Notre Dame Journal of Formal Logic Volume XIII, Number 1, January 1972 NDJFAM

A NOTE ON Π_1^1 ORDINALS

FREDERICK S. GASS

In reference [3] Tanaka proves (among other things) that the Π_1^1 ordinals are precisely the ordinals recursive in Kleene's set O.¹ The purpose of this note is to show how this result may be neatly obtained as a corollary of reference [2]. Here is some background on the matter.

An ordinal α is called *recursive* $(\Sigma_1^1, \Pi_1^1, \text{ recursive in O, etc.})$ if there is a recursive $(\Sigma_1^1, \Pi_1^1, \text{ recursive in O, etc.})$ well-ordering of natural numbers with order type α . O is the set of notations of Kleene's system S_3 , and $\omega_1 (\omega_1^0)$ is the least ordinal that is not recursive (recursive in O). Some well-known facts of ordinal notation theory are the following, where each set is an initial segment of ordinals.

(1) $\{\alpha : \alpha \text{ is recursive}\} = \{\alpha : \alpha \text{ is } \Sigma_1^1\} \subset \{\alpha : \alpha \text{ is } \Pi_1^1\} \subseteq \{\alpha : \alpha \text{ is recursive in } O\}.$

Tanaka's result concerns the final inclusion in (1):

PROPOSITION. $\{\alpha : \alpha \text{ is } \Pi_1^1\} = \{\alpha : \alpha \text{ is recursive in } O\}$

Proof, derived from [2].² We show that every ordinal less than ω_1^0 is Π_1^1 . In the notation of [2], W[A] is the set of all natural numbers *e* such that the partial recursive function $\{e\}$ is defined on $A \times A$, and $\{(x, y) : \{e\} (x, y) = 0\}$ well-orders A. If A is infinite, then the order types of such well-orderings comprise a segment of ordinals beginning with ω . The least upper bound of the segment is denoted by "|W[A]|". Remark 4.8 and theorem 7.3 of [2] imply that

(2) $|W[O]| = \omega_1^0$,

which is exactly the needed fact:

^{1.} This fact is also proved in §VI.1 of [1].

^{2.} This proof, more direct than the one appearing in [1], was suggested to the author by Professor Richter.

If α is an infinite ordinal less than ω_1^0 , then, by (2), there is an $\varepsilon \in W[O]$ such that α is the order type of the \prod_1^1 well-ordering $\{(x, y) : x \in O \& y \in O \& \{e\} (x, y) = 0\}$. Q.E.D.

To generalize the proposition, we set $O(0) =_{def} \phi$ and $O(n + 1) =_{def} O^{O(n)}$. Then one may prove by induction, beginning with (2), that

 $\{\alpha : \alpha \text{ is } \Pi_1^{1,O(n)}\} = \{\alpha : \alpha \text{ is recursive in } O(n+1)\}.$

REFERENCES

- [1] Gass, F. S., *The Present State of Ordinal Notation Theory*, Ph.D. Thesis, Dartmouth College (1968).
- [2] Richter, W., "Extensions of the constructive ordinals," The Journal of Symbolic Logic, vol. 30 (1965), pp. 193-211.
- [3] Tanaka, H., "On analytic well-orderings," The Journal of Symbolic Logic, vol. 35 (1970), pp. 198-204.

Miami University Oxford, Ohio