Notre Dame Journal of Formal Logic Volume XIII, Number 2, April 1972 NDJFAM

PARALLEL 1-FLATS IN 2-ARRANGEMENTS

MICHAEL C. GEMIGNANI

The terminology and numbering of propositions in [1] will be followed throughout this paper.

Suppose a topological space X with geometry G forms a 2-arrangement. The purpose of this paper is to answer the following questions:
I. If f is any 1 -flat of X and y is any element of X, is there necessarily some 1-flat g which contains y and is parallel to f, that is, such that $g=f$, or $g \cap f=\varnothing$?
II. If the answer to I is affirmative, are there any "distinguished" 1-flats which contain y and are parallel to f ?
Lemma 1. The answer to I is affirmative if and only if whenever $y \not \& f$, $X \neq \boldsymbol{U}\left\{x \mid x \varepsilon f_{1}(w, y), w \varepsilon f\right\}$.

Proof: If $y \not \not f f$ and g is any 1-flat parallel to f which contains y, then since $f \cap g=\varnothing$, any point of $g-\{y\}$ is not contained in $\cup\left\{x \mid x \varepsilon f_{1}(w, y), w \varepsilon f\right\}$. On the other hand, if $X \neq \bigcup\left\{x \mid x \varepsilon f_{1}(w, y), w \varepsilon f\right\}$, then choose $z \varepsilon X$ $\mathrm{U}\left\{x \mid x \varepsilon f_{1}(w, y), w \varepsilon f\right\}$. Then $f_{1}(y, z)$ is a 1-flat which contains y and is parallel to f.

The discussion which follows concerns the following situation: X and G form a 2 -arrangement; $y_{0} \varepsilon \operatorname{lnt} X$ and f is a 1-flat which does not contain y_{0}.

Let w_{0} be a cut point of f. We can totally order f by $\leq(2.26)$. Set $U=\left\{u \varepsilon f \mid w_{0} \leq u\right\}$ and $V=\left\{v \varepsilon f \mid v \leq w_{0}\right\}$. Since $y_{0} \varepsilon \operatorname{lnt} X, y_{0} \varepsilon$ $\operatorname{lnt} C(S)$ where $C(S)$ is a 2-simplex (4.10.1 and

Figure 1
4.6). For each $u \varepsilon U$ and $v \varepsilon V, y_{0}$ disconnects $f_{1}\left(y_{0}, u\right)$ and $f_{1}\left(y_{0}, v\right)$ each into two components (Fig. 1). That component of $f_{1}\left(y_{0}, u\right)-\left\{y_{0}\right\}$ which contains u will be denoted by $a(u)$. The analogous components of $f_{1}\left(y_{0}, v\right)-\left\{y_{0}\right\}$ will be denoted by $a(v)$ and $b(v)$ (cf. 2.22 and 2.23).

Since $y_{0} \varepsilon \operatorname{lnt} C(S)$, if $u \neq v$, then $f_{1}\left(y_{0}, u\right) \cup f_{1}\left(y_{0}, v\right)$ disconnects X into four convex open components $A(u, v), B(u, v), C(u, v)$, and $D(u, v)$, where $\operatorname{Fr} A(u, v)=a(u) \cup b(v) \cup\left\{y_{0}\right\}, \quad \operatorname{Fr} B(u, v)=a(u) \cup b(v) \cup\left\{y_{0}\right\}, \quad \operatorname{Fr} C(u, v)=$ $a(u) \cup a(v) \cup\left\{y_{0}\right\}$, and $\operatorname{Fr} D(u, v)=a(v) \cup a(u) \cup\left\{y_{0}\right\}$. This follows from 4.12, 3.25 , and the following lemma.

Lemma 2. If h is any 1-flat which disconnects X into components M and N, then $\operatorname{Fr} M=\operatorname{Fr} N=h$.

Proof: If $x \varepsilon h$ and W is any neighborhood of x, then if W does not intersect both M and N, then $h-\{x\}$ still disconnects X. But h is a minimal disconnecting subset of X (2.12). We continue our discussion with the following lemmas.

Lemma 3. dC(S) is compact and closed.
Proof: If $S=\left\{x_{0}, x_{1}, x_{2}\right\}$, then $\mathrm{d} C(S)=\overline{x_{0} x_{1}} \cup \overline{x_{1} x_{2}} \cup \overline{x_{2}} \bar{x}_{0}$. Each segment is compact (2.29) and closed; hence $\mathrm{d} C(S)$ is compact and closed.
Lemma 4. If $u^{\prime}>u$, then $\mathrm{Cl} A\left(u^{\prime}, v\right)$ is properly contained in $\mathrm{Cl} A(u, v)$.
Proof: The 1-flat $f_{1}\left(y_{0}\right.$, u) disconnects X into components $M(u)$, which contains v, and $N(u)$. The analogous components of $X-f_{1}\left(y_{0}, v\right)$ and $X-f_{1}\left(y_{0}, u^{\prime}\right)$ will be $M(v)$ and $N(v)$, and $M\left(u^{\prime}\right)$ and $N\left(u^{\prime}\right)$, respectively (Fig. 2). Then $\mathrm{Cl} A(u$, $v)=(M(v) \cap N(u)) \cup a(u) \cup$ $b(v) \cup\left\{y_{0}\right\}$ and $\mathrm{Cl} A\left(u^{\prime}\right.$, $v)=\left(M(v) \cap N\left(u^{\prime}\right)\right) \cup$ $a\left(u^{\prime}\right) \cup b(v) \cup\left\{y_{0}\right\}$. $\quad \mathrm{A}$ simple argument shows that $a\left(u^{\prime}\right) \subset M(v)$; hence

Figure 2 $\mathrm{Cl} A\left(u^{\prime}, v\right) \subset \mathrm{Cl} A(u, v)$.
Since $u \varepsilon \mathrm{Cl} A(u, v)-\mathrm{Cl} A\left(u^{\prime}, v\right)$, the containment is proper. Similarly, if $v>v^{\prime}$, then $\mathrm{Cl} A\left(u, v^{\prime}\right)$ is properly contained in $\mathrm{Cl} A(u, v)$; moreover, corresponding statements can be proved in like manner about $\operatorname{ClC}(u, v)$. We therefore have:

Lemma 5. If $u \leq u^{\prime}$ and $v \geq v^{\prime}$, then $\mathrm{Cl} A\left(u^{\prime}, v^{\prime}\right) \subset \mathrm{Cl} A(u, v)$ and $\mathrm{Cl} C\left(u^{\prime}, v^{\prime}\right) \subset$ $\mathrm{Cl} C(u, v)$. If one of the first inequalities is strict, then the containment in both instances is proper.

Lemma 6. If $u \varepsilon U$ and $v \varepsilon V$, then $\mathrm{Cl} A(u, v) \cap \mathrm{d} C(S)$ and $\mathrm{ClC}(u, v) \cap \mathrm{d} C(S)$ are both non-empty.

Proof: Both $b(v) \cap \mathrm{d} C(S)$ and $a(u) \cap \mathrm{d} C(S)$ are non-empty (3.24.1 and a straightforward argument).

Partially order $U \times V$ by \leq^{\prime} where $(u, v) \leq^{\prime}\left(u^{\prime}, v^{\prime}\right)$ if $u \leq u^{\prime}$ and $v \geq v^{\prime}$. Take a maximal chain W in $U \times V$. Then since $d C(S)$ is compact, using Lemmas 5 and 6 we have $\cap_{W} \mathrm{Cl} A(u, v) \cap \mathrm{d} C(S)$ and $\cap_{W} \mathrm{ClC}(u, v) \cap \mathrm{d} C(S)$ are both non-empty. Choose $z \varepsilon \cap_{W} \mathrm{Cl} A(u, v) \cap \mathrm{d} C(S)$ and $z^{\prime} \varepsilon \cap_{W} \mathrm{ClC}(u, v) \cap \mathrm{d} C(S)$. Now if $X=\mathbf{U}\left\{x \mid x \varepsilon f_{1}\left(y_{0}, w\right), w \varepsilon f\right\}$, then $f_{1}\left(y_{0}, z\right) \cap f$ and $f_{1}\left(y_{0}, z^{\prime}\right) \cap f$ must each consist of a single point e and e^{\prime}, respectively. We will see later that we can have $e=e^{\prime}$. If $e \neq e^{\prime}$, then e and e^{\prime} must both be end points of f, or else we could get a contradiction to the maximality of W. Assume $e \neq e^{\prime}$, but $X=$ $\mathbf{U}\left\{x \mid x \varepsilon f_{1}\left(y_{0}, w\right), w \varepsilon f\right\}$. Then $f=\overline{e e}$; hence $X=$ $\underline{\mathrm{U}}\left\{x \mid x \in f_{1}\left(y_{0}, w\right), w \varepsilon\right.$ $\overline{e e} \prime\}$. Now y_{0} is a cut point of each $f_{1}\left(y_{0}, w\right)$. Choose $p \varepsilon b(e)$ (Fig. 3). Then it follows that $f_{1}\left(p, e^{\prime}\right) \cap f_{1}(p, e)$ must consist of at least p and y_{0}, a contradiction. Consequently, if $e \neq e^{\prime}$. then $X \neq \mathbf{U}\left\{x \mid x \varepsilon f_{1}\left(y_{0}\right.\right.$,

Figure 3 $w), w \varepsilon \overline{e e} r\}$. We have therefore established:

Theorem 1. If $e \neq e^{\prime}$, then $X \neq \mathbf{U}\left\{x \mid x \varepsilon f_{1}\left(y_{0}, w\right), w \varepsilon f\right\}$. Consequently, there is some 1-flat g which contains y_{0} and is parallel to f.

Relative to Question I posed at the beginning of this paper, we may say: If f is any 1 -flat of X and y is any element of $\operatorname{lnt} X$, then if f has either two end points or no end points, then there is a 1 -flat g which contains y and is parallel to f.

Since no 1-flat in an open 2-arrangement can have any end points, we also have:

Corollary. If X and G form an open 2-arrangement, then for any 1-flat f and $y \varepsilon x$, there is a 1 -flat g which contains y and is parallel to f.

If $y \varepsilon \operatorname{Bd} X$ and f is any 1 -flat in $X-\{y\}$, there may not be any 1-flat
which contains y and is parallel to f. For example, if $S=\left\{x_{0}, x_{1}, x_{2}\right\}$ is a linearly independent subset of X, then $C(S)$ with geometry $G_{C(S)}$ forms a 2 -arrangement. There is no 1 -flat which contains x_{0} which is parallel to any other 1-flat of $G_{C(S)}$.

We now continue the discussion which led to Theorem 1 and its Corollary. In particular we will examine the non-empty set $\mathrm{\Pi}_{W} \mathrm{Cl} A(u, v) \cap$ $\mathrm{d} C(S)$; analogous results will hold for $\mathrm{\Lambda}_{w} \mathrm{ClC}(u, v) \cap \mathrm{d} C(S)$. Recall that $y_{0} \varepsilon \operatorname{lnt} C(S)$, where $C(S)$ is a 2-simplex. If $S=\left\{x_{0}, x_{1}, x_{2}\right\}$, then $\cap_{W} \mathrm{Cl} A(u, v) \cap$ $\mathrm{d} C(S)=\mathrm{\Pi}_{W} \mathrm{Cl} A(u, v) \cap\left(\overline{x_{0} x_{1}} \cup \overline{x_{1} x_{2}} \cup \overline{x_{2} x_{0}}\right)=\left(\mathrm{n}_{W} \mathrm{Cl} A(u, v) \cap \overline{x_{0} x_{1}}\right) \cup\left(\mathrm{n}_{W} \mathrm{Cl} A(u, v) \cap\right.$ $\left.\bar{x}_{1} x_{2}\right) \cup\left(\cap_{W} \mathrm{Cl} A(u, v) \cap \bar{x}_{2} x_{0}\right)$. Each set in this latter union is a closed convex subset of a segment.

Lemma 7. A closed convex subset W of a segment $\overline{x y}$ is either a segment, a point, or the empty set.

Proof: Suppose W does not consist of a single point and $W \neq \varnothing$. Totally order $\overline{x y}$ by \leq with $x \leq y$. Let $u=1$.u.b. W and $v=$ g.1.b. $W(2.28)$. Since W is closed and connected, $W=\{z \varepsilon \overline{x y} \mid v \leq z \leq u\}$; hence $W=\overline{u v}(2.27)$.

Suppose that h is a 1 -flat, $z_{0} \varepsilon h$, and p is any point of $h-\left\{z_{0}\right\}$. Then we define ray $\left(z_{0}, p\right)$ to be the component of $h-\left\{z_{0}\right\}$ which contains p together with the point z_{0}.
Lemma 8. If $p \varepsilon \mathrm{Cl} A(u, v)-\left\{y_{0}\right\}$, then $\operatorname{ray}\left(y_{0}, p\right) \subset \mathrm{Cl} A(u, v)$.
Proof: Since $f_{1}\left(y_{0}, p\right) \cap \mathrm{Cl} A(u, v)$ is connected (since it is the intersection of two convex sets), this intersection is contained in ray ($\left.y_{0}, p\right)$. But if t is a point of $f_{1}\left(y_{0}, p\right)$ not in this intersection, then $y_{0} \varepsilon \overline{t p}$; hence t cannot be in the same component of $f_{1}\left(y_{0}, p\right)-\left\{y_{0}\right\}$ as p.

Lemma 9. If $x \varepsilon \cap_{W} \mathrm{Cl} A(u, v) \cap \overline{x_{0} x_{1}}$ and $y \varepsilon \cap_{W} \mathrm{Cl} A(u, v) \cap \overline{x_{1} x_{2}}$, then either $\overline{y x}_{2} \cup \bar{x}_{2} x_{1} \cup \bar{x}_{0} x$ or $\overline{y x}_{1} \cup \bar{x}_{1} x$ is a subset of $\cap_{W} \mathrm{Cl} A(u, v) \cap \mathrm{d} C(S)$.

Proof: The detailed proof is quite lengthy and involves a number of different cases. It uses Lemma 8 and is essentially contained in Figs. 4a, b, and c.

It follows then that $\mathrm{n}_{w} C \mathrm{Cl} A(u, v) \cap \mathrm{d} C(S)$ is the union of at most three segments S_{1}, S_{2}, and S_{3} which form a simple (non-closed) polygonal path joining two points a and a^{\prime} of $\mathrm{d} C(S)$. Moreover, we may suppose that $f_{1}\left(y_{0}\right.$, $a)$ is the limiting posi-

Figure 4 a.
tion of the $f_{1}\left(y_{0}, u\right)$ and $f_{1}\left(y_{0}, a^{\prime}\right)$ is the limiting position of the $f_{1}\left(y_{0}, v\right)$ (Fig. 5). (It may be, of course, that $a=a^{\prime}$.) It would, in fact, be easy to show that if F^{1} of G is given Topology II as described in [2], then the nets $\left\{f_{1}\left(y_{0}, u\right)\right\}, u \varepsilon U$, and $\left\{f_{1}\left(y_{0}, v\right)\right\}, v \varepsilon V$, converge to $f_{1}\left(y_{0}, a\right)$ and $f_{1}\left(y_{0}, a^{\prime}\right)$, respectively. If $f_{1}\left(y_{0}, a\right)$ is parallel to f, then we call $f_{1}\left(y_{0}, a\right)$ the upper parallel to f through y_{0}; if $f_{1}\left(y_{0}, a^{\prime}\right)$ is parallel to f, it will be called the lower parallel to f through y_{0}. Straightforward arguments show that the same flats $f_{1}\left(y_{0}\right.$, a) and $f_{1}\left(y_{0}, a^{\prime}\right)$ are obtained regardless of which cut point w_{0} of f and which 2-simplex $C(S)$ is used, that is, $f_{1}\left(y_{0}, a\right)$ and $f_{1}\left(y_{0}, a^{\prime}\right)$ are independent of w_{0} and $C(S)$. If $f_{1}\left(y_{0}, a\right)$ is not parallel to f, then $f_{1}\left(y_{0}, a\right) \cap f$ is an end point of f; a similar conclusion applies to $f_{1}\left(y_{0}, a^{\prime}\right)$. Thus, we can say:
Theorem 2. If X and G form a 2-arrangement, $y \varepsilon \operatorname{lnt} X$ and f is a $1-f l a t$ of X with two end points, then there is neither an upper or lower parallel to f through y. If X and G form an open 2-arrangement, fis a 1-flat

Figure 4b

$$
\cap_{W} \mathrm{Cl} A(u, v) \text { on one side of } f_{1}(x, y)
$$

Figure 4c

Figure 5
of X, and $y \notin f$, then f has both an upper and lower parallel through y (though these parallels might be the same 1-flat.

The following example shows that it is possible to have $e=e^{\prime}$ (cf. the discussion preceding Theorem 1); thus we may have $X=\mathbf{U}\left\{x \mid x \varepsilon f_{1}\left(y_{0}, w\right)\right.$, $w \varepsilon f\}$. We can thus conclude that a 2 -arrangement need not satisfy either a hyperbolic or euclidean parallel postulate.
Example: Let P be a point not in R^{2}, the usual coordinate plane. Let $X=$ $R^{2} \cup\{P\}$. As a subbasis for a topology on X we take the open sets of R^{2} and all sets of the form $\{(x, y) \mid a<x\} \cup\{P\}$, where a is a real number. Suppose z and z^{\prime} are points of X. We define $f_{1}\left(z, z^{\prime}\right)$ as follows: If $z, z^{\prime} \varepsilon R^{2}$, we let $f_{1}\left(z, z^{\prime}\right)$ be the usual line in R^{2} if this line is not parallel to the x-axis, and this usual line together with P if that line is parallel to the x-axis. If $z=P$ and $z^{\prime} \varepsilon R^{2}$, we let $f_{1}\left(z, z^{\prime}\right)$ be the line in R^{2} which contains z^{\prime} and is parallel to the x-axis together with P. Then $X=\boldsymbol{U}\left\{z \mid z \varepsilon f_{1}((0,1), w)\right.$, $\left.w \varepsilon f_{1}((0,0), P)\right\}$ even though the structure defined is a 2 -arrangement.

REFERENCES

[1] Gemignani, M., 'Topological geometries and a new characterization of R^{m}," The Notre Dame Journal of Formal Logic, vol. VII (1966), pp. 57-100.
[2] Gemignani, M., "On topologies for F^{i}," Fundamenta Mathematicae, vol. LIX (1966), pp. 153-157.

Smith College
Northampton, Massachusetts

