables are regular.

4.2.2 The combinators I, K and S are regular. For instance to prove
that K is regular is sufficient to prove that Kxλ.. .xn is regular for n de-
pending on the type of K (by rule (SI)), and this is true by rule (S3) since x2

and xγx3.. .xn are regular.
4.2.3 The combinators R are also regular. First it can be proved

that Rxyθkxι.. .xn is regular for every k ~ 0, using induction on k. From
this using rule (S7) it follows that Rxyzxγ.. ,xn is regular, hence by rule
(SI) that R is regular.

4.3 The preceding analysis shows that the atoms in our system are
regular. We must prove now that regularity is preserved by application.

4.3.1 We note first that the following induction principle is available
for regular terms. Let ψ be a property such that: a) O and numerical
variables have the property ψ9 b) K every successor of a term X has the
property $, then Xhas the property $. Then we can infer that every regu-
lar term has the property ?β. For if some term Xdoes not have the prop-
erty $ we can construct a non terminating fundamental sequence of X. We
shall denote this kind of argument R-induction.4

4.4 We say that a term X is a variant of a term £7 if there are vari-
a b l e s # χ , . . . , # « , 3 Ί , . . . , y n , n ^ O , s u c h t h a t X = [ y l 9 . . . , y n / x l 9 . . . , x n ] U .

4 . 4 . 1 Lemma 11. Let X be a regular term. Then given terms U and
Y such that both X and Y are varients of U, Y is a regular term.

The proof is by R-induction. For instance, suppose that Xis a numer-
ical term of the form KX λ. . .Xn , n ^ 2. Then U = KUX... Un and Y =
KYi.. .Yn where X{ and F; are variants of t/, , i = 1, . . . 9n. Since Xx X3. . .Xn

and X2 are regular it follows that Yx Y3... Yn and Y2 are regular, hence
that X is regular. If X is a term of type Faβ, let y be a variable of type a
not occurring in Y, and£ a variable of the same type not occurring inX or
U. Then Xz and Yy are both variants of Uz, hence Yy is regular. It follows
that Fis regular.

4.4.2 Corollary. Let X be a variant of U. Then X is regular if and

only if U is regular.

4.5 Theorem 6. Let Y be a regular term of type β and x a variable of

type β. Then for every regular term X, the term Z= [Y/x]X is regular.

The proof is by induction on the structure of the type β; we assume the
theorem is true for any F and x of a type which is a proper part of β.
Under this hypothesis and for given F andx of type β, we prove by R-induc-
tion that given a regular term X, the term Z = [ Y/x]X is regular.
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Case 1. X is O or a numerical variable. It is clear that Z is regular.
Case 2. X is of type Faγ. Let z be a variable not occurring ixiX or F,

and we assume [Y/x](Xz) = Zz is regular. By 4.4.2, Z is regular.
Case 3. X has successors under one of rules (S2)-(S6) or (S9). This

case is trivial.
Case 4. X is of the form RX1X2UX3. . .Xn under rule (S7). Then

Z = RZi Z2 VZ3. .. Zn and we assume V is regular and also that RZ\Z%OkZ*
. . . Zn are regular for k = 0. Hence if V is a numeral Z is regular by as-
sumption and if Vis not a numeral then Z is regular by rule (S7)

Case 5. X is of the form yXx.. .Xn. If y is notx then Z = yYx. . ,Yn

and our assumption is that F x , . . . , Fw are regular; hence Z is regular. If
y and # are the same variable, then Z = YYι. .. Fw, and our assumption is
again that F x, . . . , Yn are regular. Note that each Yi is of a type which is a
proper part of β, so we may use the induction hypothesis on the structure of
β. Since F is regular, Yxt. o .xn is also regular with xl9... ,xn not
occurring in F. It follows that [Fi, . . . , Yn/x\ > ,xn\Yx\ •#») is
regular.

4.5.1 Theorem 7. Every term is regular.

We have shown that the theorem is true for the atoms. Now suppose
X = UV where U and V are regular. Hence Ux is regular and by the pre-
ceding theorem [F/#](£7#) is regular.

4.6 The importance of Theorem 7 is that we can use R -induction to
prove properties of arbitrary terms. We shall give some applications in
this direction.

4.6.1 A reduction sequence of a term X is a sequence Xl9X2,...
where Xx = X and Xi+1 is a simple contraction of X, .

Theorem 8. JPOT βαc/z term X ί/ẑ re is a number m such that every re-
duction sequence of X terminates in less than m steps.

The proof is by R-induction. We show in one example the general
methods for dealing with all the cases. Suppose X is of the form
RX1X2UX3. . ,Xn where U is not a numeral. Our assumption is that there
is a number m0 such that every reduction sequence of U terminates in less
than m0 steps. Also there are numbers m i , m 2 , . . . such that
RX1X2O

kX3.. ,Xn terminates in less than mk+1 steps. It follows that if U
does not reduce to a numeral every reduction sequence of X terminates in
less than m0 + mx steps. If U reduces to a numeral Ok then every reduction
sequence xή X terminates in less than πι0 + m&+1 steps.

4.6.2 As a consequence of Theorem 8 we get that every term reduces
to a term which is irreducible. This reduction can always be performed by
means of arbitrary contractions; no matter how the redex are chosen the
procedure eventually terminates in an irreducible term. Moreover a nu-
merical constant term which is irreducible is a numeral. Hence every nu-
merical constant term reduces to a numeral. This numeral is unique by
Lemma 3.

5. Congruence. We can obtain additional information about the equal-
ity relation of section 3 using the results on regularity. For that purpose
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we define a new binary relation between constant terms; this relation is
called congruence. For constant numerical terms we say that X is con-
gruent to F, which is written X cong F, exactly if X conv F, i.e. if there is
a numeral U such that X red U and Y red U. If X and Y are constant terms
of type Ψaβ we say that X cong Y if and only if for arbitrary terms U and V
of type a such that Γ/ cong V, we always have XU cong F7.5

5.1 Lemma 12. if X cong Y then FcongX.

The proof by induction on the type of X is clear.

Lemma 13. If X and Y are constant terms, XredXί9 Y red Yx and
Xι cong Yx, then X cong F.

If X is of type N we have X conv F. If X is of type Ψaβ, and we suppose
the lemma is true for terms of type β then for arbitrary U and V of type a
such that £7 cong V, we haveXC/ red ^ £ 7 , YV red YtV and X ^ cong YXV,
hence XU cong YV. This means X cong F.

5.1.1 Theorem 9. Let X be a term with variables xλ,... ,Xk and let
Ui > 9 Uk, Vι,..., Vk be terms of the corresponding types such that
UίCOnyVi. Let U= [U,,..., Vk/xx,... ,xk]X and V = [Vx,..., Vk/xly

. . . ,Xk]X, then U cong V.

The proof is by R-induction. For instance let X be of the form
RXtX2 WX3. . . Xn where W is not a numeral. Then U = RFX F2 Wx Y3... F„
and 7 = RZLZ2 W2 Z3... Zn. By the induction hypothesis we know that

T7i cong W2

RY1Y2O
mY3...Yn cong RZiZ2O

mZ3.. .Zn

for ever m = 0. But WΊ cong PF2 means there is a numeral Ow such that
Wi red Om and W2 red Om . Hence by Lemma 13 we have U cong V.

5.1.2 Corollary. If X is a constant term then X cong X.

5.2 Lemma 14. If X cong F αrcd F cong Z then X cong Z.

Proof by induction on the type of X, using 5.1.2.

Lemma 15. Let X and Y be terms with variables Xi,... ,Xk such that
X conv F. Let Uλ,..., Uk ,Vλ,..., Vk be terms of the corresponding types
such that U{ cong F, . Then

[Ul9..., Uk/x1 , . . . , x k ] X c o n g [Vl9...9 Vk/xι,... , x k ] Y

For there is a Z such that X red Z and F red Z. Using Theorem 9 for
this Z and Lemma 13 we get the result.

5.2.1 Corollary. Let X and Y be constant terms and x1,... ,Xk dis-
tinct variables such that Xxλ.. .Xk conv Yxx.. .Xk> then X cong F.

5.3 Lemma 16. Let X and Y be constant terms of type FNa. If for
every k we have XOk cong YOk, then X cong F.

Given U and V of type N such that U cong V there is a numeral Ok such
that U red Ok and V red Ok. Hence we use Lemma 13.
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5.3.1 Theorem 10. If X = Y and X and Y are constant terms, then

Xcong F.

The proof is by induction on the derivation of X = Y. Every axiom, with

the only exception of (E6) satisfies the condition of 5.2.1 for some k = 0,

hence we have X cong F. For (E6) suppose Uι cong Vx, U2 cong V2 and

U3 cong V3 where C/χ is of type F2Naa, U2 of type a and U3 of type N.

Suppose X = Y is the instance of (E7). Hence we need only to show that

XUi U2 U3 cong YVX V2 V3. This is true because there is some Ok such that

XU, U2 U3 red U1O
k(RU1 U2O

k)

YV1 V2 V3 red VιO
k{RVι V2O

k)

so we can use Lemma 13.

We must show also that the rules preserve the property. This is clear

for rules (I), (II) and (III). Suppose we have a case of rule (ΓV).

S(KY)J = SXY

RX(YO) = Y

Our induction hypothesis can be expressed in the form: Y (JOk) cong

X0k(Y0k) for every k ^ 0. We must prove RX{YO)Ok cong YOk for every

k = 0. For k = 0 this is trivial. Suppose it is true for some k, then

RX(YO)Ok+1 cong XOk(RX(YO)Ok)

cong XOk(YOk)

cong Y(JOk)

NOTES

1. See [2], Chapter 6.

2. A formal definition is given in [2], p. 205.

3. Proved in [9] for a weaker system of combinatory logic.

4. We note that it would be possible to define the class of regular terms by an induc-
tion with inductive rules corresponding to the successor rules. In case of rule (S7)
the inductive rule must have an infinite number of premises. We think that the
justification for such induction is precisely that it is equivalent to assert that every
fundamental sequence terminates.

5. The notion of congruence appears to be related with the property of being exten-
sionally definite that Kreisel defines in [7], p. 124.
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