Notre Dame Journal of Formal Logic
Volume XII, Number 4, October 1971
NDJFAM

CERTAIN COUNTEREXAMPLES TO THE CONSTRUCTION OF COMBINATORIAL DESIGNS ON INFINITE SETS

WILLIAM J. FRASCELLA

The present note attempts to elaborate the main result of my paper [1]. To this end the following definitions are necessary.*
Definition 1. Let M be some fixed set and F and G families of subsets of M. G is said to be a Steiner cover of F if and only if for every $x \in F$ there is exactly one $y \in G$ such that $x \subset y$.
Definition 2^{1}. Let k be a non-zero cardinal number such that $k \leqslant \overline{\bar{M}}$. A family F of subsets of M is called a k-tuple family of M if and only if i) if $x, y \in F$ such that $x \neq y$ then $x \not \subset y$ and ii) if $x \in F$ then $\overline{\bar{x}}=k$.

As in [1] the result presented here will be given within ZermeloFraenkel set theory with the axiom of choice. If x is a set, $\overline{\bar{x}}$ denotes the cardinality of x. If n is a cardinal number then $[x]^{* n}=\{y \subset x: \overline{\bar{y}} * n\}$ where $*$ can stand for the symbols $=, \leq, \geq,\langle$ or \rangle. The expression ' x こ y ' means ' x is a subset of y '" improper inclusion not being excluded. If α is an ordinal number ω_{α} is the smallest ordinal whose cardinality is \aleph_{α}. As usual, we write ω for ω_{0}. For each ordinal α we define a cardinal number a_{α} by recursion as follows: set $a_{0}=\kappa_{0}$. If $\alpha=\beta+1$ then set $a_{\alpha}=2^{\alpha_{\beta}}$. If α is a limit number then set $a_{\alpha}=\sum_{\beta<\alpha} a_{\beta}$. Also for any ordinal α, cf (α) represents the smallest ordinal which is cofinal with α.

It is now possible to state the main result of [1] as follows.
Theorem 3. In every set M of cardinality a_{ω} there is an \aleph_{0}-tuple family F of M such that there does not exist a family $G \subset[M]^{N_{1}}$ which is a Steiner cover of F.

The following will be the principal content of the present note.
Theorem 4. Let α, β and γ be ordinal numbers such that i) $\alpha<\beta<\gamma$, ii) γ is a limit number, iii) cf $\left(\omega_{\gamma}\right) \leq \omega_{\alpha}<\operatorname{cf}\left(\omega_{\beta}\right)$, iv) if $\delta<\gamma$ then $\aleph_{j}^{\aleph} \alpha<\aleph_{\gamma}$ and

[^0]v) for any set $S, \aleph_{\beta}<\overline{\bar{S}}<\aleph_{\gamma}$, there is a well-ordering of its \aleph_{β} subsets $\left\{y_{\eta}\right\}$ such that for each y_{η}, if $x_{\eta^{\prime}}$ is an \aleph_{α} subset of $y_{\eta^{\prime}}$ and $x_{\eta^{\prime}} \not \subset y_{\eta}\left(\eta^{\prime}<\eta\right)$ then there is some κ_{α} subset x^{*} of y_{η} which is not contained in any $x_{\eta^{\prime}}\left(\eta^{\prime}<\eta\right)$. Then, in every set M of cardinality \aleph_{y} there exists an \aleph_{α}-tuple family F of M such that there does not exist a family $G \subset[M]^{N_{\beta}}$ which is a Steiner cover of F.

Before proceeding with a proof of Theorem 4 we recall a definition and proposition which was given in [1] and whose proof we do not bother to repeat.
Definition 5. ${ }^{2}$ Let F be a family of subsets of a set M and n a non-zero cardinal number. A family G is called a n-spouler of F if and only if for every $x \in F$ and every $y \in[M]^{n}$ there is a $z \in G$ such that $z \subset x \cup y$.
Proposition $6 .{ }^{3} \quad$ Let k and n be non-finite cardinal numbers and let F be a k-tuple family of a non-finite set M. Suppose there exists subfamilies $F_{1}, F_{2} \subset F_{-}$such that i) $F_{1} \cap F_{2}=0$, ii) F_{2} is an n-spoiler of F_{1} and iii) $n^{k} \overline{\bar{F}}_{2}<\overline{\bar{F}}_{1}$. Then F does not possess a Steiner cover contained in $[M]^{n}$.

Proof of Theorem 4. Let M be any set of cardinality \aleph_{y}. On the strength of hypotheses ii) and iv) it will be possible to represent \aleph_{γ} as
(1) $\aleph_{y}=\sum_{\xi<\operatorname{cf}\left(\omega_{\gamma}\right)} \aleph_{\boldsymbol{\alpha}_{\xi}}$
such that
(2) $\aleph_{\alpha_{\xi}}<\aleph_{y}$ for each ξ
and
(3) $\aleph_{a_{\xi}}=\kappa_{\eta}^{\aleph_{a}}$ for each ξ.

Certainly representation (1) with property (2) is possible solely on the strength of hypothesis ii) and the meaning of the symbol cf $\left(\omega_{\gamma}\right)$. However in virtue of iv) we know that the sequence $\left\{\boldsymbol{N}_{\alpha_{\xi}^{\alpha}}^{\kappa}\right\}_{\xi<c f\left(\omega_{\gamma}\right)}$ must have \aleph_{γ} as its sum. From this it is possible to extract a strictly increasing subsequence whose sum is also \aleph_{γ}. This subsequence will satisfy (1), (2) and (3).

Consequently it is possible for each $\xi<\mathrm{cf}\left(\omega_{\gamma}\right)$ to construct a set M_{ξ}
(4) $M=\bigcup\left\{M_{\xi}: \xi<\operatorname{cf}\left(\omega_{\gamma}\right)\right\}$
(5) $M_{\xi_{1}} \cap M_{\xi_{2}}=0$ if $\xi_{1} \neq \xi_{2}$
(6) $\overline{\bar{M}}_{\xi_{1}}<\overline{\bar{M}}_{\xi_{2}}$ if $\xi_{1}<\xi_{2}$
and
(7) $\overline{\bar{M}}_{\xi}=\kappa_{\eta_{\xi}}^{\aleph_{\alpha}}$ for each $\xi<\operatorname{cf}\left(\omega_{\gamma}\right)$.

It is also possible to require
(8) $\overline{\bar{M}}_{\xi}>\aleph_{\beta}$ for each $\xi<\operatorname{cf}\left(\omega_{\gamma}\right)$.

Lemma 7. For each $\xi<\operatorname{cf}\left(\omega_{\gamma}\right)$ there exists an $\boldsymbol{\aleph}_{\alpha}$-tuple family F_{ξ} of M_{ξ} such that $\left(\forall y \in\left[M_{\xi}\right]^{\aleph_{\beta}}\right)\left(\exists x \in F_{\xi}\right)[x \subset y]$.
Proof. Using the axiom of choice the family $\left[M_{\xi}\right]^{N_{\beta}}$ may be well-ordered (as in v) and expressed as follows
(9) $\left[M_{\xi}\right]^{\beta_{\beta}}=\left\{y_{\eta}: \eta<\mu\right\}$
where μ is the cardinality of the family $\left[M_{\xi}\right]^{N_{\beta}}$. The construction of the family F_{ξ} will be accomplished by transfinite induction as follows. Let x_{0} be any subset of y_{0} such that
(10) $\overline{\bar{x}}_{0}=\kappa_{\alpha}$.

Let $\delta<\omega_{\mu}$ and assume for each $\eta<\delta$ there exists a subset x_{η} of y_{η} such that
(11) $\overline{\bar{x}}_{\eta}=\kappa_{\alpha}$
and
(12) $\left\{x_{\eta} \mid \eta<\delta\right\}$ is an $\boldsymbol{\kappa}_{\boldsymbol{\alpha}}$-tuple family.

Case $1^{\circ}(\exists \eta<\delta)\left[x_{\eta} \subset y_{\delta}\right]$
Here define x_{δ} to be any such $x_{\eta}(\eta<\delta)$ which is contained in y_{δ}.
Case $2^{\circ} \quad(\forall \eta<\delta)\left[x_{\eta} \not \subset y_{\delta}\right]$
Let $H=\left\{x_{\eta} \cap y_{\delta} \mid \eta<\delta\right\}$. Clearly H is a family of subsets of the set y_{δ} whose cardinality is κ_{β}. Moreover, since we have
(13) $\overline{\bar{H}} \leq \bar{\delta}<\aleph_{\alpha_{\xi}}^{\aleph_{\beta}} \leq \kappa_{\gamma} \leq \kappa_{\gamma}^{\aleph_{\beta}}$
which with assumption v) assures the existence of a subset x^{*} of y_{δ} such that
(14) $\overline{\overline{x^{*}}}=\aleph_{\alpha}$
and
(15) $x^{*} \not \subset x_{\eta} \cap y_{\delta}$ for all $\eta<\delta$.

Now define $x_{\delta}=x^{*}$.
Thus we have defined, by transfinite induction, for each $\eta<\mu$, an κ_{α} - subset x_{η} of y_{η}.
Definition 8. Let $F_{\xi}=\left\{x_{\eta} \mid \eta<\mu\right\}$.
We now show F_{ξ} satisfies the condition of Lemma 7. Clearly the construction itself shows each member of F_{ξ} is a subset of M_{ξ} having cardinality \aleph_{α}. Moreover, suppose
(16) $x, y \in F_{\xi}$
such that
(17) $x \neq y$.

We may suppose that there exists $\eta_{1}<\eta_{2}<\omega_{\mu}$ such that $x=x_{\eta_{1}}$ and $y=x_{\eta_{2}}$. Further, we may assume
(18) $x \neq x_{\eta}$ for all $\eta<\eta_{1}$
and
(19) $y \neq x_{\eta}$ for all $\eta<\eta_{2}$.

By (19) it must be that the construction of $y=x_{\eta_{2}}$ was made according to

(20) $x_{\eta_{2}} \neq x_{\eta_{1}}$.

Moreover
(21) $x_{\eta_{1}} \not \neq x_{\eta_{2}}$
since if
(22) $x_{\eta_{1}} \simeq x_{\eta_{2}}$
we would have
(23) $x_{\eta_{1}} \leftrightharpoons y_{\eta_{2}}$
which would violate the conditions of Case 2°. Thus F_{ξ} has the requisite properties and Lemma 7 is established.
Definition 9. $F^{\#}=\bigcup\left\{F_{\xi} \mid \xi<\operatorname{cf}\left(\omega_{\gamma}\right)\right\}$.
Remark. Since each F_{ξ} is an \aleph_{α}-tuple family of M_{ξ} (and therefore of M) and since they are pairwise disjoint it follows that $F^{\#}$ is an \aleph_{α}-tuple family of M.
Lemma 10. $\overline{\bar{F}}_{\xi}=\overline{\bar{M}}_{\xi}$ for each $\xi<\operatorname{cf}\left(\omega_{\gamma}\right)$.
Proof. Clearly $\overline{\bar{F}}_{\xi} \geq \overline{\bar{M}}_{\xi}$; for otherwise we would have
(24) $\overline{\overline{U_{F_{\xi}}}} \leq \overline{\bar{F}}_{\xi} \cdot \aleph_{\alpha}<\overline{\bar{M}}_{\xi}$.

But (24) would allow us to find a subset of M_{ξ} of cardinality κ_{β} which would be disjoint from every member of the family F_{ξ}. This would contradict the property of F_{ξ} given in Lemma 7.

To complete the proof of Lemma 10 it only remains to show $\overline{\bar{F}_{\xi}} \leq \overline{\bar{M}_{\xi}}$. Since $F_{\xi} \subset\left[M_{\xi}\right]^{\aleph_{\alpha}}$ we must have
(25) $\overline{\bar{F}}_{\xi} \leq \overline{\bar{M}}_{\xi}^{\aleph_{\alpha}}$.

But (7) yields
(26) $\overline{\bar{M}}_{\xi}^{\aleph_{\alpha}}=\left(\aleph_{\eta}^{\aleph_{\xi}}\right)^{\aleph_{\alpha}}=\aleph_{\eta_{\xi}}^{\aleph_{\alpha}^{2}}=\kappa_{\eta_{\xi}}^{\aleph_{\alpha}}$
which implies
(27) $\overline{\bar{M}}_{\xi}^{\aleph_{\alpha}}=\overline{\bar{M}}_{\xi}$.

This together with (25) says $\overline{\bar{F}}_{\xi} \leq \overline{\bar{M}}_{\xi}$ This completes the proof of Lemma 10.

Lemma 11. $\overline{\overline{F^{\#}}}=\boldsymbol{\aleph}_{\gamma}$
Proof. This follows from Definition 9, Lemma 10 and the fact that the families F_{ξ} are disjoint.
Definition 12. $F^{*}=\left\{y \in[M]^{\aleph_{\alpha}} \mid\right.$ for each $\left.\xi<\operatorname{cf}\left(\omega_{\gamma}\right), y \cap M_{\xi} \in F_{\xi}\right\}$.
Remark. It is clear from Definition 12 that the family F^{*} is in one-one onto correspondence with the generalized Cartesian product set $\prod_{\xi<\operatorname{cf}\left(\omega_{y}\right)} F_{\xi}$. The
 set $\bigcup\left\{f(\xi) \mid \xi<\operatorname{cf}\left(\omega_{\gamma}\right)\right\}$. Since $\overline{\overline{f(\xi)}}=\kappa_{\alpha}$ and by hypothesis iii) (i.e, $\left.\operatorname{cf}\left(\omega_{\gamma}\right) \leq \omega_{\alpha}\right)$ it must be that $\overline{\bar{\bigcup}\left\{f(\xi) \mid \xi<\mathrm{cf}\left(\omega_{\gamma}\right)\right\}}=\aleph_{\alpha}$. Now suppose $x, y \in F^{*}$ such that $x \neq y$ and $x \subset y$. Thus there exists $f, g_{\epsilon} \prod_{\xi<c f\left(\omega_{y}\right)} F_{\xi}$ such that $f \neq g$ and $\bigcup\{f(\xi) \mid \xi<$ $\left.\operatorname{cf}\left(\omega_{y}\right)\right\} \subset \bigcup\left\{g(\xi) \mid \xi<\operatorname{cf}\left(\omega_{\gamma}\right)\right\}$. But $f \neq g$ implies the existence of a $\xi_{0}<\operatorname{cf}\left(\omega_{\gamma}\right)$ such that $f\left(\xi_{0}\right) \neq g\left(\xi_{0}\right)$. But $f\left(\xi_{0}\right), g\left(\xi_{0}\right) \in F_{\xi_{0}}$ and the above inclusion forces $f\left(\xi_{0}\right) \subset g\left(\xi_{0}\right)$, contradicting the fact that $F_{\xi_{0}}$ is a \aleph_{α}-tuple family of $M_{\xi_{0}}$ From this it is possible to conclude that F^{*} is an \aleph_{α}-tuple family of M.
Lemma 13. $\overline{\overline{F^{*}}}>\boldsymbol{N}_{y}$.
Proof. By Lemma 10 and the above Remark we obtain
(28) $\overline{\overline{F^{*}}}=\overline{\overline{\prod_{\xi<c f\left(\omega_{\gamma}\right)} F_{\xi}}}=\prod_{\xi<\operatorname{cf}\left(\omega_{\gamma}\right)} \overline{\bar{M}}_{\xi}$

But by (6) the sequence of cardinals $\left\{\overline{\bar{M}}_{\xi}\right\}_{\xi<\operatorname{cf}\left(\omega_{\gamma}\right) \text { is increasing and conse- }}$ quently by a corollary to a theorem of J. König we have
(29) $\sum_{\xi<c f\left(\omega_{\gamma}\right)} \overline{\bar{M}}_{\xi}<\prod_{\xi<c f\left(\omega_{\gamma}\right)} \overline{\bar{M}}_{\xi}$
which with (28) yields

$$
\begin{equation*}
\overline{\overline{F^{*}}}>\sum_{\xi<\operatorname{cff}\left(\omega_{\gamma}\right)} \overline{\bar{M}}_{\xi}=\kappa_{\gamma} \tag{30}
\end{equation*}
$$

Lemma 13 is proved.
Lemma 14. $F^{\#} \cap F^{*}=0$.
Proof. Immediate.
Lemma 15. $\left(\forall y \in[M]^{\aleph_{\beta}}\right)\left(\exists \xi<\operatorname{cf}\left(\omega_{\gamma}\right)\right)\left[{\overline{y \cap M_{\xi}}}^{\prime}=\aleph_{\beta}\right]$.
Proof. Let $y \epsilon[M]^{\aleph_{\beta}}$. Now suppose to the contrary that
(31) $\left(\forall \xi<\operatorname{cf}\left(\omega_{\gamma}\right)\right)\left[\overline{\overline{y \cap M}}_{\xi}<\aleph_{\beta}\right]$.

But it is clear that
(32) $y=\bigcup\left\{y \cap M_{\xi} \mid \xi<\operatorname{cf}\left(\omega_{\gamma}\right)\right\}$.

But (31) and the hypothesis that $\operatorname{cf}\left(\omega_{\gamma}\right) \leq \omega_{\alpha}<\operatorname{cf}(\omega)$ yields
(33)
$\overline{\overline{\bigcup\left\{y \cap M_{\xi} \mid \xi<\operatorname{cf}\left(\omega_{\gamma}\right)\right\}}}<\kappa_{\beta}$
which contradicts the fact that $\overline{\bar{y}}=\aleph_{\beta}$. Thus Lemma 15 is complete.
Lemma 16. $F^{\#}$ is an \aleph_{β}-spoiler of F^{*}.
Proof. Let $x \in F^{*}$ and $y \in[M]^{\kappa_{\beta}}$. Using Lemma 15 there is an $\xi_{0}<\operatorname{cf}\left(\omega_{\gamma}\right)$ such that
(34) ${\overline{\overline{y \cap} \bar{M}_{\xi_{0}}}}^{=} \kappa_{\beta}$.

By Lemma 7 there must exist an $x_{0} \in F_{\xi_{0}}$ such that
(35) $x_{0} \subset y \cap M_{\xi_{0}}$.

But of course this gives an $x_{0} \in F^{\#}$ such that $x_{0} \subset y \subset x \cup y$ which shows $F^{\#}$ to be an \aleph_{β}-spoiler of F^{*}. Lemma 16 is proved.
Lemma 17. $\aleph_{\beta}^{\kappa_{\alpha}} \overline{\overline{F^{\#}}}<\overline{\overline{F^{*}}}$.
Proof. Since $\aleph_{\beta}<\aleph_{y}$, hypothesis iv) guarantees
(36) $\aleph_{\beta}^{N_{\alpha}}<\aleph_{\gamma}$.

But (36) together with Lemma 11 yield
(37) $\kappa_{\beta}^{\kappa_{\alpha}} \overline{\overline{F \#}}=\kappa_{\gamma}$
which with Lemma 13 establish Lemma 17.
Setting $F=F^{\#} \cup F^{*}$ we see that the hypotheses of Proposition 6 are satisfied. Thus the \aleph_{α}-tuple family F of M does not possess any Steiner cover contained in $[M]^{N_{\beta}}$. This completes the proof of Theorem 4.

NOTES

1. We remark that in the present work our terminology slightly differs from that given in [1]. What in the present note is called a k-tuple family is called, in [1], a k-tuple family (in the wider sense). In [1] we used the simple expression " k-tuple family" for a more restricted concept which plays no role in the present note.
2. This appears as Definition 7 of [1].
3. This appears as Proposition 8 of [1].

REFERENCE

[1] Frascella, W. J., "The non-existence of a certain combinatorial design on an infinite set," Notre Dame Journal of Formal Logic, vol. 10 (1969), pp. 317-323.

[^0]: *The present research was partially supported by the National Science Foundation under grant GP-14134.

