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A NEW FORMALIZATION OF NEWMAN ALGEBRA

BOLE SLAW SOBOCINSKI

In [6]1 M. H. A. Newman constructed and investigated an algebraic
system whose two basic binary operations are + and x,2 and which, as he
has proved, is a direct join of a non-associative Boolean ring with unity
element and a Boolean lattice, i.e. & Boolean algebra. In [7], p. 28,
Newman calls this system a complemented mixed algebra, but in Birkhoff 's
[2] and [3], p. 48, it is called Newman algebra. The latter name will be
used throughout this paper. Besides the property which is mentioned
above, in [6] it has been proved that for all elements of the carrier set of
any Newman algebra the additive operation + is commutative and associa-
tive, but not necessarily idempotent or nilpotent, and that the multiplicative
operation x is idempotent and commutative, but not necessarily associative.

The main aim of this paper is to show that Newman algebra can be
formalized as an equational system. For this end in section 1 below two
definitions, (A) and (B), of two systems, %ί and 8 respectively, of the
Newman algebras are given, and in section 2 it will be proved that these
systems are inferentially equivalent, if their respective carrier sets A and
J5are the same, i.e. A = B, or these systems are inferentially equivalent up
to isomorphism, if their carrier sets have only the same cardinality, i.e.
cαrd(A) = cαrd(£). Since definition (A) of U is an obviously equivalent
modification of a formalization of Newman algebra given in [1], p. 4, [2],
p. 155, and [3], p. 49, and since (B) defines 8 as an equational system, our
claim will be justified. In section 3 it will be proved that in the field of 83
the set of its proper algebraic postulates is inferentially equivalent to
another set containing a very small number of axioms. Finally, in
section 4 the mutual independence of the axioms belonging to the sets
mentioned above will be established.

1. An acquaintance with the papers [6], [7] and one of [1], [2] or [3] is presup-
posed. Cf. also [8] and [4].

2. In the papers mentioned in note 1 "ab" is used instead of "a x b."
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It should be remarked that throughout this paper the interesting and
important properties of "even" and " o d d " (in Birkhoff's terminology
called " o d d " and "even" respectively) elements belonging to the carr ier
set of the given Newman algebra will not be discussed, and that the axioms
A1-A9, Bl, B2, A10 and All, see section 1, will be used mostly tacitly in
the deductions which will be presented below.

1 We define the systems tl and S3 as follows:

(A) Any algebraic system

U = < A , = , + , x , 1 , 0)

with one binary relation =, two binary operations + and x, and two constant
elements, 1 and 0, is a Newman algebra, if it satisfies the following
postulates

Al [a]\ae A. z> . a = a
A2 [ab] :a,beA.a = b.^.b = a
A3 [abc]:a,b,ceA .a = b .b = c . => . α = c
A4 [ab] :a,beA.^.a + beA
A5 [ab] :a,beA. =) .α x be A
A 6 [abc];ayb,ceA ,a = c.^>.a + b = c + b
A7 [abc]:a,b,ceA .b = c . ̂  .a + b = a + c
A8 [abc]:a,b,ceA .a = c . 3 .a x b = c x b
A9 [abc]:a,b,ceA.b = c. D .ax b = α x c

Bl l e Λ
5 2 OeA

C i [ α δ c ] : α , 6 , c e A . => .a x (6 + c) = (α x 6) + (a x c)
C2 [ α 6 c ] : α , 6 , c e A . 3 . (α + b) x c = (α x c) + (b x c)
C3 [fl]:fleA.3.fl=ίixl
C 4 [ α ] : α e A . 3 . α = α + 0
C 5 [a]:aeA.o . [ 3 6 ] . 6 e A . α + δ = l . α x δ = 0

a n d

(B) Aŵ  algebraic system

β = < £ , = , + , x , ->

wzffe one binary relation =, xfzί/z binary operations + αwd x, αn<i one unary
operation -, is a Newman algebra, if it satisfies the postulates A1-A9, Cl
and C2given in (A), δwί adjusted to the carrier set B ofiB, and, additionally,
the following axioms

A10 [a]:aeB . D .αe JB
A21 [ 3 α ] : α e £

F2 [ α δ ] : α , 6 e 5 . => .α = α + (6 x^)
.F2 [αδ]:α,δeJ5 . ^ . α = α x ( δ + δ )
F 3 [ α 6 ] : α , 6 e 5 . 3 .a = (b +b) x a
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It is self-evident that system 9(, as defined in (A), is an equivalent
reformularization of Birkhoff's formalization of Newman algebra, cf, e.g.,
[3], p. 48. The main differences existing between these two formalizations
are the following:

1) The logical properties of the relation = are axiomatically assumed in %.
2) Formula C7, see section 2 below, which is a consequence of the axioms
A1-C5, as it has been proved in [7], is not a postulate of %, while for some
heuristic purposes it is assumed axiomatically in [1], [2], pp. 158-159,
note 9, Ex. 7, and [3], p. 52, Ex. 9.
3) The constant elements 1 and 0 are assumed axiomatically in H, while
Birkhoff introduces them by the way of the particular quantifiers with a
proviso of the uniqueness of each of them.

Concerning system JB it should be noticed that the unary operation-
is a kind of complementation peculiar to Newman algebra. Moreover, that
in section 3 it will be proved that in its field the axioms {ci; C2; Fl; F2;
F3] are inferentially equivalent to Fl, F2 and

Gl [abcd]:a,b,c,deB . ^ . (a x (b + c)) x d = ((c x a) x d) + ((b x a) x d)

2 Theorem. There is an equational formalization of Newman algebra.

Proof: In the deductions which follow the proofs of several theorems will
be omitted, since they are in the literature. In each such case a suitable
reference will be given.

2.1 Let us assume system 91. Hence, we have at our disposal axioms
A2~C5and, moreover:

C6 [a]:aeA . ^ .a = ax a
C7 [a]:aeA . => .a = 0 + a
C8 [a]:aeA.^.a=lxa

For a proof of C6 see [3], p. 49. Using methods analogous to those in
[7] we easily obtain a proof of C7 in the field of 51.3 Moreover, see the
proof of F15 in section 2.2 below. C8 follows from C1-C7 at once. Then:

C9 [ab]:a,beA .α + δ = l . α x δ = 0 . = > . δ x α = 0

PR [α&]:Hp(3). => .

lid].
4. deA. )
5. b + d = 1 . > [1;C5]
6. bxd = Q.)

3. The main difference existing between the formalizations of Newman algebra
given in [6] and in Birkhoff s papers is that instead of C5 Newman accepts

C5* [ah a eA .D . [36] - b eA - b + a = 1 b x a = 0

Consequently, instead of C3 and C4 he has to have C8 and C7 as the axioms.
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7. d = 1 xd = (a + b)x d= (axd) + (bxd) = (axd) + 0

[1; 4; C8; 2; C2; 6]

= ax d = 0 + (ax d) = (ax b) + (ax d) = ax (b + d)

[C4; C7; 3; Cl]

= ax\=a [5; CS]

δ x α - 0 [6; 7]

CIO [abc] :a,b,ceA.a + b = 1 .a x b = 0 .a + c = 1 .α x c = 0 . D .5 = c

P R [abc]: H p ( 5 ) . =>.

5 = & x 1 = b x (a + c) = (b x a) + (b x c) = 0 + (b x c)

[1; C3; 4; Cl; C9; 2; 3]

= (a x c) + ib x c) = (a + b) x c = 1 x c = c [5; C2; 2; C£]

Therefore, having C5 and CIO we can introduce into system a definition

of complementation:

DI [ab] :a,beA .^ . b =a. = .a + b = l.axb = 0 [C5\ CIO]

Cll [a]:aeA . =>. α e A [C5; Z)/]

Cl^ [α] :αeΛ. =>. 1 = α + α [Cll; Λl; Z)/]

C75 [β] : f leA.D.O=flXf l _ [Cll Al Dl]

C14 [ab]:a,beA . ^ . α = α x ( 6 + δ ) [C5; C12]

C15 [ab]:a,beA . D . α = a + (b^xb) [C4; C13]

C16 [ab] :a,beA . D . a= (b + b) x a [C8; C12]

C17 [fl]:fl£A.D.flXfl = O [CP; C12; C12; C13]

C18 [ab]:a,beA .a = b . => . α = b

PR [αδ]:Hp(2).f).

α = ά x (b + b) = (a x b) + (a x b) = (a x a) + (a x b) [1; C14; Cll; Cl; 2]

= 0 + (axb) = (bxb) + (άxb) = (axb) + (μxb) [C17; C13; 2]

= (α +ά) x & = b [C2; Clβ]

C19 [gα].αeA [Bl]

2.2 Now, let us assume system SB. Hence, we have at our disposal the

axioms A1-A9, Cl and C2 adjusted to the carrier set B of SB, and, more-

over, the axioms A10, All, Fl, F2 and F3. Then:

F4 [ab];a,beB .15 . a +ά = b +b [F2; F3]

Therefore, having A10 and F4 we can introduce into system a definition

of the constant element 1.

Dl [a]:aeB.o.l=a+a [A10;A4;F4]

F5 [a]:aeB. ^ . a = a x 1 [F2; 2)1]

F6 [a]:aeB. D . α = 1 x α [F5; Dl]

. F 7 [ a ] : a e B , z > . a = a * a

PR [ α ] : H p ( l ) . ^ .

α = α x (α + a) = (α x α) + (α x «) = a x a [1; JP^; Cl; F l ]

FS [α]:αe-B.=>.α + l = l + Λ

PR [ α ] : H p ( l ) . 3 .

a + 1 = (a + 1) x (c + a) = ((α + 1) x α) + ((α + 1) x α)

[1; A10; A4; F2; Cl]

= ((a x a) + (1 x a)) + ((a x a) + (1 x «)) [C2]
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= (a + a) + {(a x~a) +~a) = ((1 x a) + (α x a)) + ((a x~a) + (ax α))

= ((1 + a) x α) + ((α + a) x α) = ((1 + α) x α) + ((1 x α) + {axa))
[C2;A5;A10; Dl; Fl]

= ((1 + α) x α) + ((1 + a) x a) = (1 + a) x (a + "a) = 1 + a

[C2; Cl; F2]
F9 [ab] \a,b eB . o . a x a = (6 x δ) x (ax a)

PR [α&]:Hp(l).Jp.
α x a = (α x a) x {a x a) = ((a x a) + (b x b)) x (a x a) [1; F7; Fl]

= ((a xa)x (ax a)) + ((b xb)x (ax a)) [C2]
= (axa) + ((b xb) x (a x a)) = (1 x (a x a)) + ((b xΈ) x (a x a))

[F7;F6]
= (1 + (b x b)) x (ax a) = ((6 x b) + 1) x (α x a) [C2; F8]
= ((b xb)x (ax ~a)) + (1 x (a x α)) [C2]
= ((δ x δ) x (ax a)) + (α x_α) = (δ xj>) x (αxά) [F6; Fl]

F10 [ab]:a, be B . z>. (αx α) = (ax~a)x (bxT))
[Similar proof; F7; Fl; Cl; F5; F8]

Fll [ab];a,beB.Ώ.axa = bxb [F9; Flo]

Therefore, having A10 and Fll we can introduce into system a
definition of the constant element 0.

D2 [a]:aeB.^.0 = axa [A 10; A5; Fll]

F12 [a]:aeB .^ . a = a +0_ [F1;D2]

F13 [α]:αeJ3.3.O + (O+<ϊ) = 0
PR [α]:Hp(l). =>.

0+(0 + α) = 0 + ( ( ί x f l ) + ^ x ά ) ) = 0 + [ ( ϊ + ά) xΈ) [1; D2; F7; C2]

= 0 + ((α+α)xά) = 0 + ((β xjz) + (ά x α)) [F4; C2]
= ( α x ϊ ) + (flXfl) = flX(fl + fl) = fl [D2;F1;C1;F2]

F14 [ c ] : α e f i . ^ . α x O = O
PR [α]:Hp(l) .3 .

α x 0 = (0 + (0 + a)) x 0 = (0 x 0) + ((0 x 0) + (a x 0)) [C2]

= 0 + (0 + (a x 0) = 0 + ((α x α) + (α x 0)) [JP7; Zλ2]

= 0 + (α x (α + 0)) = 0 + (α x Λ) = 0 [Cl; F12; Fl]
F15 [a]:aeB .^). Ox a = 0 [Similar proof; F13; Cl; F7; D2; C2;F12;F1 ]
F16 0 + T = l _
PR 0 + T = (0 + T) xJO + T) = ((0 + T) x 0) + ((0 x I) + (T x T)) [F7; Cl; C2]

= 0 + (0 + T) = 1 [F14; F15; F7; F13]
F17 [a]:aeB. =>. a = 0 + a
PR [ « ] : H p ( l ) . D .

a = a x 1 = a x (0 + (0 + 1)) = a x (0 + 1) [F5; F13; F16]
= (a x 0) + (a x 1) = 0 + a [Cl; F14; Fδ]

The proof of F17 is patterned after the deductions given by Newman in
[7], but due to the axiom-system assumed here it is a little shorter than
Newman's proof.
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F18 [a]:aeB. => .[^b].beB .a + δ = l . α x δ = 0 [A 10; Dl; D2]

F19 [a]:ae B. D . α = α [F13; AIO; F17]

F £ 0 [ α ] : c c β . ^ . 0 = α x α [£>£; A10; F19]

F21 [ab] : α , 6 e 5 . α + 5 = l . f l X δ = 0 . ^ . δ = ά

PR [ α δ ] : H p ( 3 ) . D .

6 - (a + ά) x 6 = (a x 6) + (ά x 6) = 0 + (5 x 6) [1; F 3 ; C2; 3]

= (ά x a) + (α x b) = ~a x (α + 6) = ά x 1 = ά [.F20; C2; 2; JF5]

F £ 2 [ α δ ] :a,beB.z>. b =Έ. = .a_+ b = 1 . α x 6 = 0 [Dl; i)2; F2J]

F £ 3 [αδ] :a,be B .a = b . ^) .a =Ί>

PR M:Hp(2)._p.
^ = "5 x (6 + b) = (a x b) + (a x &) = (a x α) + (a x δ) [1; F ^ ; Cl; 2]

= 0 + ( f l X δ ) = ( δ x δ ) + ( α x δ ) = (δ + α) x" δ [ V ^ ; D2; C2]

= (α + α) x δ = δ [2; F3]

F24 leB [All; A10; A4; Dl]

F25 OeB [All; A10; A5; D2]

2.3 An inspection of the deductions presented above in 2.1 and 2.2 shows

that:

(i) The theses A1-A9,B1, B2} Cl, C2, C3, C4, C5, Cll, C19, C15, C14 and

C16 of 51 correspond synonymously and respectively to the theses A1-A9,

F24, F25, Cl, C2, F5, F12, A10, All, Fl, F2 and F3 of £

and, moreover, that:

(ii) The theses Dl, C12 and C13 of 51 correspond in the same manner to the

theses F22, Dl and D2 of S3.

Therefore, due to (ii) it follows from (i) immediately that the system S3

is a Newman algebra. Thus, the theorem is proved. Furthermore, it

should be noticed that:

(iii) Since (i) and (ii) establish that the systems 3ί and S3 are inferentially

equivalent, if their respective carrier sets are equal, or they are in-

ferentially equivalent up to isomorphism, if their carrier sets have only the

same cardinality, any theorem provable in the field of one of these

systems, is also provable in the field of the other

and that:

(iv) Since the theses C18 and F23 are provable in 51 and S3 respectively, the

acceptance of complementation, as a primitive notion in Newman algebra,

does not require necessarily an assumption of a special postulate concern-

ing an extensionality of the relation = with respect to this unary operation.

3 In this section it will be proved that in the field of the remaining axioms

of S3 the axioms Cl, C2, Fl, F2 and F3 are inferentially equivalent to the

following set of formulas: Fl, F2 and

Gl [abed] :a,b,c,de B . z>. (ax (b + c)) x d = ((c x a) x d) + ((δ x a) x d)

3.1 Let us assume the axiom-system of SB. Hence, we have at our disposal
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not only all formulas which are proved in section 2.2, but also the theorems

which Newman has proved in [6]. Thus, we can accept without proof:

F26 [ab]:a,beB . z> .a + δ = b +a [Cf. P17 in [6], p. 260]

F 2 7 [ a b ] : a , b e B . a + a = a . b + b = b . ^ ) . a x b = b x a

[Cf. P31 in [6], p. 263]
F 2 8 [ a b ] : a , b e B . a + a = 0 . b + b = 0 . ^ ) . a x b = b x a

[Cf. P34in [6], p. 264]

Then4:

F29 [a]: a e B . ^ . {a + a) + (a + a) = a + a

P R j α ] : H p ( l ) . = > .

{a + a) + (a + a) = ((a x a) + (ax a)) + ((a x a) + (a x a)) [1; F7]

= ((a + a) x a) + {{a + a) x a) [C2]

= (a + a) x (a + a) = a + a [Cl; F7]

F30 [a]: a e B . z> . ((a + a) x a) + ({a + a) x α ) = 0 [Cl; F2θ]

F31 [a]:ae B . D . [^bc] ,b,c e B .b + b = b.c + c = 0.a=b + c

PR [a]:aeB . ^ .

2. α = ((α + α) + (a + a)) x a = {(a + a) x a) + ({a + a) x a) [1 ; A4; F 3 ; C2]

= ((α x α) + (a x α)) + ( ( α T β ) x α) = (α + a) + ((α + α) x a) [C2; F7]

[ g δ c ] . by ce B. b + 6 = δ . c + c = 0 . α = 6 + c

[1; A4;A10; A5; F29; F30; 2]

F 3 £ [ α & c ί ? ] : « , 6 , c , r f e 5 . α + a = α . 6 + 6 = 6 . c + c = 0 . d + d = 0 . : 3 . ( α + c)

X ( δ + ίl) = ( f l X δ ) + ( c X ί ί )

P R [ α 6 c r f ] : H p ( 5 ) . =>.

(α + c) x (6 + d) = ((a x b) + (c x 6)) + {(a x d) + (c x rf)) [ 1 ; C l ; C2]

= ((α x δ ) + ( c x ( δ + 6))) + (((α + f l ) X ί l ) + ( c x rf))

[ 3 ; 2]

= {(a x b) + ((c + c) x δ)) + ((a x (d + d)) + (c x d))

[Cl; C2]

= ((a x b) + (0 x &)) + ((α x θ ) + ( c x d)) [4; 5]

= ( « x δ ) + ( c x ή [F15; F14; F12; F17]

F33 [ab]:a,beB . ^ . ax b = b x a

PR [αδ]:Hp(l). 3 .

2. c,d,m,ne B .

3. c + c = c .
4. d + d = 0. '

5. m +m = m. [1; F3l]

6. w + n = 0. L

7. a = c + d .

8. b = m + n .

4. The deductions presented below excluding Gl are also due to Newman, cf. [6] ,
but often they are given in a very compact way, or even verbally. For this
reason I decided to present them more formally. Concerning the formulas F31
and F32, cf. P25 in [6] , p. 262.
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9. a x b = (c + d) x (m + n) = (c x m) + (d x n)

[ 1 ; A 5 ; 2 ; 7 ; 8 ; F 3 2 ; 3 ; 5 ; 4 ; 6 ]

= (ra x c) + (w x d) [F27; 3; 5; F28\ 4; 6]

= (wί+w)x(c+ίί)4Xfl [F3£; 5; 3; 6; 4; 7; 8]

a x b = b xa [9]

G i [ f l δ c d ] : f l , δ , c , d e £ , ̂  . { a x φ + c ) ) x d - { { c x a ) x d) + ((b x a ) x d)

P R [ a b c d ] : U v ( l ) . = > .

( α x ( δ + c))X(ί= ((α x5) + (αxc))X(/ [1; Cl]

= ((c xα) + (δxα))X(ί [F33, F26]

= ((c Xβ)Xί/) + ((δ Xfl)xd) [C^]

Thus, in & {Al-All; Cl; C2; Fl; F2; F3]-+ {Al-All; Fl; F2; Gl]

3.2 Now, let us assume, as the axioms of ίB, Al-All, Fl, F2 and Gl. Then:

G2 [abc]:a,b,ceB . D .α x (b + c) = (c x a) + (6 x a) [F2; Gl]

G3 [abc] :a,b,ceB . z>. (α + α) x (6 + c) = c + b [G2; F2]

C2 [abc] \a,b,ceB . D . (α + 6) x c = ( α x c ) + ( δ x c )

PR [α&c] : H p ( l ) . =>.

(α + δ) x c = ((« + α) x φ + α)) x c [1; G5]

= ((α x (fl + fl)) x c) + ((δ x (fl + fl)) x c) [ G i ]

= (fl x c) + φ x c) [F2]

G4 [abc] :a,b,ceB . D . fl x (δ + c) = (c + δ) x fl

PR [flδc]:Hp(l). 3 .

flx (δ + c) = (c xa) + φ x fl) = (c + δ) Xfl [1\G2\ C2]

G5 [flδ] :a,beB . ^ . a + a =~b + b

PR [flδ]:Hp(l)._^.

fl + fl = (fl + fl) x φ + δ) = (δ + δ) x (fl + fl) = δ + &

[1; A10; A4; F2; G4; F2]

F3 [ab]:a, be B. 3 .a = (δ +~δ) x a

PR [flδ]:Hp(l)._p.

fl = fl x (δ + δ) = (δ + δ) x fl = (δ + δ) x a [1; F2\ G4; G5]

F26 [flδ] :a,beB . 3 . a + b = δ +fl [F2; G4; F3]

F55 [flδ] :a,beB . 13 . fl x δ = δ x a

PR [flδ]:Hp(l). 3 .

fl x δ = fl x (δ + (δ X δ)) = ((δ x δ) + δ) x a [1; A5; Fl; G4]

= φ + (bxb))Xa = δ X fl [F26; Fl]

Cl [abc]:a,b,ceB . ^ . ax φ + c) = (a x b) + {a x c) [G2; F33; F26]

Thus, {Al-All; Fl; F2; Gl}-* {Al-All; Cl; C2; Fl; F2; F3}

3.3 It follows from 3.1 and 3.2 that in the field of the remaining axioms of

8 {Cl; C2; Fl; F2; F3}^1 {Fl; F2; Gl} and, therefore, the proof is com-

plete.

4 The mutual independence of the axioms Cl, C2, Fl, F2, F3 and of the

axioms Fl, F2, Gl is established by using the following algebraic tables

(matrices):
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+ 0 a β γ 1 x 0 a β γ 1 x x

0 0 a β γ 1 0 0 0 0 0 0 0 1

. a a 0 1 1 β a 0 a 0 0 a a β

™ β β 1 0 0 a β 0 0 β γ β β a

γ γ 1 0 0 a γ 0 0 β γ γ γ a

1 1 β a a 0 1 0 a β γ 1 1 0

+ 0 a β γ 1 x 0 a β γ 1 x x

0 0 a β γ 1 0 0 0 0 0 0 0 1

2 a a 0 1 1 β a 0 a 0 0 a a β

™ β β 1 0 0 a β 0 0 β β β β a

γ γ 1 0 0 a γ 0 0 γ γ γ γ a

1 1 β a a 0 1 0 a β γ 1 1 0

+ a" β γ x a β γ x x

a β a γ a β γ a a γ

P β a
 γ

 β β γ a β β β

γ γ β a γ a β γ γ a

+ a β x a β x x

^H4 a a β a a a a a

β β a β α α β β

+ a 1 0 x a 1 0 x x

βS a a 1 a a a 1 0 a 0

1 1 1 1 1 a 1 0 1 0

0 a 1 0 0 0 0 0 0 1

+ a 1 0 x a 1 0 xx

βS a a 1 a a a a 0 a 0

1 1 1 1 1 1 1 0 10

0 a 1 0 0 0 0 0 0 1

Matrices fll, β2, βZ and β4 are Newman's examples E7, E6, E2 and
E8, cf. [6], pp. 269-270, respectively, which are adjusted to the system 8 .
Matrices βS and β$ are the modifications of Croisot's examples E 3 α and
Es0, cf. [5], p. 26.

Since:

(a) matrix ^11 verifies C2, Fl, F2, F3, but falsifies Cl for a/γ, b/a, c/β;
(i) γ x (a + β) = γ x 1 = γ, (ii) (γ x a) + (y x ]3) = 0 + β = β, and Gl for a/β,
b/0, c/γ, d/1: (i) (β X(O + y)x 1) = β X γ = y, (ii) ((y X β) X 1) + ((0 X β) X 1) =
β + O = β,
(b) matrix β2 verifies Cl, Fl, F2 and F3, but falsifies C2 for a/a.b/β,
c/γ: (i) (en + β) X γ = 1 X γ = y, (ii) (a X γ) + ()3 X y) = 0 + β = β,
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(c) matrix βZ verifies Cl, C2, F2, F3 and Gl, but falsifies Fl for a/a, b/a:

(i) a = a, (ii) a + (a x a) = a + (a x y) = α + a = β,

(d) matrix $K4 verifies F l and G2, but falsifies F2 for a/β, b/a: (i) β = β,

(ii) β x (α + α) = β x (a + a) = α,

(e) matrix $K5 verifies Cl, C2, Fl, F3, but falsifies F2 for a/a, b/1:

(i) a = a, (ii) α? x (2 + 1) = a x (1 + 0) = α x 1 = 2, and

(f) matrix JtiίB verifies Cl, C2, Fl, F2, but falsifies F3 for a/a, b/1: (i) a =

a, (ii) (1 + I ) x α = ( 2 + O ) x α = 2 x α = l ,

it is established by matrices βl, βZ, βZ, β5 and βB that the axioms Cl,

C2, Fl, F2and F3 are mutually independent, and by matrices βl, βZ and

^H4 that the axioms Fl, F2 and Gl are also mutually independent.

5 Final remark. A characteristic feature of the formalizations of Newman

algebra given in [6] and, e.g., in [3] is that in both of them two laws of

distribution {Cl, C2) are accepted as, say, the basic postulates to which

some axioms peculiar to this theory are added, cf, a remark of Newman in

[6], p. 257, note 4. In some degree this structure is preserved in the first

axiom system (Cl, C2, Fl, F2, F3) presented above of system S3. On the

other hand, the second axiom-system (Fl, F2, Gl) of 5B is very compact,

and for this reason the essential structure of the theory is much more

hidden and cannot be recognized without some deductions.
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