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PARALLEL 1-FLATS IN 2-ARRANGE ME NTS

MICHAEL C. GEMIGNANI

The terminology and numbering of propositions in [1] will be followed
throughout this paper.

Suppose a topological space X with geometry G forms a 2-arrangement.
The purpose of this paper is to answer the following questions:

I. If / i s any 1-flat of X and y is any element of X, is there necessarily
some 1-flat g which contains y and is parallel to / , that is, such that g = / ,
or gΠf = φΊ

Π. If the answer to I is affirmative, are there any "distinguished"
1-flats which contain y and are parallel to /?

Lemma 1. The answer to I is affirmative if and only if whenever yfίf,

XΦ ϋ{x\xεfx(w, y), wεf}.

Proof: If yf,f and g is any 1-flat parallel to / which contains y, then since
/Πg = 0, any point of g - {y} is not contained in U {x\ xεfx(w, y), wεf}.
On the other hand, if X * U {x\ xε fγ(w, y), wε /}, then choose zεX-
U {x\ xε fι(w, y), wεf}. Then fλ(y9 z) is a 1-flat which contains y and is
parallel to /.

The d i s c u s s i o n . x. / τ , x

u i_ r n b(u)\ /b(v)

which follows concerns \ /
the following situation: \ /
X and G form a 2-ar- \J
rangement; y0 ε \n\X and Jv°
f is a 1-flat which does / \
not contain y0. C{u,υ) \A(U,V)

Let w0 be a cut / \
point of /. We can to- / \
tally order/by ^(2.26) a { J V }

Set 17 = {uεf\w0 ^ u} 7 \
and V = {f ε/1 υ ̂  w0}. / \
Since yoε\n\X, y0 ε "~τ 7^ ^ W Ϊ7 /"
Int C(S) w h e r e C(S) i s a 7 ^
2-simplex (4.10.1 and Figure 1
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4.6). For each utU and vε V, y0 disconnects fx(yQ, u) and fι(y0, υ) each into
two components (Fig. 1). That component of Λ(;y0, u) - {;y0} which contains
u will be denoted by a(u). The analogous components of fι(y0, υ) - {y0} will be
denoted by a(v) and b(v) (cf. 2.22 and 2.23).

Since yoε IntC(S), if u Φ υ, then fι(y09 u) U / ^ o , υ) disconnects X into
four convex open components A{u, v), B(u, v), C{u, υ), and D(u, v), where
FrA(u, υ) = a(u) U b(v) U {y0}, ΐrB(u, υ) = a{u) u b(v) U {y0}, Fr C(u, v) =

a(μ) U a(v) U {̂ 0}> and FrZ)(w, v) = a(v) U α(w) U {;y0}. This follows from 4.12,
3.25, and the following lemma.

Lemma 2. If h is any l-flat which disconnects X into components M and N9

then FrM= Fr N= h.

Proof: If xεh and W is any neighborhood of x, then if W does not intersect
both M and N, then h - {x} still disconnects X. But ft is a minimal dis-
connecting subset of X(2.12). We continue our discussion with the following
lemmas.

Lemma 3. dC(S) is compact and closed.

Proof: If S = {xQ, xl9 x2}, then dC(S) = x^xλ U"x^x2 U ^ ^ o . Each segment is
compact (2.29) and closed; hence dC(S) is compact and closed.

Lemma 4. Ifuf>u, then C\A(u', υ) is properly contained in C\A(u, υ).

Proof: The l-flat My0,
u) disconnects X into ^/^\
components M(u), which N. . /
contains v, and N(u). \Λ\ /
The analogous compo- \ \ /

nents of X - fx(y09 υ) and TV0 M ( ^ ) ^ N(u')
X - fi(y0, u') will be / V
M(v) and N{v), and M{υ!) / \ \
and N(ur), respectively / \M(v)nN(u)

(Fig. 2). Then Cl A(w, / \ \ .
f) = (M(z;) ΠiSΓ(w)) Ufl(M)U / \α(w)\α(w' )

δ(v) U {3̂ 0} and ClA(wf, ^ 7 ^ w\ ^ \
υ) = (M(v) Π N(u')) U / \ \ .
a(u') U &(v) U {3̂ 0}. A / \ X
simple argument shows Figure 2
that a(uf) c M(v); hence
ClA(w', ϋ) c C\A(u, v).
Since uεC\A(u,v) - CIA(^', f), the containment is proper. Similarly, if
v> υ\ then Cl A(u, vr) is properly contained in C\ A{u, v); moreover,
corresponding statements can be proved in like manner about C\C(u, υ).
We therefore have:

Lemma 5. Ifu^u* andv^ vr, then CIA(w', vr) c CIA(^, v) and C\C(u'9 v
r) c

Cl C(u, υ). If one of the first inequalities is strict, then the containment in
both instances is proper.
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Lemma 6. If uεU and υεV, then Cl A(u, υ) ΠdC(S) and C\C(u, v) Π dC(S)
are both non-empty.

Proof: Both b{v)ΠόC(S) and α(w) Π dC(S) are non-empty (3.24.1 and a
straightforward argument).

Partially order U x Fby ̂ ' where (w, #) ^ ' (wf, f') if u ̂  ur and z; ̂  t>f.
Take a maximal chain W in U x V. Then since όC(S) is compact, using
Lemmas 5 and 6 we have ΠwC\A(u, υ) Π dC(S) and ΠwC\C(u, v) Π dC(S) are
both non-empty. Choose z cΠwC\ A(u, υ) Π dC(S) and z'εΠwCIC(tt, ι;) Π dC(S).
Now if X = U {#| tfεΛOyo, w), «ιε/}, then Λί^o, ^) n / and fx(y0, z') Πf must
each consist of a single
point e and #', respec- i
tively. We will see later \
that we can have e = er. \ \ I / /

If e Φ e', then e and e1 \ \ I / / /
must both be end points δίejX.X \ \ / / / /
of /, or else we could \ \ \ \ / / / /
get a contradiction to \ \ \ \ / / / /
the maximality of W. P \ \ \ \ \ //
Assume e Φ e\ but X = ŝA \ \ //
\}{x\xz ΛCVo, w), ̂  ε /}. ^U^
Then / = i¥ f hence X = Λ I ^ 0

Ui^lπ/Λo,^, ^ε /̂ f\\V
ϋ"'}. Now j ; 0 is a cut // \ \ \N\

point of each /i(^0, ^ ) . / / \ \ \ \ \
Choose pεb(e) (Fig. 3). / / / / I \ \ \
Then it follows that / / / \ \ \ \
fAP, e')nMp, e) must / / / / \ \ \ \
consist of at least p / / \ \ \ \?\
and y0, a contradiction. ^γ ^ ^ — ' 1 ^ X__^
Consequently, if e Φ e\ e

then X ̂  U {ΛΓ| # ε / ^ o , Figure 3
w), wε~eer}. We have
therefore established:

Theorem 1. // eΦer, then X Φ U {x\ xεfx(y0, w), wεf}. Consequently,
there is some \-flat g which contains y0 and is parallel to f.

Relative to Question I posed at the beginning of this paper, we may say:
If / is any 1-flat of X and y is any element of \n\X, then if / has either two
end points or no end points, then there is a 1-flat g which contains y and is
parallel to /.

Since no 1-flat in an open 2-arrangement can have any end points, we
also have:

Corollary. If X and G form an open 2-arrangement, then for any 1-flat
f and yεx, there is a 1-flat g which contains y and is parallel to f.

If y ε BdX and / is any 1-flat in X - {y}, there may not be any 1-flat
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which contains y and is parallel to /. For example, if S = {x0, xl9 x2} is a
linearly independent subset of X, then C(S) with geometry GC{s) forms a
2-arrangement. There is no 1-flat which contains x0 which is parallel to
any other 1-flat of GC(s)-

We now continue the discussion which led to Theorem 1 and its
Corollary. In particular we will examine the non-empty set ΓiwG\A(u, υ) Π
dC(S); analogous results will hold for ΠwC\C(u, v) fλ 6C(S). Recall that
yoε Int C(S), where C(S) is a 2-simplex. KS= {x0, xl9 x2}, then ί\CI A{u, v) Π
όC(S)=(\wC\A(u,v)n(x^x1u'x^x2 \Jx^co) = {nwC\A(u9υ) Πxtfi) u (Π^CIAU, v) Π
#1*2) U (1\CI A(W, f) Π Λ^#0) Each set in this latter union is a closed convex
subset of a segment.

Lemma 7. A closed convex subset W of a segment xy is either a segment,
a point, or the empty set.

Proof: Suppose W does not consist of a single point and Wφφ. Totally
order 'xy by ^ with x ^ y. Let u = l.u.b.W and i; = g.l.b.W(2.28). Since W
is closed and connected, W = {ecary I v ^ z ^ u}; hence PF= wϊ;(2.27).

Suppose that h is a 1-flat, zozh, and /> is any point of h - {z0}. Then we
define ray(z0, p) to be the component of h - {>ε0} which contains p together
with the point z0.

Lemma 8. If pz OA{u, v) - {;y0}, then rαy(;y0, p) c C\A(u, v).

Proof: Since/i^o, p) Π CIA(w, υ) is connected (since it is the intersection
of two convex sets), this intersection is contained in ray(;y0, p). But if t is a
point of fι{yo, p) not in this intersection, then ;yoε tp; hence t cannot be in the
same component of fx(yQ, p) - {^0}as p.

Lemma 9. // xεΓ\wC\ A(u, υ) Πl^x1 and yεΠwC\ A(u,v) Πlζl^, then either
yx2 U ^2^i U ^o^ o r Wi U ^Λ7 zs α subset of f)w C\ A(u, υ) Π d C(S).

Proof: The d e t a i l e d
proof is quite lengthy ^
and involves a number >\
of different cases. It / \
uses Lemma 8 and is / \
essentially contained in / \ ^ ^ _ _ _

Figs. 4a, b, and c. y/ _-—^~^x*\#~~"
It follows then that y^ yor"̂  \ / \

ΠWCI A(u, v) Π dC(S) is / \ / \
the union of at most / \ /~ _, . , A
three segments S l f S2, Z \X nwOA(u, v) \ ^

and S3 which form a * 2 ^
simple (non-closed) \
polygonal path joining \
two points a and αf of \
dC(S). Moreover, we \
may suppose that /I(^OJ

α) is the limiting posi- Figure 4a.
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t i o n of t h e f\{yΌ, u) and %o .

Myo> a') i s the limiting / \ I
position of the fι(y0, v) / \ /
(Fig. 5). (It may be, of / \ /
course, that a - α'.) It / \ /
would, in fact, be easy / \J
to show that if F1 of G /t' , . , . y)\x

is given Topology II as / w / / \
described in [2], then / / I \

the nets {/i(;y0,M)},wε!7, X / I \

and {/̂ o, υ)}, v ε F, / / ^ ^ ^ \
converge to Λί̂ oj «) and «̂ - ^ ^ ^ ^ ^ X Xi

Myo, ar), respectively. X2 ^ ^ ^ ^ y

If fΛyo, «) is par- ^ ^
allel to / , then we call Figure 4b
fi(y0, a) the upper par-
allel to / through yo; if x

fi(yo> a') is parallel to Λ.
/, it will be called the / \ ,
lower parallel t o / / \ /
through ô Straightfor- / \ //

ward arguments show / \/χ

that the same flats fι{y0, / / \
a) and Myo, a1) are ob- / / \
tained r e g a r d l e s s of / /yQ \
which cut point w0 of / / / \
and which 2-simplex %2^- -+- ^Xi
C(S) is used, that is, / y

Myo, a) and fx{y0, a') /
are independent of wQ /

and C(S). IfΛU, «) is _ ̂  ̂ , ^ ,Ά f ^ .
not parallel to / , then C\wC\A(u, υ) on one side of Mx, y)

Myo, β) Π / is an end Figure 4c
point of / ; a similar
conclusion appl ie s to

My09 «f). Thus, we can \v
say: N.

Theorem 2. If X and G \^A^^/"i(^o, αf)

form a 2-arrangement, f)wC\A(u, υ) n d f t S l / ^ V

y ε \nfX and f is a 1 -flat ^ ^ ^ :V° \ ^ a

of X with two end points, ^^y C(S) \X f \
ί/zβn there is neither an ^ ^ ^ ^ ~ WΛί^o, a)
upper or lower parallel ^^"^^ N.
to f through y. If X and ^ _ _ ^
G form an open 2-ar- f

rangement, f is a I-flat Figure 5
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of X, and y jί /, then f has both an upper and lower parallel through y (though
these parallels might be the same 1-flat.

The following example shows that it is possible to have e = er (cf. the
discussion preceding Theorem 1); thus we may have X = U {x\ xtfx{yQ, w),
wεf}. We can thus conclude that a 2-arrangement need not satisfy either a
hyperbolic or euclidean parallel postulate.

Example: Let P be a point not in fi2, the usual coordinate plane. Let X =
R2 U {P}. As a subbasis for a topology on X we take the open sets of R2 and
all sets of the form {(x, y) | a < x] U {P}, where a is a real number. Suppose
z and z* are points of X. We define/iU, z') as follows: If z, z'εR2, we let
fλ{z, zr) be the usual line in R2 if this line is not parallel to the Λ:-axis, and
this usual line together with P if that line is parallel to the #-axis. If
z = P and z1 ε R2, we let fx(z, zr) be the line in R2 which contains z* and is
parallel to the #-axis together with P. Then X= U {z\ zεfγ{{0, 1), w),
wε/i((0,0), P)} even though the structure defined is a 2-arrangement.
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