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WEIERSTRASS'S FINAL THEOREM OF ARITHMETIC IS NOT FINAL

F. G. ASENJO and J. M. McKEAN

Weierstrass proved that the system of complex numbers C is the first
and last algebraic extension of the field of real numbers <# which has the
properties that (i) it is itself a field, that (ii) it is algebraically closed, and
that (iii) it is a finite dimensional vector space over dξ. As a consequence,
the so-called "final theorem of arithmetic" follows:

It is impossible to extend the number system beyond C into structures
that preserve all the formal laws of arithmetic {most significantly, the
field-theoretic ones)—that is, full-fledged arithmetic ends with C,

This theorem is principally based on the fact that C is a finite
dimensional vector space over <#; however, this puts too much reliance on
a condition extraneous to both the program and the spirit of HankePs
classical formal laws of arithmetic. Since C is both algebraically closed
and a vector space over <#, one tends to lose sight of the obvious fact that
property (iii) is not a consequence of (i).

This problem arises: Is it possible to generalize the final theorem of
arithmetic to fields obtained by adjoining the root of x2 + 1 = 0 to any field
Λ* that contains <R and is obtained from β by strictly finitistic procedures
(i.e., finitistic rules of formation, quotient structures, and the like) rather
than by ultraproducts or some other infinitistic device ? The answer to this
question is no, as we shall outline. To be specific, an extension <#* of H
can be finitistically constructed in which x2 + 1 = 0 is not solvable, and in
which the field C* obtained by adjoining i to Λ?* is not algebraically closed,
and such that from Λf* an unlimited number of algebraic field extensions
can be obtained. These extensions yield an infinite sequence of number
systems, all of which are fields and none of which is algebraically closed.
Thus, the final theorem of arithmetic fails for Γ* as well as for all its
algebraic extensions. It is possible to expand the concept of number from
Λ* indefinitely.

In [1] a number system W* was introduced that is an extension of the
system of natural numbers JV. Members of jV*—term-relation numbers—
are obtained as by-products of formalizing some of the properties of
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internal relations. The method for constructing jV* is entirely finitistic
and can be applied in turn to obtain an extension J * of the system J of all
integers (see [2] and [3]). The arithmetic of J * possesses some properties
that should be emphasized: J * is a commutative ring with proper zero
divisors, and since the least ideal that contains all of these zero divisors is
the whole ring, it is not possible to map the ring J * into a field by the usual
method of forming the difference ring. However, the ring J * does raise the
question of whether or not it can be mapped by other means into an integral
domain. Further, it also raises the question of whether or not it is possible
to obtain finitary extensions <#* of the field H for whose respective exten-
sions (7* = Λ* [i] the Weierstrass theorem would not apply.

Why is it that such a question has not been raised before? Chiefly
because there is something fixed and prototypical about the ordinary
number systems. If one starts with the ring of integers J , as then the
extensions to new arithmetic systems follow a step-by-step path that has
become (and with good reason) a well-worn groove: from J one inevitably
reaches C through established classical procedures. This also Explains
why Skolem's non-standard models of arithmetic, for example, were looked
upon for a long time simply as logical curiosities; in fact, it was not until
A. Robinson actually put these and other non-standard models to good use
that the existence of radically different systems of arithmetic were for the
first time seriously considered.

Non-standard models did not open the question, however, because
being essentially infinitistic in the most interesting cases, they only
provide a view from the outside, so to speak, of Λ and C. Further, in
Robinson's non-standard models of analysis all sentences valid in Λ hold,
so that for each of them there can be only one algebraic extension before
reaching algebraic closure—which means that they provide no counter-
example to the Weierstrass theorem.

What actually stimulated an investigation of the matter from the inside
is the fact that system jV* described in [1] represents an extension of W
that opens the way to circumventing J, thus avoiding the tendency to fall
into well-trodden paths. The only difficulty with ^V*—or with Jξ, for that
matter—is that in order to obtain the required extensions one has to resort
to tr ial and error within finitistic bounds, since all classical methods fail.

A field <#* is presented in [4] which is not a non-standard model of
analysis, but which is a non-standard model of the field-theoretic part of
<R. Jξ* is obtained piecemeal in the following way. Assume the field of real
numbers R is formally given, with the constants al9 a2, . . . , bl9 b2, . . .
denoting individuals of that field. With the individuals of <% we form the set
Rr of all variable-free terms formed by the following rules:

(i) The constants au a2, . . . , bl9 b2, . . . (2^° in number) are terms and
so are the variables ranging over them.
(ii) If 3>!, 3>2, . . . , yn are terms (n a positive integer), then yλ + y2 + . . . +

yn is a term.
(iii) If yu y2, ul9 . . . , u2n.z are terms obtained without using rule (ii), then
3>i [y±> ul9 . . . , u2n-z, y2] y2 i s a t e r m .

(iv) If yx and y2 are terms, so is yλ y2.
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Notice that in (iii) the terms y19 y2} uly . . . , u2n-3 may themselves have
been obtained by applications of the same rule. The bracket structure of
the term indicates the order of generation (see example in the next
paragraph).

The postulates for R* divide into two groups. The first one establishes
the commutativity and associativity of the formal addition given by rule (ii).
The effect of the second group is to introduce an equivalence relation in the
set Rr of all variable-free terms. These reduction postulates allow for
formal addition to be actually performed in /?' in terms of addition in <R
when the numbers added have the same formal structure. (Thus, for
example,

3[3, 1, 2] 2 [3 [3, 1, 2] 2, 4, 0] 0 + 2 [2, 4, l] 1 [2 [2, 4, l] 1, 3, 2] 2

reduces to 5 [5, 5, 3] 3 [5 [5, 5, 3] 3, 7, 2] 2.) Also, for any terms yu y2i . . . ,
y2n-u the term

3>i [yu 0, y2, 0, y3, 0, . . . , 0, ytn-x] y2n-i

reduces to yλ[yλ, y2, . . . , y2n-2, y2n^} y2n-λ. Finally 0[0, 0, . . . , 0] 0, with
2n - 1 zeros between brackets, reduces to 0.

These reduction postulates taken together induce an equivalence
relation in R*. Let us call R" the quotient set of R* with respect to such
relation. In R" addition can be carried out between any two members by
choosing adequate representatives of each equivalence class of R', using
the reduction postulates to either reduce or expand terms to identical
formal structure. (Each class, incidentally, also has a unique reduced
form, i.e., one with a minimum number of individuals from R.) It can be
proved that Rn is an additive group.

Multiplication is postulated as follows:

(i) For individuals of <R in R", just as in <#.

(ii) If x is an individual from <R in R" and y is the equivalence class

determined by aλ [al9 bly . . . , 62w_3, a2] a2, then x y is the class determined

by

xaλ [xal9xb1, . . . , xb2n-3, xa2] xa2)

a product that is of course commutative.

(i i i) If z1 = 3>ibi> ^ i , . . . ,w 2 »-3, y2]y2 anάz2 = y3[y3, vl9 . . . , v2m-3, y4]y4,

then zλ z2 is the class determined by

3 ^ 3 b i y3, yχvl9... , yχV2m-3, y^, uγy3, uιυu . . . , uiυ2m-3, uxy4,... ,u2n^Zί

u2n-3 -υl9..., u2n_3υ2m_3, u2n_z . y49 y2 y39 y2. υu . . . , y2 v2m_2, y2 y4] y2. y4.

(iv) If yx is any term and y2 is ux + u2 + . . . + un, then

3>i 3>2 = yίUi + yλu2 + . . . + y^Un and y2 yγ = u1y1 + u2yλ + . . . + u^^

This operation is associative and Rrr is proved to be a ring. In order
to imbed R" into an integral domain, a new equivalence relation must be
introduced. We say that y2 divides y1 iff there exists a term y3 such that
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3>i = 3>2 * 3>3 (which is not always the case in R" for arbitrary terms yx and
y2); a term yx is awmί iff yx divides 1; two terms yλ and y3 are associates
iff 3^ = y2 ' y3, where y2 is a unit; a non-zero term yλ is irreducible iff in
any factorization ;yL = y2 - y3 either y2 or yz is a unit. It can then be proved
that every term that is neither zero nor a unit can be factored into a
product of a finite number of irreducible terms. Further, given two
factorizations υx υ2 . . υm and ux u2 . . . um of a term y into irreducible
terms, then m = n and the z 's and w's form pairs of associates.

In terms of such factorization, an equivalence relation p can be defined
such that the difference ring of R" modulo p is a commutative integral
domain Rf" with identity. The imbedding of Rf" into its field of fractions
gives us Λ*, the desired field. <R* can be totally ordered and is, of course,
non-Archimedean. Further, in <#* x2 + 1 = 0 is not solvable. However, in
adjoining i to <Λ*, the field C* obtained (which contains an image of the
standard complex field C) is not algebraically closed, and no finite number
of algebraic extensions of C* yields the algebraic closure of C*.
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