Notre Dame Journal of Formal Logic Volume XIII, Number 2, April 1972 NDJFAM

PARALLEL 1-FLATS IN 2-ARRANGEMENTS

MICHAEL C. GEMIGNANI

The terminology and numbering of propositions in [1] will be followed throughout this paper.

Suppose a topological space X with geometry G forms a 2-arrangement. The purpose of this paper is to answer the following questions:

I. If *f* is any 1-flat of *X* and *y* is any element of *X*, is there necessarily some 1-flat *g* which contains *y* and is parallel to *f*, that is, such that g = f, or $g \cap f = \emptyset$?

II. If the answer to I is affirmative, are there any "distinguished" 1-flats which contain y and are parallel to f?

Lemma 1. The answer to I is affirmative if and only if whenever $y \notin f$, $X \neq \bigcup \{x \mid x \in f_1(w, y), w \in f\}$.

Proof: If $y \notin f$ and g is any 1-flat parallel to f which contains y, then since $f \cap g = \emptyset$, any point of $g - \{y\}$ is not contained in $\bigcup \{x \mid x \in f_1(w, y), w \in f\}$. On the other hand, if $X \neq \bigcup \{x \mid x \in f_1(w, y), w \in f\}$, then choose $z \in X - \bigcup \{x \mid x \in f_1(w, y), w \in f\}$. Then $f_1(y, z)$ is a 1-flat which contains y and is parallel to f.

The discussion which follows concerns the following situation: X and G form a 2-arrangement; $y_0 \in \operatorname{Int} X$ and f is a 1-flat which does not contain y_0 .

Let w_0 be a cut point of f. We can totally order f by $\leq (2.26)$. Set $U = \{u \varepsilon f \mid w_0 \leq u\}$ and $V = \{v \varepsilon f \mid v \leq w_0\}$. Since $y_0 \varepsilon \operatorname{Int} X$, $y_0 \varepsilon$ $\operatorname{Int} C(S)$ where C(S) is a 2-simplex (4.10.1 and

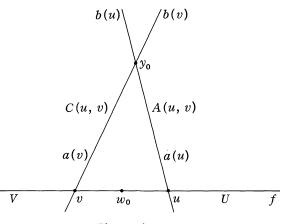


Figure 1

Received June 13, 1970

4.6). For each $u \in U$ and $v \in V$, y_0 disconnects $f_1(y_0, u)$ and $f_1(y_0, v)$ each into two components (Fig. 1). That component of $f_1(y_0, u) - \{y_0\}$ which contains u will be denoted by a(u). The analogous components of $f_1(y_0, v) - \{y_0\}$ will be denoted by a(v) and b(v) (cf. 2.22 and 2.23).

Since $y_0 \in \operatorname{Int} C(S)$, if $u \neq v$, then $f_1(y_0, u) \cup f_1(y_0, v)$ disconnects X into four convex open components A(u, v), B(u, v), C(u, v), and D(u, v), where $\operatorname{Fr} A(u, v) = a(u) \cup b(v) \cup \{y_0\}$, $\operatorname{Fr} B(u, v) = a(u) \cup b(v) \cup \{y_0\}$, $\operatorname{Fr} C(u, v) = a(u) \cup a(v) \cup \{y_0\}$, and $\operatorname{Fr} D(u, v) = a(v) \cup a(u) \cup \{y_0\}$. This follows from 4.12, 3.25, and the following lemma.

Lemma 2. If h is any 1-flat which disconnects X into components M and N, then Fr M = Fr N = h.

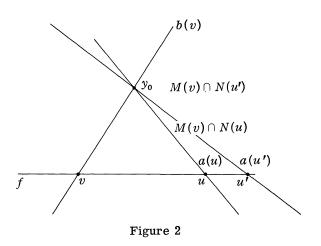
Proof: If $x \in h$ and W is any neighborhood of x, then if W does not intersect both M and N, then $h - \{x\}$ still disconnects X. But h is a minimal disconnecting subset of X(2.12). We continue our discussion with the following lemmas.

Lemma 3. dC(S) is compact and closed.

Proof: If $S = \{x_0, x_1, x_2\}$, then $dC(S) = \overline{x_0x_1} \cup \overline{x_1x_2} \cup \overline{x_2x_0}$. Each segment is compact (2.29) and closed; hence dC(S) is compact and closed.

Lemma 4. If u' > u, then C|A(u', v) is properly contained in C|A(u, v).

Proof: The 1-flat $f_1(y_0,$ u) disconnects X into components M(u), which contains v, and N(u). The analogous components of $X - f_1(y_0, v)$ and $X - f_1(y_0, u')$ will be M(v) and N(v), and M(u')and N(u'), respectively (Fig. 2). Then Cl A(u, $v) = (M(v) \cap N(u)) \cup a(u) \cup$ $b(v) \cup \{y_0\}$ and C|A(u', $v) = (M(v) \cap N(u')) \cup$ $a(u') \cup b(v) \cup \{y_0\}.$ A simple argument shows that $a(u') \subset M(v)$; hence $C|A(u', v) \subset C|A(u, v).$



Since $u \in Cl A(u, v) - Cl A(u', v)$, the containment is proper. Similarly, if v > v', then Cl A(u, v') is properly contained in Cl A(u, v); moreover, corresponding statements can be proved in like manner about Cl C(u, v). We therefore have:

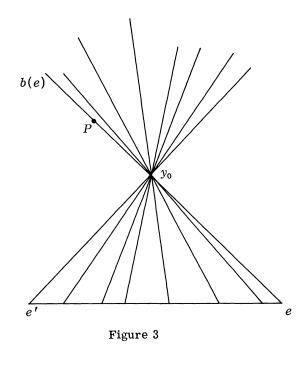
Lemma 5. If $u \le u'$ and $v \ge v'$, then $\operatorname{Cl} A(u', v') \subset \operatorname{Cl} A(u, v)$ and $\operatorname{Cl} C(u', v') \subset \operatorname{Cl} C(u, v)$. If one of the first inequalities is strict, then the containment in both instances is proper.

Lemma 6. If $u \in U$ and $v \in V$, then $C|A(u, v) \cap dC(S)$ and $C|C(u, v) \cap dC(S)$ are both non-empty.

Proof: Both $b(v) \cap dC(S)$ and $a(u) \cap dC(S)$ are non-empty (3.24.1 and a straightforward argument).

Partially order $U \times V$ by \leq' where $(u, v) \leq' (u', v')$ if $u \leq u'$ and $v \geq v'$. Take a maximal chain W in $U \times V$. Then since dC(S) is compact, using Lemmas 5 and 6 we have $\bigcap_W ClA(u, v) \cap dC(S)$ and $\bigcap_W ClC(u, v) \cap dC(S)$ are both non-empty. Choose $z \in \bigcap_W ClA(u, v) \cap dC(S)$ and $z' \in \bigcap_W ClC(u, v) \cap dC(S)$. Now if $X = \bigcup \{x \mid x \in f_1(y_0, w), w \in f\}$, then $f_1(y_0, z) \cap f$ and $f_1(y_0, z') \cap f$ must

each consist of a single point e and e', respectively. We will see later that we can have e = e'. If $e \neq e'$, then e and e' must both be end points of f, or else we could get a contradiction to the maximality of W. Assume $e \neq e'$, but X = $\mathbf{U} \{ x \mid x \in f_1(y_0, w), w \in f \}.$ Then $f = \overline{ee'}$; hence X = $\mathbf{U} \{ x \mid x \in f_1(y_0, w), w \in \mathbf{U} \}$ $\overline{ee'}$ }. Now y_0 is a cut point of each $f_1(y_0, w)$. Choose $p \in b(e)$ (Fig. 3). Then it follows that $f_1(p, e') \cap f_1(p, e)$ must consist of at least pand y_0 , a contradiction. Consequently, if $e \neq e'$. then $X \neq \mathbf{U} \{x \mid x \in f_1(y_0,$ w), $w \in \overline{ee'}$ We have therefore established:



Theorem 1. If $e \neq e'$, then $X \neq \bigcup \{x \mid x \in f_1(y_0, w), w \in f\}$. Consequently, there is some 1-flat g which contains y_0 and is parallel to f.

Relative to Question I posed at the beginning of this paper, we may say: If f is any 1-flat of X and y is any element of Int X, then if f has either two end points or no end points, then there is a 1-flat g which contains y and is parallel to f.

Since no 1-flat in an open 2-arrangement can have any end points, we also have:

Corollary. If X and G form an open 2-arrangement, then for any 1-flat f and $y \in x$, there is a 1-flat g which contains y and is parallel to f.

If $y \in BdX$ and f is any 1-flat in $X - \{y\}$, there may not be any 1-flat

which contains y and is parallel to f. For example, if $S = \{x_0, x_1, x_2\}$ is a linearly independent subset of X, then C(S) with geometry $G_{C(S)}$ forms a 2-arrangement. There is no 1-flat which contains x_0 which is parallel to any other 1-flat of $G_{C(S)}$.

We now continue the discussion which led to Theorem 1 and its Corollary. In particular we will examine the non-empty set $\bigcap_{W} \operatorname{Cl} A(u, v) \cap$ dC(S); analogous results will hold for $\bigcap_{W} \operatorname{Cl} C(u, v) \cap \operatorname{dC}(S)$. Recall that $y_0 \in \operatorname{Int} C(S)$, where C(S) is a 2-simplex. If $S = \{x_0, x_1, x_2\}$, then $\bigcap_{W} \operatorname{Cl} A(u, v) \cap$ dC(S) = $\bigcap_{W} \operatorname{Cl} A(u, v) \cap (\overline{x_0 x_1} \cup \overline{x_1 x_2} \cup \overline{x_2 x_0}) = (\bigcap_{W} \operatorname{Cl} A(u, v) \cap \overline{x_0 x_1}) \cup (\bigcap_{W} \operatorname{Cl} A(u, v) \cap \overline{x_1 x_2}) \cup (\bigcap_{W} \operatorname{Cl} A(u, v) \cap \overline{x_2 x_0})$. Each set in this latter union is a closed convex subset of a segment.

Lemma 7. A closed convex subset W of a segment \overline{xy} is either a segment, a point, or the empty set.

Proof: Suppose W does not consist of a single point and $W \neq \emptyset$. Totally order \overline{xy} by \leq with $x \leq y$. Let u = 1.u.b.W and v = g.1.b.W(2.28). Since W is closed and connected, $W = \{z \in \overline{xy} | v \leq z \leq u\}$; hence $W = \overline{uv}$ (2.27).

Suppose that h is a 1-flat, $z_0 \in h$, and p is any point of $h - \{z_0\}$. Then we define ray (z_0, p) to be the component of $h - \{z_0\}$ which contains p together with the point z_0 .

Lemma 8. If $p \in Cl A(u, v) - \{y_0\}$, then $ray(y_0, p) \subseteq Cl A(u, v)$.

Proof: Since $f_1(y_0, p) \cap ClA(u, v)$ is connected (since it is the intersection of two convex sets), this intersection is contained in ray (y_0, p) . But if t is a point of $f_1(y_0, p)$ not in this intersection, then $y_0 \varepsilon t \overline{p}$; hence t cannot be in the same component of $f_1(y_0, p) - \{y_0\}$ as p.

Lemma 9. If $x \in \bigcap_{W} Cl A(u, v) \cap \overline{x_0 x_1}$ and $y \in \bigcap_{W} Cl A(u, v) \cap \overline{x_1 x_2}$, then either $\overline{yx_2} \cup \overline{x_2 x_1} \cup \overline{x_0 x}$ or $\overline{yx_1} \cup \overline{x_1 x}$ is a subset of $\bigcap_{W} Cl A(u, v) \cap dC(S)$.

Proof: The detailed proof is quite lengthy and involves a number of different cases. It uses Lemma 8 and is essentially contained in Figs. 4a, b, and c.

It follows then that $\bigcap_{W} Cl A(u, v) \cap dC(S)$ is the union of at most three segments S_1, S_2 , and S_3 which form a simple (non-closed) polygonal path joining two points *a* and *a'* of dC(S). Moreover, we may suppose that $f_1(y_0, a)$ is the limiting posi-

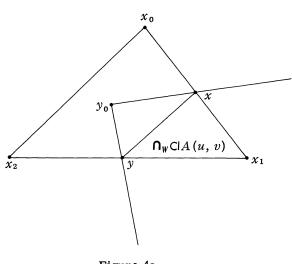
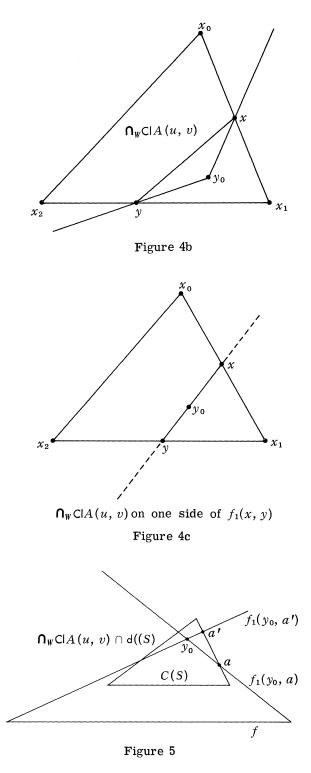


Figure 4a.

tion of the $f_1(y_0, u)$ and $f_1(y_0, a')$ is the limiting position of the $f_1(y_0, v)$ (Fig. 5). (It may be, of course, that a = a'.) It would, in fact, be easy to show that if F^1 of Gis given Topology II as described in [2], then the nets $\{f_1(y_0, u)\}, u \in U,$ and $\{f_1(y_0, v)\}, v \in V,$ converge to $f_1(y_0, a)$ and $f_1(y_0, a')$, respectively. If $f_1(y_0, a)$ is parallel to f, then we call $f_1(y_0, a)$ the upper parallel to f through y_0 ; if $f_1(y_0, a')$ is parallel to f, it will be called the lower parallel to fthrough y_0 . Straightforward arguments show that the same flats $f_1(y_0,$ a) and $f_1(y_0, a')$ are obtained regardless of which cut point w_0 of fand which 2-simplex C(S) is used, that is, $f_1(y_0, a)$ and $f_1(y_0, a')$ are independent of w_0 and C(S). If $f_1(y_0, a)$ is not parallel to f, then $f_1(y_0, a) \cap f$ is an end point of f; a similar conclusion applies to $f_1(y_0, a')$. Thus, we can say:

Theorem 2. If X and G form a 2-arrangement, $y \in Int X$ and f is a 1-flat of X with two end points, then there is neither an upper or lower parallel to f through y. If X and G form an open 2-arrangement, f is a 1-flat



of X, and $y \notin f$, then f has both an upper and lower parallel through y (though these parallels might be the same 1-flat.

The following example shows that it is possible to have e = e' (cf. the discussion preceding Theorem 1); thus we may have $X = \mathbf{U} \{x \mid x \varepsilon f_1(y_0, w), w \varepsilon f\}$. We can thus conclude that a 2-arrangement need not satisfy either a hyperbolic or euclidean parallel postulate.

Example: Let P be a point not in \mathbb{R}^2 , the usual coordinate plane. Let $X = \mathbb{R}^2 \cup \{P\}$. As a subbasis for a topology on X we take the open sets of \mathbb{R}^2 and all sets of the form $\{(x, y) \mid a < x\} \cup \{P\}$, where a is a real number. Suppose z and z' are points of X. We define $f_1(z, z')$ as follows: If z, $z' \in \mathbb{R}^2$, we let $f_1(z, z')$ be the usual line in \mathbb{R}^2 if this line is not parallel to the x-axis, and this usual line together with P if that line is parallel to the x-axis. If z = P and $z' \in \mathbb{R}^2$, we let $f_1(z, z')$ be the line in \mathbb{R}^2 which contains z' and is parallel to the x-axis together with P. Then $X = U\{z \mid z \in f_1((0, 1), w), w \in f_1((0, 0), P)\}$ even though the structure defined is a 2-arrangement.

REFERENCES

- Gemignani, M., "Topological geometries and a new characterization of R^m," The Notre Dame Journal of Formal Logic, vol. VII (1966), pp. 57-100.
- [2] Gemignani, M., "On topologies for Fⁱ," Fundamenta Mathematicae, vol. LIX (1966), pp. 153-157.

Smith College Northampton, Massachusetts