Notre Dame Journal of Formal Logic Volume XIII, Number 2, April 1972 NDJFAM

MATTERS OF SEPARATION

H. LEBLANC and R. K. MEYER

1. Extending in some respects, sharpening in others, results in the literature, we establish here that:
(1) Every classically valid wff A of $\mathrm{QC}=$, the first-order quantificational calculus with identity, is provable by means of axiom schemata P1-A3 and rule R1 in Table I, plus the axiom schemata and rules of that table for only such of the logical symbols ' \sim ', ' $\&$ ', ' v ', ' \equiv ', ' \forall ', ' \exists ', and ' $=$ ' as occur in A,
(2) Every intuitionistically valid wff A of $\mathrm{QC}=$ is provable by means of axiom schemata A1-A2 and rule R1 in Table I, plus the axiom schemata and the seven rules of that table for only such of the logical symbols in question as occur in A.

In the first of our two theorems R2 is to serve as rule for ' \forall '; in the second, R2 or R2' according as ' $\&$ ' occurs or not in A.

TABLE I

```
Axiom schemata
For ' \(\supset\) ': A1. \(A \supset(B \supset A)\)
    A2. \((A \supset(B \supset C)) \supset((A \supset B) \supset(A \supset C))\)
    A3. \(((A \supset B) \supset A) \supset A\)
For ' \(\sim\) ': A4. \((A \supset B) \supset(\sim B \supset \sim A)\)
    A5. \(A \supset \sim \sim A\)
    A6. \(\sim \sim A \supset(\sim A \supset B)\)
For ' \(\&\) ': A7. \(\quad(A \& B) \supset A\)
    A8. \((A \& B) \supset B\)
    A9. \(A \supset(B \supset(A \& B))\)
For 'v': A10. \(A \supset(A \vee B)\)
    A11. \(B \supset(A \vee B)\)
    A12. \((A \supset C) \supset((B \supset C) \supset((A \vee B) \supset C))\)
For \({ }^{\prime} \equiv\) ': A13. \(A \supset((A \equiv B) \supset B)\)
    A14. \(A \supset((B \equiv A) \supset B)\)
    A15. \((A \supset B) \supset((B \supset A) \supset(A \equiv B))\)
For ' \(\forall\) ': A16. \((\forall X) A \supset A(Y / X)\)
For ' \(\exists\) ': A17. \(A(Y / X) \supset(\exists X) A\)
```

Received January 23, 1970

```
For ' \(=\) ': A18. \(X=X\)
    A19. \(X=Y \supset(A \supset A(Y / / X))\), where \(A\) is an atomic wff
        of \(\mathrm{QC}=\).
```

Attendant substitution conventions: (i) In A16-17 $A(Y / X)$ is to be like A except for containing free Y wherever A contains free X. (ii) In A19 $A(Y / / X)$ is to be like A except for containing (free) Y at zero or more places where A contains (free) X.

Rules

For ' \supset ': R1. From A and $A \supset B$ to infer B.
For ' \forall ': R2. From $A \supset B$ to infer $A \supset(\forall X) B$, so long as X does not occur free in A.
R2'. From $A \supset(B \supset C)$ to infer $A \supset(B \supset(\forall X) C)$, so long as X does not occur free in either one of A and B.
For ' \exists ': R3. From $A \supset B$ to infer $(\exists X) A \supset B$, so long as X does not occur free in B.

The earliest forerunner of (2) is probably a result of Curry's in [1], which differs from (2) in only three minor respects: (i) A is restricted throughout to be a wff of QC, the first-order quantificational calculus without identity, (ii) ' \equiv ' is ignored, being treated as a defined sign, and (iii) $R 2$ serves in all cases as rule for ' \forall ', the extra axiom schema

B1. $(\forall X)(A \supset B) \supset(A \supset(\forall X) B)$, where X does not occur free in A,
being thrown in when ' $\&$ ' does not occur in $A .{ }^{1}$ The earliest anticipation of (1) that we know of is a theorem of Kleene's in [4], p. 459, to the effect that if a wff A of QC is classically valid, then A is provable by means of axiom schemata A1-A2, the following two axiom schemata (for ' \sim '):
B2. $(A \supset B) \supset((A \supset \sim B) \supset \sim A)$
B3. $\sim \sim A \supset A$,
rule R1, plus the axiom schemata and rules of Table I for only such of the four logical symbols ' $\&$ ', ' v ', ' \forall ', and ' \exists ' as occur in A. Like Curry, Kleene ignores ' \equiv ', uses R2 as his one rule for ' \forall ', and calls on axiom schema B1 (redundant, it so happens, in the presence of A1-A2, B1-B2, and R1) when ' $\&$ ' does not occur in A. A partial forerunner of (1) and (2) is of course Kanger's [3], which gives proof of both theorems for the case where A is a wff of SC , the sentential calculus. ${ }^{2}$

[^0]2. For proof of (1) consider first the case where A contains no occurrence of ' $=$ ' and hence is a wff of QC.

It is shown in [5] that every classically valid sequent of the sort

$$
A_{1}, A_{2}, \ldots, A_{n} \rightarrow B
$$

where $A_{1}, A_{2}, \ldots, A_{n}(n \geq 0)$, and B are wffs of QC, is provable by means of the axiom schema

$$
\begin{equation*}
K, A, L \rightarrow A \tag{Ax}
\end{equation*}
$$

and the intelim rules of Table II for only such of the seven logical symbols ${ }^{\prime} \supset$ ', ' \sim ', ' $\&$ ', ' v ', ' \equiv ', ' \forall ', and ' \exists ' as occur in the sequent. ${ }^{3}$

TABLE II

Introduction rules

For ' \supset ': $\quad \frac{K, A \rightarrow B}{K \rightarrow A \supset B}$

Elimination rules

$$
\frac{K \rightarrow A \supset B \quad K \rightarrow(A \supset C) \supset A}{K \rightarrow B}
$$

For ' \sim ':

$$
\frac{K, A \rightarrow B \quad K, A \rightarrow \sim B}{K \rightarrow \sim A}
$$

$$
\frac{K \rightarrow \sim \sim A}{K \rightarrow A}
$$

For ' $\&$ ': $\frac{K \rightarrow A \quad K \rightarrow B}{K \rightarrow A \& B}$

$$
\frac{K \rightarrow A \& B}{K \rightarrow A} \quad \frac{K \rightarrow A \& B}{K \rightarrow B}
$$

For ' v ':

$$
\frac{K \rightarrow A}{K \rightarrow A \vee B} \quad \frac{K \rightarrow B}{K \rightarrow A \vee B} \quad \frac{K, A \rightarrow C}{} \quad K, B \rightarrow C \quad K \rightarrow A \vee B
$$

For ' \equiv ': $\frac{K, A \rightarrow B \quad K, B \rightarrow A}{K \rightarrow A \equiv B}$

$$
\frac{K \rightarrow A \quad K \rightarrow(C \equiv A) \equiv(C \equiv B)}{K \rightarrow B}
$$

For ' \forall ': $\frac{K \rightarrow A}{K, L \rightarrow(\forall X) A}$

$$
\frac{K \rightarrow(\forall X) A}{K \rightarrow A(Y / X)}
$$

For ' \exists ': $\frac{K \rightarrow A(Y / X)}{K \rightarrow(\exists X) A}$

$$
\frac{K, L \rightarrow(\exists X) A \quad K, A \rightarrow B}{K, L \rightarrow B}
$$

For ' \forall ' and ' v ':

$$
\frac{K \rightarrow A \vee B}{K, L \rightarrow(\forall X) A \vee B}
$$

Attendant restrictions: (i) In the introduction rule for ' \forall ' the variable X is not to occur free in any wff in K. (ii) In the elimination rule for ' \exists ' and the introduction rule for ' \forall ' and ' v ', X is not to occur free in any wff in K nor in B.
3. In four out of five cases the quantificational rules of Table I are simplifications (patterned after rules in Fitch's [2]) of their counterparts in [5]. As the reader may wish to verify, they permit proof of exactly the same sequents as their counterparts in [5] do.

Now let the wff-associate of a sequent of the sort $\rightarrow B$ be B, that of a sequent of the sort $A_{1} \rightarrow B$ be $A_{1} \supset B$, that of a sequent of the sort A_{1}, $A_{2} \rightarrow B$ be $A_{1} \supset\left(A_{2} \supset B\right)$, and so on. It is easily verified that the wffassociate of any sequent of the above sort $K, A, L \rightarrow A$ is provable by means of A1-A2 and R1. It can also be verified (see section 4 for three sample cases) that (i) if a sequent S follows from another sequent S_{1}, or two other sequents S_{1} and S_{2}, or three other sequents S_{1}, S_{2}, and S_{3} by application of an intelim rule of Table II for one or (as in the case of the introduction rule for ' \forall ' and ' v ') two of the logical symbols ' \supset ', ' \sim ', ' $\&$ ', ' v ', ' \equiv ', ' \forall ', and ' \exists ', and (ii) the wff-associate of S_{1}, or the wff-associates of S_{1} and S_{2}, or the wff-associates of S_{1}, S_{2}, and S_{3} are provable by means of a set α of axiom-schemata and rules from Table I, then the wff-associate of S is provable by means of $\alpha, \mathrm{A} 1-\mathrm{A} 3, \mathrm{R} 1$, and the axiom schemata and rules of Table I for the one symbol or the two symbols in question.

Take then the wff A of (1). Since A is presumed to be classically valid, then the corresponding sequent $\rightarrow A$ is sure to be classically valid as well. Hence there is sure to be a proof of $\rightarrow A$ by means of the one axiom schema and the intelim rules of Table II for only such of the logical symbols ' D ', ' \sim ', ' $\&$ ', ' v ', ' \equiv ', ' \forall ', and ' \exists ' as occur in $\rightarrow A$: Hence there is sure to be for each entry $K_{i} \rightarrow B_{i}$ in the proof in question of $\rightarrow A$ a proof of the wff-associate of $K_{i} \rightarrow B_{i}$ by means of A1-A3, R1, and the axiom schemata and rules of Table I for only such of the logical symbols ' \sim ', ' $\&$ ', ' v ', ' \equiv ', ' \forall ', and ' \exists ' as occur in $\rightarrow A$. Hence, in particular, there is sure to be a proof of A (the wff-associate of $\rightarrow A$) by means of A1-A3, R1, and the axiom schemata and rules of Table I for only such of the logical symbols ' \sim ', ' $\&$ ', ' v ', ' \equiv ', ' \forall ', and ' \exists ' as occur in $\rightarrow A$ and hence in A. ${ }^{4}$
3. Consider then the case where A contains at least one occurrence of ' $=$ '. Since A is presumed to be classically valid and since the axiom schemata and rules of Table I permit proof of every classically valid wff of $\mathrm{QC}=$, there is sure to be a column of wffs of QC= that closes with A and counts as a proof of A by means of the axiom schemata and rules of Table I. Now let B_{1}, B_{2}, \ldots, and $B_{n}(n \geq 0)$ be in any order all the entries in the column in question that are of the sort A18 or the sort A19 in Table I. By virtue of the Deduction Theorem

$$
B_{1} \supset\left(B_{2} \supset\left(\ldots \supset\left(B_{n} \supset A\right) \ldots\right)\right)
$$

is sure to be provable by means of the axiom schemata and rules of Table I minus A18-A19. Hence so is the result

$$
B_{1}^{\prime} \supset\left(B_{2}^{\prime} \supset\left(\ldots \supset\left(B_{n}^{\prime} \supset A^{\prime}\right) \ldots\right)\right)
$$

of turning in every component of $B_{1} \supset\left(B_{2} \supset\left(\ldots \supset\left(B_{n} \supset A\right) \ldots\right)\right)$ of the sort $X=Y$ for one of the sort $F(X, Y)$, where F is any two-place predicate variable of QC that is foreign to $B_{1} \supset\left(B_{2} \supset\left(\ldots \supset\left(B_{n} \supset A\right) \ldots\right)\right)$. But

[^1]$B_{1}^{\prime} \supset\left(B_{2}^{\prime} \supset\left(\ldots . \supset\left(B_{n}^{\prime} \supset A^{\prime}\right) \ldots\right)\right)$ is a wff of QC , and-being provable by means of the axiom schemata and rules of Table I minus A18-A19-is sure to be classically valid. Hence by the case covered in section $2 B_{1}^{\prime} \supset\left(B_{2}^{\prime} \supset\right.$ (. . . $\left.\supset\left(B_{n}^{\prime} \supset A^{\prime}\right) \ldots.\right)$ is sure to be provable by means of A1-A3, R1, and the axiom schemata and rules of Table I for only such of the logical symbols ' \sim ', ' \&', 'v', ‘ \equiv ', ' \forall ', and ' \exists ' as occur in $B_{1}^{\prime} \supset\left(B_{2}^{\prime} \supset\left(\ldots . \supset\left(B_{n}^{\prime} \supset\right.\right.\right.$ $\left.A^{\prime}\right)$) . .)). Hence clearly $B_{1} \supset\left(B_{2} \supset\left(\ldots \supset\left(B_{n} \supset A\right)\right.\right.$. . $)$) is sure to be provable by means of A1-A3, R1, and the axiom schemata and rules of Table I for only such of the symbols in question as occur in $B_{1} \supset\left(B_{2} \supset\right.$ $\left(. . \supset\left(B_{n} \supset A\right) \ldots\right)$. Hence A is sure to be provable by means of A1-A3, A18-A19, R1, and the axiom schemata and rules of Table I for only such of the symbols in question as occur in one or more of $B_{1}, B_{2}, \ldots, B_{n}$, and A. But none of ' \sim ', ' $\&$ ', ' v ', ' \equiv ', ' \forall ', and ' \exists ' occurs in anyone of B_{1}, B_{2}, \ldots, and B_{n}; and ' $=$ ', which does occur in each one of B_{1}, B_{2}, \ldots, and B_{n}, is presumed to occur in A. Hence A is sure to be provable by means of $\mathrm{A} 1-\mathrm{A} 3, \mathrm{R} 1$, and the axiom schemata and rules of Table II for only such of the logical symbols ' \sim ', ' $\&$ ', ' v ', ' \equiv ', ' \forall ', and ' \exists ' as occur in $A .{ }^{5}$
4. The three sample cases that we promised to work out in detail are the introduction rule for ' \forall ' $(=\forall I)$, the introduction rule for ' \forall ' and ' v ' ($=\forall I_{V}$), and the elimination rule for ' \exists ' ($=\exists \mathrm{E}$). Throughout α is to be an arbitrary set of axiom schemata and rules from Table I.

Lemma 1. $((A \supset B) \supset B) \supset((A \supset(\forall X) B) \supset B)$ is provable by means of $\mathrm{A} 1=\mathrm{A} 2, \mathrm{~A} 16$, and R1.

Proof: $(\forall X) B \supset B$ is provable by means of A16. Hence Lemma 1.
Lemma 2. If $A \supset(B \supset C)$ is provable by means of α, then $A \supset(B \supset(\forall X) C)$ is provable by means of α, A1-A3, A16, R1, and R2, so long as X does not occur free in either one of A and B.

Proof: Suppose $A \supset(B \supset C)$ is provable by means of α. Since $(A \supset(B \supset$ $C)) \supsetneq(((A \supset(B \supset(\forall X) C)) \supset C) \supset C)$ is provable by means of A1-A3 and R1, then $((A \supset(B \supset(\forall X) C)) \supset C) \supset C$ is provable by means of α, A1-A3, and R1. Hence in view of Lemma $1((A \supset(B \supset(\forall X) C)) \supset(\forall X) C) \supset C$ is provable by means of α, A1-A3, A16, and R1. Suppose next that X does not occur free in either one of A and B. Then $((A \supset(B \supset(\forall X) C)) \supset(\forall X) C) \supset$ $(\forall X) C$, which follows from $((A \supset(B \supset(\forall X) C)) \supset(\forall X) C) \supset C$ by application of R 2 , is provable by means of $\alpha, \mathrm{A} 1-\mathrm{A} 3, \mathrm{~A} 16, \mathrm{R} 1$, and R 2 . But $(((A \supset(B \supset$ $(\forall X) C)) \supset(\forall X) C) \supset(\forall X) C) \supset(A \supset(B \supset(\forall X) C))$ is provable by means of A1-A3 and R1. Hence Lemma $2 .{ }^{6}$

[^2]Lemma 3. $(\forall X)(A \supset B) \supset(A \supset(\forall X) B)$, where X does not occur free in A, is provable by means of $\mathrm{A} 1-\mathrm{A} 3, \mathrm{~A} 16, \mathrm{R} 1$, and R 2 .

Proof: $(\forall X)(A \supset B) \supset(A \supset B)$ is provable by means of A16. Hence Lemma 3 by Lemma 2.

Theorem 1. If the wff-associate $B_{1} \supset\left(B_{2} \supset\left(\ldots \supset\left(B_{m} \supset A\right) \ldots\right)\right.$ of B_{1}, $B_{2}, \ldots, B_{m} \rightarrow A$ is provable by means of α, then the wff-associate $B_{1} \supset$ $\left(B_{2} \supset\left(\ldots \supset\left(B_{m} \supset\left(C_{1} \supset\left(C_{2} \supset\left(\ldots \supset\left(C_{n} \supset(\forall X) A\right) \ldots\right)\right)\right) \ldots\right)\right)\right.$ of B_{1}, B_{2}, $\ldots, B_{m}, C_{1}, C_{2}, \ldots, C_{n} \rightarrow(\forall X) A$ is provable by means of α, A1-A3, A16, R 1 , and R 2 , so long as X does not occur free in anyone of B_{1}, B_{2}, \ldots, and B_{m}. $(\forall \mathrm{I})$

Proof by mathematical induction on m. Base Case: Suppose A is provable by means of α. Then $(p \supset p) \supset A$ is provable by means of α, A1-A2, and R1. Hence $(p \supset p) \supset(\forall X) A$, which follows from $(p \supset p) \supset A$ by application of R2, is provable by means of α, A1-A2, R1, and R2. Hence so is $C_{1} \supset\left(C_{2} \supset\right.$ (. . . $\left.\supset\left(C_{n} \supset(\forall X) A\right) . ..\right)$).

Inductive Case: Suppose $B_{1} \supset\left(B_{2} \supset\left(\ldots . \supset\left(B_{m} \supset A\right) \ldots\right)\right.$ is provable by means of α, and X does not occur free in anyone of B_{1}, B_{2}, \ldots, and B_{m}. Then by the hypothesis of the induction (with n equal to 0$) B_{1} \supset\left(B_{2} \supset(\ldots \supset\right.$ $\left.(\forall X)\left(B_{m} \supset A\right) \ldots\right)$ is provable by means of $\alpha, \mathrm{A} 1-\mathrm{A} 3, \mathrm{~A} 16, \mathrm{R} 1$, and R2. But in view of Lemma $3\left(B_{1} \supset\left(B_{2} \supset\left(\ldots \supset(\forall X)\left(B_{m} \supset A\right) \ldots\right)\right)\right) \supset\left(B_{1} \supset\right.$ $\left(B_{2} \supset\left(\ldots \supset\left(B_{m} \supset(\forall X) A\right) \ldots.\right)\right)$ is provable by means of A1-A3, A16, R1, and R2. Hence $B_{1} \supset\left(B_{2} \supset(\ldots)\left(B_{m} \supset(\forall X) A\right) \ldots\right)$ is provable by means of $\alpha, \mathrm{A} 1-\mathrm{A} 3, \mathrm{~A} 16, \mathrm{R} 1$, and R 2 . Hence so is $B_{1} \supset\left(B_{2} \supset\left(\ldots \supset\left(B_{m} \supset\left(C_{1} \supset\right.\right.\right.\right.$ $\left.\left(C_{2} \supset\left(\ldots . \supset\left(C_{n} \supset(\forall X) A\right) \ldots.\right)\right)\right)$. . .)).

Lemma 4. $(\forall X)(A \vee B) \supset((\forall X) A \vee B)$, where X does not occur free in B, is provable by means of $\mathrm{A} 1-\mathrm{A} 3, \mathrm{~A} 10-\mathrm{A} 12, \mathrm{~A} 16, \mathrm{R} 1$, and R 2 .

Proof: $(\forall X)(A \vee B) \supset(A \vee B)$ is provable by means of A 16 , and $(A \vee B) \supset$ $((B \supset A) \supset A)$ provable by means of A1-A3, A10-A12, and R1. Hence $(\forall X)(A \vee B) \supset((B \supset A) \supset A)$ is provable by means of A1-A3, A10-A12, A16, R1, and R2. Hence in view of Lemma 1 so is $(\forall X)(A \vee B) \supset((B \supset$ $(\forall X) A) \supset A)$. Hence so is $(\forall X)(A \vee B) \supset((B \supset(\forall X) A) \supset(\forall X) A)$, which follows from $(\forall X)(A \vee B) \supset((B \supset(\forall X) A) \supset A)$ by application of R2. But $((B \supset(\forall X) A) \supset(\forall X) A) \supset((\forall X) A \vee B)$ is provable by means of A1-A3, A10-A12, and R1. Hence Lemma 4.

Theorem 2. If the wff-associate $C_{1} \supset\left(C_{2} \supset\left(\ldots \supset\left(C_{m} \supset(A \vee B)\right) \ldots\right)\right)$ of $C_{1}, C_{2}, \ldots, C_{m} \rightarrow A \vee B$ is provable by means of α, then the wff-associate $C_{1} \supset\left(C_{2} \supset\left(\ldots \supset\left(C_{m} \supset\left(D_{1} \supset\left(D_{2} \supset\left(\ldots \supset\left(D_{n} \supset((\forall X) A \vee B)\right) \ldots\right)\right)\right) \ldots.\right)\right.\right.$ of $C_{1}, C_{2}, \ldots, C_{m}, D_{1}, D_{2}, \ldots, D_{n} \rightarrow(\forall X) A \vee B$ is provable by means of α, A1-A3, A10-A12, A16, R1, and R2, so long as X does not occur free in anyone of $C_{1}, C_{2}, \ldots, C_{m}$, and $B .\left(\forall \mathrm{I}_{\mathrm{V}}\right)$

Proof: Suppose $C_{1} \supset\left(C_{2} \supset\left(. \ldots \supset\left(C_{m} \supset(A \vee B)\right) \ldots\right)\right)$ is provable by means of α, and X does not occur free in anyone of C_{1}, C_{2}, \ldots, and C_{m}. Then in view of Theorem $1, C_{1} \supset\left(C_{2} \supset\left(\ldots \supset\left(C_{m} \supset(\forall X)(A \vee B)\right) \ldots\right)\right)$ is
provable by means of α, A1-A3, A16, R1, and R2. Suppose next that X does not occur free in B. Then in view of Lemma $4, C_{1} \supset\left(C_{2} \supset\left(\ldots \supset\left(C_{m} \supset\right.\right.\right.$ $((\forall X) A \vee B)) \ldots)$ is provable by means of α, A1-A3, A10-A12, A16, R1, and R2. Hence so is $C_{1} \supset\left(C_{2} \supset\left(\ldots \supset\left(C_{m} \supset\left(D_{1} \supset\left(D_{2} \supset\left(\ldots \supset\left(D_{n} \supset\right.\right.\right.\right.\right.\right.\right.$ (($\forall X) A \vee B)) . .)$.$)) . . .)).$

Theorem 3. If the wff-associates $C_{1} \supset\left(C_{2} \supset\left(\ldots \supset\left(C_{m} \supset\left(D_{1} \supset\left(D_{2} \supset\right.\right.\right.\right.\right.$ $\left.\left.\left(\ldots \supset\left(D_{n} \supset(\exists X) A\right) \ldots\right)\right)\right)$. . .)) and $C_{1} \supset\left(C_{2} \supset\left(\ldots . \supset\left(C_{m} \supset(A \supset B)\right) \ldots\right)\right)$ of $C_{1}, C_{2}, \ldots, C_{m}, D_{1}, D_{2}, \ldots, D_{m} \rightarrow(\exists X) A$ and $C_{1}, C_{2}, \ldots, C_{m}, A \rightarrow B$ are provable by means of α, then the wff-associate $C_{1} \supset\left(C_{2} \supset\left(\ldots \supset\left(C_{m} \supset\right.\right.\right.$ $\left.\left.\left(D_{1} \supset\left(D_{2} \supset(\ldots)\left(D_{n} \supset B\right) \ldots\right)\right)\right) \ldots\right)$ of $C_{1}, C_{2}, \ldots, C_{m}, D_{1}, D_{2}, \ldots$, $D_{n} \rightarrow B$ is provable by means of α, A1-A2, R1, and R 3 , so long as X does not occur free in anyone of $C_{1}, C_{2}, \ldots, C_{m}$, and B. (ヨE)

Proof: Suppose $C_{1} \supset\left(C_{2} \supset\left(\ldots \supset\left(C_{m} \supset(A \supset B)\right) \ldots\right)\right)$ is provable by means of α. Then $A \supset\left(C_{1} \supset\left(C_{2} \supset\left(\ldots \supset\left(C_{m} \supset B\right) \ldots\right)\right)\right.$ is provable by means of α, A1-A2, and R1. Suppose next that X does not occur free in anyone of $C_{1}, C_{2}, \ldots, C_{m}$, and B. Then $(\exists X) A \supset\left(C_{1} \supset\left(C_{2} \supset(\ldots)\left(C_{m} \supset\right.\right.\right.$ $B) . .)$.$) , which follows from A \supset\left(C_{1} \supset\left(C_{2} \supset\left(\ldots . \supset\left(C_{m} \supset B\right) . ..\right)\right)\right.$ by application of R3, is provable by means of $\alpha, \mathrm{A} 1-\mathrm{A} 2, \mathrm{R} 1$, and R3. Hence so is $\left(C_{1} \supset\left(C_{2} \supset\left(\ldots \supset\left(C_{m} \supset\left(D_{1} \supset\left(D_{2} \supset\left(\ldots \supset\left(D_{n} \supset(\exists X) A\right) \ldots\right)\right)\right) \ldots\right)\right) \supset\right.\right.$ $\left(C_{1} \supset\left(C_{2} \supset\left(\ldots \supset\left(C_{m} \supset\left(D_{1} \supset\left(D_{2} \supset\left(\ldots \supset\left(D_{n} \supset B\right) \ldots\right)\right)\right) \ldots\right)\right)\right.\right.$. Hence Theorem 3.
5. Proof of (2) is essentially like that of (1), except for using another result from [5], this one to the effect that every intuitionistically valid sequent of the sort $A_{1}, A_{2}, \ldots, A_{n} \rightarrow B$ is provable by means of the axiom schema $K, A, L \rightarrow A$ and the intelim rules of Table III for only such of the seven logical symbols ' $)^{\prime}, ~ ' \sim$ ', ' $\&$ ', ' v ', ' \equiv ', ' \forall ', and ' \exists ' as occur in the sequent.

TABLE III
Introduction rules: Same as in Table I minus $\forall \mathrm{I}_{\mathrm{V}}$. Elimination rules:

For ' $\&$ ', ' v ', ' \forall ', and ' \exists ': Same as in Table II.

$$
\begin{array}{cc}
\text { For ' } \supset \text { ': } & \frac{K \rightarrow A \quad K \rightarrow A \supset B}{K \rightarrow B} \\
\text { For ' } \sim \text { ': } & \frac{K \rightarrow \sim A \quad K \rightarrow \sim \sim A}{K \rightarrow A} \\
\text { For ' } \equiv \text { ': } & \frac{K \rightarrow A}{K \rightarrow B}
\end{array}
$$

To restrict ourselves again to quantificational matters, $\exists \mathrm{E}$ can be handled as in section 4. $\forall \mathrm{I}$, on the other hand, calls for fresh treatment, since our proof of B1 in section 4 (see Lemma 3) makes use of A3. Proof of B 1 by means of A1-A2, A7-A9, A16, R1, and R2 is readily had. We do not know, however, of any proof of B1 by means of A1-A2, A16, R1, and R2 alone, nor for that matter of any proof of B1 by means of A1-A2, A16, R1,
$R 2$, and the axiom schemata and rules of Table I for anyone of ' \sim ', ' v ', ' \equiv ', and ' \exists '; and hence, in every case in which the wff A of (2) contains no ' $\&$ ', resort to R2', which of course delivers B1 at a stroke.

Lemma 5. (a) B1 is provable by means of A1-A2, A7-A9, A16, R1, and R2. (b) B 1 is provable by means of A 16 and R^{\prime}.

Proof: (a) $(\forall X)(A \supset B) \supset(A \supset B)$ is provable by means of A16. But $((\forall X)(A \supset B) \supset(A \supset B)) \supset(((\forall X)(A \supset B) \& A) \supset B)$ is provable by means of A1-A2, A7-A9, and R1. Hence $((\forall X)(A \supset B) \& A) \supset B$ is provable by means of A1-A2, A7-A9, A16, and R1. Hence $((\forall X)(A \supset B) \& A) \supset(\forall X) B$, which follows from $((\forall X)(A \supset B) \& A) \supset B$ by application of R2, is provable by means of A1-A2, A7-A9, A16, R1, and R2. But $(((\forall X)(A \supset B) \& A) \supset$ $(\forall X) B) \supset((\forall X)(A \supset B) \supset(A \supset(\forall X) B))$ is provable by means of A1-A2, A7-A9, and R1. Hence $(\forall X)(A \supset B) \supset(A \supset(\forall X) B)$ is provable by means A1-A2, A7-A9, A16, R1, and R2.
(b) $(\forall X)(A \supset B) \supset(A \supset B)$, from which $(\forall X)(A \supset B) \supset(A \supset(\forall X) B)$ follows by application of R^{\prime}, is provable by means of A16. Hence (b).

Theorem 4. If the wff-associate of $B_{1}, B_{2}, \ldots, B_{m} \rightarrow A$ is provable by means of α, then the wff-associate of $B_{1}, B_{2}, \ldots, B_{m}, C_{1}, C_{2}, \ldots, C_{n} \rightarrow$ $(\forall X) A$, where X does not occur free in anyone of B_{1}, B_{2}, \ldots, and B_{m}, is provable by means of α, A1-A2, A16, R1, and R2 when A7-A9 belong to α, otherwise by means of $\alpha, \mathrm{A} 16$, and R^{\prime}.

REFERENCES

[1] Curry, H. B., 'A note on the reduction of Gentzen's calculus LJ," Bulletin of the American Mathematical Society, vol. 45 (1939), pp. 288-293.
[2] Fitch, F. B., Symbolic Logic, The Ronald Press Co., New York (1952).
[3] Kanger, S., "A note on partial postulate sets for propositional logic,' Theoria, vol. 21 (1955), pp. 99-104.
[4] Kleene, S. C., Introduction to Metamathematics, D. van Nostrand Co., New York (1952).
[5] Leblanc, H., "Two separation theorems for natural deduction," Notre Dame Journal of Formal Logic, vol. VII (1966), pp. 159-180.
[6] Robinson, T. T., 'Independence of two nice sets of axioms for the propositional calculus,'" The Journal of Symbolic Logic, vol. 33 (1968), pp. 265-270.

Temple University
Philadelphia, Pennsylvania
and
Indiana University
Bloomington, Indiana

[^0]: 1. The last footnote on p. 288 of [1] suggests that $B 1^{\prime} .(\forall X)(A \supset B) \supset((\exists X) A \supset B)$, where X does not occur free in B, is also needed in the absence of ' $\&$ ', but this is probably unintended since $B 1^{\prime}$ is provable by means of A1-A2, A16, R1, and R3.
 2. Except A9, borrowed from Robinson's [6], A1-A12 are the very axiom schemata that Kanger uses in [3]. Robinson notes in [6] that $(A \supset \sim B) \supset(B \supset \sim A)$ and $\sim A \supset(A \supset B)$ can do duty for all three of A4-A6.
[^1]: 4. The argument is reminiscent of arguments in [1], [3], [4], and [5].
[^2]: 5. A like argument obviously goes through for any predicate constant other than ' $=$ ' whose axiom schemata are all of the sort $A_{1} \supset\left(A_{2} \supset\left(\ldots \supset\left(A_{n} \supset B\right) \ldots\right)\right)$, where $A_{1}, A_{2}, \ldots, A_{n}(n \geq 0)$, and B are atomic.
 6. The two conditionals $(A \supset(B \supset C)) \supset(((A \supset(B \supset(\forall X) C)) \supset C) \supset C)$ and $(((A \supset$ $(B \supset(\forall X) C)) \supset(\forall X) C) \supset(\forall X) C) \supset(A \supset(B \supset(\forall X) C))$, though provable by means of A1-A3 and R2, are not provable by means of A1-A2 and R1 alone. Hence B1 (see Lemma 3) will call for a fresh proof in section 5.
