Notre Dame Journal of Formal Logic Volume XIII, Number 2, April 1972 NDJFAM

A NEW FORMALIZATION OF NEWMAN ALGEBRA

BOLESŁAW SOBOCIŃSKI

In $[6]^1$ M. H. A. Newman constructed and investigated an algebraic system whose two basic binary operations are + and \times ,² and which, as he has proved, is a direct join of a non-associative Boolean ring with unity element and a Boolean lattice, *i.e.* a Boolean algebra. In [7], p. 28, Newman calls this system a *complemented mixed algebra*, but in Birkhoff's [2] and [3], p. 48, it is called Newman algebra. The latter name will be used throughout this paper. Besides the property which is mentioned above, in [6] it has been proved that for all elements of the carrier set of any Newman algebra the additive operation + is commutative and associative, but not necessarily idempotent or nilpotent, and that the multiplicative operation \times is idempotent and commutative, but not necessarily associative.

The main aim of this paper is to show that Newman algebra can be formalized as an equational system. For this end in section 1 below two definitions, (A) and (B), of two systems, \mathfrak{A} and \mathfrak{B} respectively, of the Newman algebras are given, and in section 2 it will be proved that these systems are inferentially equivalent, if their respective carrier sets A and B are the same, *i.e.* A = B, or these systems are inferentially equivalent up to isomorphism, if their carrier sets have only the same cardinality, *i.e.* $\operatorname{card}(A) = \operatorname{card}(B)$. Since definition (A) of \mathfrak{A} is an obviously equivalent modification of a formalization of Newman algebra given in [1], p. 4, [2], p. 155, and [3], p. 49, and since (B) defines \mathfrak{B} as an equational system, our claim will be justified. In section 3 it will be proved that in the field of \mathfrak{B} the set of its proper algebraic postulates is inferentially equivalent to another set containing a very small number of axioms. Finally, in section 4 the mutual independence of the axioms belonging to the sets mentioned above will be established.

Received April 18, 1971

^{1.} An acquaintance with the papers [6], [7] and one of [1], [2] or [3] is presupposed. *Cf.* also [8] and [4].

^{2.} In the papers mentioned in note 1 "ab" is used instead of " $a \times b$."

It should be remarked that throughout this paper the interesting and important properties of "even" and "odd" (in Birkhoff's terminology called "odd" and "even" respectively) elements belonging to the carrier set of the given Newman algebra will not be discussed, and that the axioms A1-A9, B1, B2, A10 and A11, see section 1, will be used mostly tacitly in the deductions which will be presented below.

1 We define the systems **1** and **3** as follows:

(A) Any algebraic system

$$\mathfrak{U} = \langle A, =, +, \times, 1, 0 \rangle$$

with one binary relation =, two binary operations + and \times , and two constant elements, 1 and 0, is a Newman algebra, if it satisfies the following postulates

A1 $[a]: a \in A. \supset . a = a$ A2 $[ab]: a, b \in A . a = b . \supset . b = a$ $[abc]: a, b, c \in A . a = b . b = c . \supset . a = c$ A3A4 $[ab]: a, b \in A . \supset .a + b \in A$ $[ab]:a, b \in A. \supset .a \times b \in A$ A5A6 $[abc]:a,b,c \in A . a = c . \supset .a + b = c + b$ $[abc]: a, b, c \in A . b = c . \supset .a + b = a + c$ A7A8 $[abc]: a, b, c \in A . a = c . \supset .a \times b = c \times b$ A9 $[abc]: a, b, c \in A.b = c. \supset .a \times b = a \times c$ B1 $1 \epsilon A$ $0 \in A$ B2C1 $[abc]: a, b, c \in A$. $\supset .a \times (b + c) = (a \times b) + (a \times c)$ $[abc]: a, b, c \in A$. $\supset (a + b) \times c = (a \times c) + (b \times c)$ C2C3 $[a]: a \in A . \supset . a = a \times 1$ C4 $[a]:a \in A : \supset .a = a + 0$ $[a]: a \in A$. $\supset .[ab] . b \in A . a + b = 1 . a \times b = 0$ C5

and

(B) Any algebraic system

$$\mathfrak{B} = \langle B, =, +, \times, - \rangle$$

with one binary relation =, with binary operations + and \times , and one unary operation -, is a Newman algebra, if it satisfies the postulates A1-A9, C1 and C2 given in (**A**), but adjusted to the carrier set B of **B**, and, additionally, the following axioms

 $A10 \quad [a]: a \in B . \supset .\overline{a} \in B$ $A11 \quad [a]: a \in B$ $F1 \quad [ab]: a, b \in B . \supset .a = a + (b \times \overline{b})$ $F2 \quad [ab]: a, b \in B . \supset .a = a \times (b + \overline{b})$ $F3 \quad [ab]: a, b \in B . \supset .a = (b + \overline{b}) \times a$

It is self-evident that system \mathfrak{A} , as defined in (A), is an equivalent reformularization of Birkhoff's formalization of Newman algebra, cf, e.g., [3], p. 48. The main differences existing between these two formalizations are the following:

1) The logical properties of the relation = are axiomatically assumed in \mathfrak{A} . 2) Formula C7, see section 2 below, which is a consequence of the axioms A1-C5, as it has been proved in [7], is not a postulate of \mathfrak{A} , while for some heuristic purposes it is assumed axiomatically in [1], [2], pp. 158-159, note 9, Ex. 7, and [3], p. 52, Ex. 9.

3) The constant elements 1 and 0 are assumed axiomatically in \mathfrak{A} , while Birkhoff introduces them by the way of the particular quantifiers with a proviso of the uniqueness of each of them.

Concerning system \mathfrak{B} it should be noticed that the unary operationis a kind of complementation peculiar to Newman algebra. Moreover, that in section 3 it will be proved that in its field the axioms {C1; C2; F1; F2; F3} are inferentially equivalent to F1, F2 and

 $G1 \quad [abcd]: a, b, c, d \in B . \supset . (a \times (b + c)) \times d = ((c \times a) \times d) + ((b \times a) \times d)$

2 Theorem. There is an equational formalization of Newman algebra.

Proof: In the deductions which follow the proofs of several theorems will be omitted, since they are in the literature. In each such case a suitable reference will be given.

2.1 Let us assume system \mathfrak{A} . Hence, we have at our disposal axioms A1-C5 and, moreover:

- $\begin{array}{ll} C6 & [a]: a \in A \ . \ \supseteq \ . \ a = a \times a \\ C7 & [a]: a \in A \ . \ \supseteq \ . \ a = 0 + a \end{array}$
- $C8 \quad [a]: a \in A . \supset .a = 1 \times a$

For a proof of C6 see [3], p. 49. Using methods analogous to those in [7] we easily obtain a proof of C7 in the field of \mathfrak{A} .³ Moreover, see the proof of F15 in section 2.2 below. C8 follows from C1-C7 at once. Then:

$$C9 \quad [ab]: a, b \in A . a + b = 1 . a \times b = 0 . \supset . b \times a = 0$$

$$PR \quad [ab]: Hp(3) . \supset .$$

$$[\exists d].$$

$$4. \quad d \in A .$$

$$5. \quad b + d = 1.$$

$$6. \quad b \times d = 0.$$

$$(1; C5)$$

```
C5^* \quad [a]: a \in A : \supset \cdot [\exists b] \cdot b \in A \cdot b + a = 1 \cdot b \times a = 0
```

Consequently, instead of C3 and C4 he has to have C8 and C7 as the axioms.

^{3.} The main difference existing between the formalizations of Newman algebra given in [6] and in Birkhoff's papers is that instead of C5 Newman accepts

7.
$$d = 1 \times d = (a + b) \times d = (a \times d) + (b \times d) = (a \times d) + 0$$
[1; 4; C8; 2; C2; 6]

$$= a \times d = 0 + (a \times d) = (a \times b) + (a \times d) = a \times (b + d)$$
[C4; C7; 3; C1]

$$= a \times 1 = a$$
[5; C3]

$$b \times a = 0$$
[6; 7]
C10 [abc]: a, b, c \in A \cdot a + b = 1 \cdot a \times b = 0 \cdot a + c = 1 \cdot a \times c = 0 \cdot \Box \cdot b = c
PR [abc]: Hp(5) $\cdot \Box \cdot$

$$b = b \times 1 = b \times (a + c) = (b \times a) + (b \times c) = 0 + (b \times c)$$
[1; C3; 4; C1; C9; 2; 3]

$$= (a \times c) + (b \times c) = (a + b) \times c = 1 \times c = c$$
[5; C2; 2; C8]

Therefore, having C5 and C10 we can introduce into system a definition of complementation:

DI	$[ab]: a, b \in A : \supset b = \overline{a} : \equiv a + b = 1 : a \times b = 0$	[<i>C5</i> ; <i>C10</i>]
C11	$[a]: a \epsilon A . \supset . \overline{a} \epsilon A$	[C5; DI]
C12	$[a]: a \in A : \supset . \ 1 = a + \overline{a}$	[C11; A1; DI]
C13	$[a]: a \in A : \supset . 0 = a \times \overline{a}$	[C11; A1; DI]
C14	$[ab]: a, b \in A . \supset a = a \times (b + \overline{b})$	[<i>C3</i> ; <i>C12</i>]
C15	$[ab]: a, b \in A . \supset . a = a + (b \times \overline{b})$	[<i>C4</i> ; <i>C13</i>]
C16	$[ab]: a, b \in A . \supset . a = (b + \overline{b}) \times a$	[<i>C</i> 8; <i>C</i> 12]
C17	$[a]: a \in A : \supset . \ \overline{a} \times a = 0$	[<i>C9</i> ; <i>C11</i> ; <i>C12</i> ; <i>C13</i>]
C18	$[ab]: a, b \in A . a = b . \supset . \overline{a} = \overline{b}$	
PR	$[ab]$: Hp(2) . \supset .	
	$\overline{a} = \overline{a} \times (b + \overline{b}) = (\overline{a} \times b) + (\overline{a} \times \overline{b}) = (\overline{a} \times a) + (\overline{a} \times \overline{b})$) [1; <i>C</i> 14; <i>C</i> 11; <i>C</i> 1; 2]
	$= 0 + (\overline{a} \times \overline{b}) = (b \times \overline{b}) + (\overline{a} \times \overline{b}) = (a \times \overline{b}) + (\overline{a} \times \overline{b})$	[C17; C13; 2]
	$=(a+\overline{a})\times\overline{b}=\overline{b}$	[<i>C2</i> ; <i>C16</i>]
C19	$[\exists a] . a \in A$	[<i>B1</i>]

2.2 Now, let us assume system $\boldsymbol{\vartheta}$. Hence, we have at our disposal the axioms A1-A9, C1 and C2 adjusted to the carrier set B of \mathfrak{B} , and, moreover, the axioms A10, A11, F1, F2 and F3. Then:

$$F4 \quad [ab]: a, b \in B . \supset . a + \overline{a} = b + \overline{b} \qquad [F2; F3]$$

Therefore, having A10 and F4 we can introduce into system a definition of the constant element 1.

D1	$[a]: a \in B . \supset . 1 = a + \overline{a}$	[A 10; A4; F4]
F5	$[a]: a \in B . \supset . a = a \times 1$	[F2; D1]
F6	$[a]: a \in B . \supset . a = 1 \times a$	[F3; D1]
F7	$[a]: a \in B . \supset . a = a \times a$	
PR	$[a]$: Hp(1). \supset .	
	$a = a \times (a + \overline{a}) = (a \times a) + (a \times \overline{a}) = a \times a$	[1; F2; C1; F1]
F8	$[a]:a \in B . \supset . a + 1 = 1 + a$	
PR	$[a]$: Hp(1). \supset .	
	$a+1=(a+1)\times(a+\overline{a})=((a+1)\times a)+((a+1)\times\overline{a})$	
	[1	; A10; A4; F2; C1]
	$= ((a \times a) + (1 \times a)) + ((a \times \overline{a}) + (1 \times \overline{a}))$	[C2]

$$= (a + a) + ((a \times \overline{a}) + \overline{a}) = ((1 \times a) + (a \times a)) + ((a \times \overline{a}) + (\overline{a} \times \overline{a}))$$

$$[F7; F6]$$

$$= ((1 + a) \times a) + ((a + \overline{a}) \times \overline{a}) = ((1 + a) \times a) + ((1 \times \overline{a}) + (a \times \overline{a}))$$

$$[C2; A5; A10; D1; F1]$$

$$= ((1 + a) \times a) + ((1 + a) \times \overline{a}) = (1 + a) \times (a + \overline{a}) = 1 + a$$

$$[C2; C1; F2]$$
F9 [ab]: a, b $\in B$. \supset . $a \times \overline{a} = (b \times \overline{b}) \times (a \times \overline{a})$
PR [ab]: Hp(1). \supset .
 $a \times \overline{a} = (a \times \overline{a}) \times (a \times \overline{a}) = ((a \times \overline{a}) + (b \times \overline{b})) \times (a \times \overline{a})$

$$[1; F7; F1]$$

$$= ((a \times \overline{a}) \times (a \times \overline{a})) + ((b \times \overline{b}) \times (a \times \overline{a}))$$

$$[C2]$$

$$= (a \times \overline{a}) + ((b \times \overline{b}) \times (a \times \overline{a})) = (1 \times (a \times \overline{a})) + ((b \times \overline{b}) \times (a \times \overline{a}))$$

$$[F7; F6]$$

$$= (1 + (b \times b)) \times (a \times a) = ((b \times b) + 1) \times (a \times a)$$

$$= ((b \times \overline{b}) \times (a \times \overline{a})) + (1 \times (a \times \overline{a}))$$

$$= ((b \times \overline{b}) \times (a \times \overline{a})) + (a \times \overline{a}) = (b \times \overline{b}) \times (a \times \overline{a})$$

$$[C2]$$

$$[C2]$$

$$[F6; F1]$$

F10
$$[ab]:a, b \in B . \supset . (a \times \overline{a}) = (a \times \overline{a}) \times (b \times \overline{b})$$
[Similar proof; F7; F1; C1; F5; F8]F11 $[ab]:a, b \in B . \supset . a \times \overline{a} = b \times \overline{b}$ [F9; F10]

Therefore, having A10 and F11 we can introduce into system a definition of the constant element 0.

D2	$[a]: a \in B . \supset . 0 = a \times \overline{a}$	[A10; A5; F11]
F12	$[a]: a \in B . \supset . a = a + 0$	[F1; D2]
F13	$[a]: a \in B . \supset . 0 + (0 + \overline{\overline{a}}) = a$	
PR	$[a]: Hp(1). \supset$.	
	$0 + (0 + \overline{a}) = 0 + ((\overline{a} \times \overline{a}) + (\overline{a} \times \overline{a})) = 0 + ((\overline{a} + \overline{a}) \times \overline{a})$	[1; D2; F7; C2]
	$= 0 + ((a + \overline{a}) \times \overline{\overline{a}}) = 0 + ((a \times \overline{\overline{a}}) + (\overline{a} \times \overline{\overline{a}}))$	[F4; C2]
	$= (a \times \overline{a}) + (a \times \overline{\overline{a}}) = a \times (\overline{a} + \overline{\overline{a}}) = a$	[D2; F1; C1; F2]
F14	$[a]: a \in B . \supset . a \times 0 = 0$	
PR	$[a]: \operatorname{Hp}(1). \supset .$	
	$a \times 0 = (0 + (0 + \overline{\overline{a}})) \times 0 = (0 \times 0) + ((0 \times 0) + (\overline{\overline{a}} \times 0))$	[<i>C2</i>]
	$= 0 + (0 + (\overline{\vec{a}} \times 0) = 0 + ((\overline{\vec{a}} \times \overline{\vec{a}}) + (\overline{\vec{a}} \times 0))$	[F7; D2]
	$= 0 + (\overline{\overline{a}} \times (\overline{\overline{\overline{a}}} + 0)) = 0 + (\overline{\overline{a}} \times \overline{\overline{\overline{a}}}) = 0$	[C1; F12; F1]
F15	$[a]: \underline{a} \in B$. \supset . $0 \times a = 0$ [Similar proof; F13; C1; F7;	D2; C2; F12; F1
F16	$0 + \overline{1} = 1$	
PR	$0 + \overline{\overline{1}} = (0 + \overline{\overline{1}}) \times (0 + \overline{\overline{1}}) = ((0 + \overline{\overline{1}}) \times 0) + ((0 \times \overline{\overline{1}}) + (\overline{\overline{1}}) \times (0) + (\overline{\overline{1})} \times (0) + (\overline{\overline{1}) \times (0) + (\overline{\overline{1})$	$\langle \overline{1} \rangle$) [F7; C1; C2]
	$= 0 + (0 + \overline{\overline{1}}) = 1 \qquad [F$	[14; F15; F7; F13]
F17	$[a]:a \in B . \supset . a = 0 + a$	
PR	$[a]: \operatorname{Hp}(1). \supset .$	
	$a = a \times 1 = a \times (0 + (0 + \overline{1})) = a \times (0 + 1)$	[F5; F13; F16]
	$= (a \times 0) + (a \times 1) = 0 + a$	[C1; F14; F5]

The proof of F17 is patterned after the deductions given by Newman in [7], but due to the axiom-system assumed here it is a little shorter than Newman's proof.

F18	$[a]: a \in B . \supset . [\exists b] . b \in B . a + b = 1 . a \times b = 0$	[A 10; D1; D2]
F 19	$[a]: a \in B . \supset . a = \overline{\overline{a}}$	[F13; A10; F17]
F20	$[a]: a \in B . \supset . 0 = \overline{a} \times a$	[D2; A 10; F 19]
F21	$[ab]: a, b \in B . a + b = 1 . a \times b = 0 . \supset . b = \overline{a}$	
PR	$[ab]$: Hp(3). \supset .	
	$b = (a + \overline{a}) \times b = (a \times b) + (\overline{a} \times b) = 0 + (\overline{a} \times b)$	[1; <i>F3</i> ; <i>C2</i> ; 3]
	$= (\overline{a} \times a) + (\overline{a} \times b) = \overline{a} \times (a + b) = \overline{a} \times 1 = \overline{a}$	[F20; C1; 2; F5]
F22	$[ab]: a, b \in B . \supset . b = \overline{a} . \equiv . a + b = 1 . a \times b = 0$	[D1; D2; F21]
F23	$[ab]: a, b \in B . a = b . \supset . \overline{a} = \overline{b}$	
PR	$\llbracket ab bracket : ext{Hp}(2) . \supset .$	
	$\overline{a} = \overline{a} \times (b + \overline{b}) = (\overline{a} \times b) + (\overline{a} \times \overline{b}) = (\overline{a} \times a) + (\overline{a} \times \overline{b})$	[1; F2; C1; 2]
	$= 0 + (\overline{a} \times \overline{b}) = (b \times \overline{b}) + (\overline{a} \times \overline{b}) = (b + \overline{a}) \times \overline{b}$	[F20; D2; C2]
	$= (a + \overline{a}) \times \overline{b} = \overline{b}$	[2; F3]
F24	1 <i>ϵ B</i>	[A11; A10; A4; D1]
F25	θ <i>ε B</i>	[A 11; A 10; A 5; D2]

2.3 An inspection of the deductions presented above in **2.1** and **2.2** shows that:

(i) The theses A1-A9, B1, B2, C1, C2, C3, C4, C5, C11, C19, C15, C14 and C16 of \mathfrak{A} correspond synonymously and respectively to the theses A1-A9, F24, F25, C1, C2, F5, F12, A10, A11, F1, F2 and F3 of \mathfrak{B}

and, moreover, that:

(ii) The theses DI, C12 and C13 of \mathfrak{A} correspond in the same manner to the theses F22, D1 and D2 of \mathfrak{B} .

Therefore, due to (ii) it follows from (i) immediately that the system **B** is a Newman algebra. Thus, the theorem is proved. Furthermore, it should be noticed that:

(iii) Since (i) and (ii) establish that the systems \mathfrak{A} and \mathfrak{B} are inferentially equivalent, if their respective carrier sets are equal, or they are inferentially equivalent up to isomorphism, if their carrier sets have only the same cardinality, any theorem provable in the field of one of these systems, is also provable in the field of the other

and that:

(iv) Since the theses C18 and F23 are provable in \mathfrak{A} and \mathfrak{B} respectively, the acceptance of complementation, as a primitive notion in Newman algebra, does not require necessarily an assumption of a special postulate concerning an extensionality of the relation = with respect to this unary operation.

3 In this section it will be proved that in the field of the remaining axioms of **B** the axioms C1, C2, F1, F2 and F3 are inferentially equivalent to the following set of formulas: F1, F2 and

 $G1 \quad [abcd]: a, b, c, d \in B . \supset . (a \times (b + c)) \times d = ((c \times a) \times d) + ((b \times a) \times d)$

3.1 Let us assume the axiom-system of **B**. Hence, we have at our disposal

not only all formulas which are proved in section 2.2, but also the theorems which Newman has proved in [6]. Thus, we can accept without proof:

 F26
 $[ab]:a, b \in B . \supset . a + b = b + a$ [Cf. P17 in [6], p. 260]

 F27
 $[ab]:a, b \in B . a + a = a . b + b = b . \supset . a \times b = b \times a$ [Cf. P31 in [6], p. 263]

 F28
 $[ab]:a, b \in B . a + a = 0 . b + b = 0 . \supset . a \times b = b \times a$ [Cf. P34 in [6], p. 264]

Then⁴:

^{4.} The deductions presented below excluding GI are also due to Newman, cf. [6], but often they are given in a very compact way, or even verbally. For this reason I decided to present them more formally. Concerning the formulas F31 and F32, cf. **P25** in [6], p. 262.

9.
$$a \times b = (c + d) \times (m + n) = (c \times m) + (d \times n)$$

[1; $A5; 2; 7; 8; F32; 3; 5; 4; 6]
 $= (m \times c) + (n \times d)$
 $[F27; 3; 5; F28; 4; 6]$
 $a \times b = b \times a$
[9]
C1 [$abcd$]: $a, b, c, d \in B $\supset (a \times (b + c)) \times d = ((c \times a) \times d) + ((b \times a) \times d)$
PR [$abcd$]: Hp(1) $\supset (a \times (b + c)) \times d = ((c \times a) \times d) + ((b \times a) \times d)$
 $= ((c \times a) + (b \times a)) \times d$
 $= ((c \times a) + (b \times a)) \times d$
 $= ((c \times a) + (b \times a)) \times d$
 $= ((c \times a) \times d) + ((b \times a) \times d)$
Thus, in **B** { $A1-A11; C1; C2; F1; F2; F3$ } $\rightarrow {A1-A11; F1; F2; G1$ }
3.2 Now, let us assume, as the axioms of **B**, $A1-A11, F1, F2$ and $G1$. Then:
C2 [abc]: $a, b, c \in B \ \supset (a + a) \times (b + c) = (c \times a) + (b \times a)$
 $= ((a \times (a + a)) \times c) = (a \times c) + (b \times c)$
PR [abc]: $a, b, c \in B \ \supset (a + b) \times c = (a \times c) + (b \times c)$
PR [abc]: $a, b, c \in B \ \supset (a + b) \times c = (a \times c) + (b \times c)$
PR [abc]: $a, b, c \in B \ \supset (a + b) \times c = (c + b) \times a$
 $= ((a \times (a + a)) \times c) + ((b \times (a + a)) \times c)$
 $= (a \times c) + (b \times c)$
C4 [abc]: $a, b, c \in B \ \supset (a + b) \times c = (c + b) \times a$
PR [abc]: $a, b, c \in B \ \supset (a + b) \times a = (c + b) \times a$
[$1; G2; C2$]
C5 [ab]: $a, b, c \in B \ \supset (a + b) \times a = (c + b) \times a$
PR [ab]: $hp(1) \ \supset (a + a) \times (b + b) = (b + b) \times (a + a) = b + b$
[$1; A10; A4; F2; G4; F2$]
F3 [ab]: $a, b \in B \ \supset (a + b) \times a = (b + b) \times a$
PR [ab]: $hp(1) \ \supset (a + a \times b) = (b + b) \times a$
PR [ab]: $hp(1) \ \supset (a + a \times b) = (b + b) \times a$
PR [ab]: $hp(1) \ \supset (a + a \otimes b) = (a + b) \times a$
PR [ab]: $hp(1) \ \supset (a + a \otimes b) = (a + b) \times a$
PR [ab]: $hp(1) \ \supset (a + b \otimes a) = (b + b) \times a$
PR [ab]: $hp(1) \ \supset (a + b \otimes a) = (b + b) \times a$
PR [ab]: $hp(1) \ \odot (a + b \otimes b) \times a$
PR [ab]: $hp(1) \ \odot (a + b \otimes b) \times a = (b + b) \times a$
PR [ab]: $hp(1) \ \odot (a + b \otimes b) \times a = (b + b) \times a$
PR [ab]: $hp(1) \ \odot (a + b \otimes b) \times a = (b + b) \times a$
PR [ab]: $hp(1) \ \odot (a + b \otimes b) \times a = (b + b) \times a$
 $= (b + (b \times b)) \times a = b \otimes a$
PR [ab]: $hp(1) \ \odot (a + b \otimes b) \times a = (b + b) \times a$
 $= (b + (b \times b)) \times (a + b) \otimes a = (b + b) \times a$
 $= (b + (b \times b)) \times (a + b) \otimes a = (b + b) \times a$
 $= ($$$

3.3 It follows from **3.1** and **3.2** that in the field of the remaining axioms of $\overline{\mathfrak{B}}$ {C1; C2; F1; F2; F3} \rightleftharpoons {F1; F2; G1} and, therefore, the proof is complete.

4 The mutual independence of the axioms C1, C2, F1, F2, F3 and of the axioms F1, F2, G1 is established by using the following algebraic tables (matrices):

A NEW FORMALIZATION

	+	0	α	β	γ	1	_	×	0	α	β	γ	1	x	\overline{x}
	0	0	α	β	γ	1		0	0	0	0	0	0	0	1
411	α	α	0	1	1	β		α	0	α	0	0	α	α	β
AH 1	β	β	1	0	0	α		β	0	0	β	γ	β	β	α
	γ	Y	1	0	0	α		γ	0	0	β	γ	γ	γ	α
	1	1	β	α	α	0		1	0	α	β	γ	1	1	0
	+	0	α	β	γ	1		×	0	α	β	γ	1	x	\overline{x}
	0	0	α	β	γ	1		0	0	0	0	0	0	0	1
<u></u> М2	α	α	0	1	1	β		α	0	α	0	0	α	α	β
م <i>اللغ</i>	β	β	1	0	0	α		β	0	0	β	β	β	β	α
	γ	γ	1		0	α		γ	0	0	γ	γ	γ	γ	α
	1	1	β	α	α	0		1	0	α	β	γ	1	1	0
			+	α`	β	γ		×	α	β	γ		<i>x</i>	\overline{x}	
M3			α	β	α	γ		α	β	γ	α		α	Y	
مەسىلى سەلىلى			β	α	γ	β		β	γ	α	β		β	β	
			γ	γ	β	α		γ	α	β	γ		γ	α	
				+	α	β		×	α	β		x	\overline{x}		
M4				α	α	β		α	α	α		α	α		
				β	β	α		β	α	α		β	β		
			+	α	1	0		×	α	1	0		x	\overline{x}	
M5			α	α	1	α		α	α	1	0		α	0	
			1	1	1	1		1	α	1	0		1	0	
			0	α	1	0		0	0	0	0		0	1	
			+	α	1	0		×	α	1	0		x	\overline{x}	
M6			α	α	1	α		α	α	α	0		α	0	
~			1	1	1	1		1	1	1	0		1	0	
			0	α	1	0		0	0	0	0		0	1	

Matrices $\mathfrak{Al}1$, $\mathfrak{Al}2$, $\mathfrak{Al}3$ and $\mathfrak{Al}4$ are Newman's examples E7, E6, E2 and E8, cf. [6], pp. 269-270, respectively, which are adjusted to the system **28**. Matrices $\mathfrak{Al}5$ and $\mathfrak{Al}6$ are the modifications of Croisot's examples $E_{3\alpha}$ and $E_{3\beta}$, cf. [5], p. 26.

Since:

(a) matrix All verifies C2, F1, F2, F3, but falsifies C1 for a/γ , b/α , c/β : (i) $\gamma \times (\alpha + \beta) = \gamma \times 1 = \gamma$, (ii) $(\gamma \times \alpha) + (\gamma \times \beta) = 0 + \beta = \beta$, and G1 for a/β , b/0, c/γ , d/1: (i) $(\beta \times (0 + \gamma) \times 1) = \beta \times \gamma = \gamma$, (ii) $((\gamma \times \beta) \times 1) + ((0 \times \beta) \times 1) = \beta + 0 = \beta$,

(b) matrix $\mathfrak{All2}$ verifies C1, F1, F2 and F3, but falsifies C2 for $a/\alpha \cdot b/\beta$, c/γ : (i) $(\alpha + \beta) \times \gamma = 1 \times \gamma = \gamma$, (ii) $(\alpha \times \gamma) + (\beta \times \gamma) = 0 + \beta = \beta$,

(c) matrix $\mathfrak{AH3}$ verifies C1, C2, F2, F3 and G1, but falsifies F1 for a/α , b/α : (i) $\alpha = \alpha$, (ii) $\alpha + (\alpha \times \overline{\alpha}) = \alpha + (\alpha \times \gamma) = \alpha + \alpha = \beta$,

(d) matrix \mathfrak{A} verifies FI and GI, but falsifies F2 for a/β , b/α : (i) $\beta = \beta$, (ii) $\beta \times (\alpha + \overline{\alpha}) = \beta \times (\alpha + \alpha) = \alpha$,

(e) matrix \mathfrak{A} verifies C1, C2, F1, F3, but falsifies F2 for a/α , b/1: (i) $\alpha = \alpha$, (ii) $\alpha \times (1 + \overline{1}) = \alpha \times (1 + 0) = \alpha \times 1 = 1$, and

(f) matrix $\mathfrak{All}\mathfrak{b}$ verifies C1, C2, F1, F2, but falsifies F3 for a/α , b/1: (i) $\alpha = \alpha$, (ii) $(1 + 1) \times \alpha = (1 + 0) \times \alpha = 1 \times \alpha = 1$,

it is established by matrices $\mathfrak{M}1$, $\mathfrak{M}2$, $\mathfrak{M}3$, $\mathfrak{M}5$ and $\mathfrak{M}6$ that the axioms C1, C2, F1, F2 and F3 are mutually independent, and by matrices $\mathfrak{M}1$, $\mathfrak{M}3$ and $\mathfrak{M}4$ that the axioms F1, F2 and G1 are also mutually independent.

5 Final remark. A characteristic feature of the formalizations of Newman algebra given in [6] and, e.g., in [3] is that in both of them two laws of distribution (C1, C2) are accepted as, say, the basic postulates to which some axioms peculiar to this theory are added, cf. a remark of Newman in [6], p. 257, note 4. In some degree this structure is preserved in the first axiom system (C1, C2, F1, F2, F3) presented above of system **3**. On the other hand, the second axiom-system (F1, F2, G1) of **3** is very compact, and for this reason the essential structure of the theory is much more hidden and cannot be recognized without some deductions.

REFERENCES

- Birkhoff, G. D., and G. Birkhoff, "Distributive postulates for systems like Boolean algebras," *Transactions of the American Mathematical Society*, vol. 60 (1946), pp. 3-11.
- [2] Birkhoff, G., *Lattice Theory*, American Mathematical Society Colloquium Publications, vol. XXV, Second edition (1948).
- [3] Birkhoff, G., *Lattice Theory*, American Mathematical Society Colloquium Publications, vol. XXV, Third edition (1967).
- [4] Braithwaite, R. B., "Characterization of finite Boolean lattices and related algebras," The Journal of the London Mathematical Society, vol. 17 (1942), pp. 180-192.
- [5] Croisot, R., "Axiomatique des lattices distributives," Canadian Journal of Mathematics, vol. III (1951), pp. 24-27.
- [6] Newman, M. H. A., "A characterization of Boolean lattices and rings," The Journal of the London Mathematical Society, vol. 16 (1941), pp. 256-272.
- [7] Newman, M. H. A., "Axioms for algebras of Boolean type," The Journal of the London Mathematical Society, vol. 19 (1944), pp. 28-31.
- [8] Newman, M. H. A., "Relatively complemented algebras," The Journal of the London Mathematical Society, vol. 17 (1942), pp. 34-47.

University of Notre Dame Notre Dame, Indiana