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INDUCTION ON FIELDS OF BINARY RELATIONS

W. RUSSELL BELDING

In [1] the following principle of induction, introduced by Montague in
(21,
A. If ¢(x) is a formula not containing the variable y and R is a well~founded
relation, then

(%) (v e FIdR A (x) (xRy — @(x)) — @(3)) — () (¥ € FIdR — ¢())

is proved in the field of G.B. set theory. It is shown below that the
restriction that R be well-founded can be removed and the induction will
still hold provided a restriction is placed on the formula ¢(x). The
relationship between the various induction principles of [1] and the
induction principle proved in this paper (Theorem 1) is discussed. The
notation and definitions used in this paper are explained and defined in [1].
The relations considered in this paper are always binary relations.

The following theorem gives a new sufficient condition for induction of
binary relations.

Theorem 1. (Induction Principle E). For every R and every ¢(x), if R is a
binary rvelation, ¢(x) a formula not containing the vaviable y and ¢(x) has
the property that for every sequence of sels {an}n<w such that a,,,Ra, for
every n = 0, there is at least one integer m = 0 such that ¢(a,,) holds, then

(9 (e FIdR a (%) (xRy — @(x)) — () — (3) (ye FIdR — @(3)).

Proof: An indirect proof is used. Assume the hypothesis and suppose the
induction fails. That is,

(1) (») (e FIdR A (x) (xRy — ¢@(x)) — @(3))
(2) @) (ye FIdRA~ @(y))

Suppose @, is such that aye FIdR and ~ ¢(a,). First suppose that a, has no
predecessor or that ¢ holds for every predecessor of ¢,. Then clearly

(3) age FIdR A (x) (xRay, — ¢(x))
By (3) and (1) it follows that ¢(a,) holds, contrary to (2). Thus,
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(4) (3y) (yRagr ~ @ ()

Let a, be such that a,Ra, and ~ ¢(a,); clearly a, e FIdJR. Now apply the same
argument to a, as was applied to g, to obtain

(5) (3) (yRa, r ~ @(v))

Continuing in this manner a sequence of sets {a,},<, is obtained such that
ap+,Ra, and ~¢(a,) holds for every » = 0. This contradicts the hypothesis.
Hence (2) is false, and the theorem is proved.

In the proof of Theorem 1, only the variables x and y are used. And, it is
also ensured that the formula ¢(x) does not contain the variable y. It is
possible that a formula ¢(x) may contain variables other than x or y and
these variables may be bound or free.

To prove that Montague’s induction principle A is a special case of
induction principle E it is sufficient to prove the following theorem.

Theorem 2. For every R and every ¢(x), if R is a binary relation and ¢(x)
a formula not containing the vaviable y then, if R is well-founded then for
every sequence of sets {ay},<o such that a,.Ra, for every n = 0, theve is an
integer m = 0 such that ¢(a,) holds.

Proof: Let R be a binary relation, ¢(x¥) a formula not containing the
variable y and R be well-founded. Since R is well-founded there is no
sequence of sets {a,f.<ein FIdR such that a,,,Ra, for every n> 0. There-
fore if {a,,},,w is a sequence of sets such that g, ,Ra, for every n = 0 there
is an integer m = 0 such that ¢(a,) holds. Theorem 2 is proved.

Corollary 3. Induction principle A is a special case of induction pvinciple
E.

Pyoof: If the hypotheses of induction principle A are satisfied by an R and
¢(x) then by Theorem 2 the hypotheses of induction principle E are
satisfied. Since A and E have the same conclusions the corollary is proved.

Besides induction principle A, stated above, and induction principle E,
proved above, there are induction principles B, C, and D which are proved
in [1].

B. (Tarski). If ¢(x)is a formula not containing the vaviable y then

@) @eVaw) (xey — o)) — @) — ) VeV — @)

C. (Poss). If A is a transitive class and ¢(x) a formula not containing the
vaviable y then

@ @eArx)xey — o) = @) = @)W eA — @)

D. (Belding). If A is a supertvansitive class, ¢x) a formula not containing
the variable y and having the property that for every sequence {a,,},,msuch
that a,4+, C a, and a,e A for every n = 0, theve is at least one integer m = 0
such that ola,) holds then

@ OeAn® & Cy — o) = o) — ) Wed — 9())
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Theorem 4. Induction principle D is a special case of induction principle E.

Proof: Let Abe a supertransitive class, ¢(x) a formula not containing the
variable y and having the property that for every sequence of sets {a,,},,<win
A such that a,y; Ca, for every »n > 0, there is an integer m = 0 such that
¢(a,) holds. Define a binary relation R as follows:

() () WRv =u CvaveA)
Since A is supertransitive it is clear that
(1) FIdR Cc A

If there is an x such that xeA - FIdR then by definition of R, x has no
proper subset. Thus x = ¢. However, if card(A4) > 2 then there is some y in
A such that y # ¢. In this case ¢ © ¥y and ¢ € FIdR. So the only case in which
A # FIdR is the case A = {¢}. Induction on this set is trivial and the induc-
tion formula of D holds on this set. Having eliminated this case, now
assume that

(2) A =FIdR

Suppose that {a,,},,<w is a sequence of sets in A such that a,4, C a, for every
n = 0. Thus a,.,Ra, for every n = 0. By hypothesis, there is an integer
m = 0 such that ¢(a,) holds. Now induction principle E, may be used to
obtain

(3) () (WeFIdRA (x) (xRy — ¢(x)) — @(3)) — () (¥ e FIdR — ¢(v))
By (2), definition of R and (3),

4 eAr@ <y — o) — o) = ) VeA — @)

By the hypothesis and (4), induction principle D has been obtained from
induction principle E, as required.

Theorem 4 yields the result that whenever induction principle D can be
applied, induction principle E can be applied with the same results. The
results of [1] and this paper enable the following diagram to be drawn. In
this diagram an arrow from A to B, for example, shall mean that induction
principle B is a special case of induction principle A.

E
o

D A

(c) \(a)

C———B

o ©

transfinite
induction
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(a) Theorem 4 (d) Lemma 3 of [1]
(b) Corollary 3 (e) Theorem 11 of [1]
(c) Lemma 10 of [1] (f) Theorem 12 of [1].

Thus the induction principles A, B, C, D and transfinite induction are all
special cases of induction principle E. Since each of these induction
principles are theorems of G. B. set theory, they are logically equivalent.
Having shown that some of these induction principles are special cases of
other induction principles it should be remarked that it may be possible to
reverse some of the arrows in the diagram above. That is, for example, it
may be possible to show, by an appropriate choice of several relations or
by some other method, that induction principle E is a special case of
induction principle A. Such questions will not be considered here.

Remark: Let R be a binary relation and ¢(x) a formula not containing the
variable y. In effect, induction principle E gives a sufficient condition for
the induction formula

(@) () (ye FIdR A (x) (xRy — @(x)) — ¢(3)) — (9) (ye FIdR — ¢(y))

to hold. Regarding necessary conditions, two results were obtained in [1],
namely, Theorems 8 and 21. In both cases the relation R was explicitly
stated and an allowable formula ¢(x) was defined and substituted in (a) to
obtain the necessary condition.

I wish to thank Professor B. Sobocifiski for his helpful advice.
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