COPI'S METHOD OF DEDUCTION AGAIN

M. C. BRADLEY

Professor Copi, in the recent 3rd edition of Symbolic Logic [1], leaves unchanged the adaptation of Canty's proof of the completeness of CMD [2] which he used in the 2nd edition. The object of the present note is twofold. (1) To.establish a lemma of the proof which neither author explicitly establishes, and to show that in view of the way in which this lemma needs to be established, the Copi-Canty proof involves a pointless complication. (2) To establish another lemma of the proof, namely that the replacement rules of CMD are adequate to deriving from any line in a proof its DNF. The literature, of course, contains various proofs to the effect that any propositional formula can be reduced to DNF within some version of propositional logic. What is proposed here is another proof to the same effect, relating specifically to CMD.
(1) Each author uses Metatheorem A below. A proof is supplied.

Metatheorem A: If $P_{1}^{s}, P_{2}^{s}, \ldots, P_{n}^{s} . \therefore Q^{s}$ is a valid argument whose validity depends solely on truth-functional considerations, then $P_{1}, P_{2}, \ldots, P_{n} \vdash Q$ in RS. ${ }^{1}$

Proof: In RS we can always construct the sequence Σ of wffs P_{1}, P_{2}, \ldots, P_{n}, Q. If this sequence can be enlarged to form a sequence $S_{1}, S_{2}, \ldots, S_{k}$, such that every $S_{i}(1 \leqslant i \leqslant k)$ is either a $P_{i}(1 \leqslant i \leqslant n)$, or an axiom of RS, or is derived from two preceding lines of the sequence by the use of R1, and S_{k} is Q, then $P_{1}, P_{2}, \ldots, P_{n} \vdash Q$. Now by hypothesis $P_{1}^{s}, P_{2}^{s}, \ldots, P_{n}^{s} \therefore Q^{s}$ is a truth-functionally valid argument, and therefore $\left(P_{1}^{s} \cdot P_{2}^{s} \cdot \ldots \cdot P_{n}^{s}\right) \supset Q^{s}$ is tautologous. Thus, by the completeness of RS, $\vdash\left(P_{1} \cdot P_{2} \cdot \ldots \cdot P_{n}\right) \supset Q$. Thus there is a sequence Σ^{\prime} of wffs of RS, such that every wff is an axiom of RS or follows from two preceding wffs by R1, the last wff of which is $\left(P_{1} \cdot P_{2} \cdot \ldots \cdot P_{n}\right) \supset Q$. Suppose Σ^{\prime} prefaced to the sequence Σ to form the sequence $\Sigma^{\prime \prime}$. $\Sigma^{\prime \prime}$ can then be enlarged to from $\Sigma^{\prime \prime \prime}$, where $\Sigma^{\prime \prime \prime}$ is a sequence $S_{1}, S_{2}, \ldots, S_{k}$, as follows.

1. Where the P_{i}^{s} 's and Q^{s} are the P_{i} 's and Q as interpreted (normally) within a semantical system \mathcal{E}.

By DR14 of RS $(P, Q \vdash P \cdot Q)$ we can insert after P_{2} the wff $P_{1} \cdot P_{2}$. By DR14 we can insert after P_{3} the wff $P_{1} \cdot P_{2} \cdot P_{3}$. By the ($n-1$)th insertion on the strength of DR14 we have $P_{1} \cdot P_{2} \cdot \ldots \cdot P_{n}$ added to $\Sigma^{\prime \prime}$. By R1 on this line and $\left(P_{1} \cdot P_{2} \cdot \ldots \cdot P_{n}\right) \supset Q$ we can add Q, and this sequence is Σ, since every wff in it is a P_{i}, or an axiom of RS, or follows from two preceding lines by $R 1$, and its last line is Q.

Now this proof depends inter alia on the completeness result for RS in that it infers that $\vdash\left(P_{1} \cdot P_{2} \cdot \ldots \cdot P_{n}\right) \supset Q$ from the assumption that $P_{1}^{s}, P_{2}^{s}, \ldots, P_{n}^{s} \therefore Q^{s}$ is valid, and thus the corresponding hypothetical tautologous. Moreover there could be no way of founding Metatheorem A on the completeness result as stated and proved by Copi that did not involve this inference. But the Copi-Canty proof is founded on the completeness result, and so it involves this inference. But once the inference is made, the point of establishing Metatheorem A as a lemma for the proof of the completeness of CMD is lost, since the only way the lemma enters into the Copi-Canty proof is as a means of establishing that if $P_{1}^{s}, P_{2}^{s}, \ldots, P_{n}^{s} \therefore Q^{s}$ is valid then $\vdash\left(P_{1} \cdot P_{2} \cdot \ldots \cdot P_{n}\right) \supset Q$. But if this is correct, then an even more curious redundancy emerges. For the only point, in the Copi-Canty proof, of establishing that $\vdash\left(P_{1} \cdot P_{2} \cdot \ldots \cdot P_{n}\right) \supset Q$ is to derive, by the analyticity of RS, ${ }^{2}$ the conclusion that $P_{1}^{s} \cdot P_{2}^{s} \cdot \ldots \cdot P_{n}^{s} \supset Q^{s}$ is a tautology, and thus $P_{1}^{s} \cdot P_{2}^{s} \cdot \ldots \cdot P_{n}^{s} \cdot \sim Q^{s}$ truth-functionally inconsistent. But according to the above analysis the inference from the validity of $P_{1}^{s}, P_{2}^{s}, \ldots$, $P_{n}^{s} \therefore Q^{s}$ to the tautologousness of $P_{1}^{s} \cdot P_{2}^{s} \cdot \ldots \cdot P_{n}^{s} \supset Q^{s}$ must already be made before any appeal to the completeness of RS is available. Thus to route the proof through the completeness of RS is entirely superfluous.
(2) A proof is supplied of the thesis that the DNF of any line can be derived by CMD as an equivalent line such that (where applicable) the disjunctive grouping is by association to the right and (where applicable) the conjunctive grouping is also by association to the right. The proof is by course-of-values induction on the number of occurrences of ' \sim ', '.' \& ' v ' in (interpreted) formulae ${ }^{3}$ of the kind used in Chapter 3 of [1], counting recurrences. All rules of inference used are equivalence rules. ${ }^{4}$ We suppose all occurrences of ' \supset ' and ' \equiv ' to have been cleared initially by Impl. and Equiv..
α - case: The line is $\sim P, P \cdot Q$, or $P \vee Q$, where P and Q are single letters. Any such line is already in DNF, and can trivially be derived from itself by two applications of Taut.. The minimum number of operators for which the first grouping property emerges is 2 , and here evidently the non-standard $(P \vee Q) \vee R$, where P, Q and R are single letters, becomes $P \vee(Q \vee R)$ by Assoc. once. The minimum number for which the second grouping property emerges is 2 , and here the non-standard $(P \cdot Q) \cdot R$ becomes $P \cdot(Q \cdot R)$ by Assoc. once.

[^0]β - case: Suppose the thesis holds for any formula with $m(1 \leqslant m<n)$ occurrences of the operators. Any formula with n occurrences will be of the overall form $\sim P, P \cdot Q$ or $P \vee Q$, where P and Q are any formulae of the relevant kind, with ($n-1$) occurrences between them.

Subcase (i): $\sim P$. From P, by the β-case assumption, we can derive as an equivalent line by CMD its DNF

$$
\begin{equation*}
P_{1} \vee\left(P_{2} \vee\left(\ldots \vee P_{l}\right) \ldots\right) \tag{1}
\end{equation*}
$$

where the P_{i} 's $(1 \leqslant i \leqslant l)$ are as required by the definition of 'DNF'. Then from $\sim P$ there can be derived by ($l-1$) applications of $D e \mathrm{M}$. as an equivalent line

$$
\begin{equation*}
\sim P_{1} \cdot\left(\sim P_{2} \cdot\left(\ldots \cdot \sim P_{l}\right) \ldots\right) \tag{2}
\end{equation*}
$$

The P_{i} 's are either (1) single letters or (2) negations of such or (3) conjunctions of $y(y>1)$ such single letters or negations of single letters. Consider any conjunct $\sim P_{j}$ of (2) such that P_{j} is of kinds (1) or (2). If $\sim P_{j_{1}}=\sim P_{1}$ then $\sim P_{j_{2}}$ can be grouped with it by ($2 j-3$) applications of Assoc. and ($j-2$) applications of Com., so that (2) becomes a conjunction with $\sim P_{j_{1}} \cdot \sim P_{j_{2}}$ as first conjunct. $P_{j_{3}}$ can then be extracted from the second conjunct and grouped with $\sim P_{j_{1}} \cdot \sim P_{j_{2}}$ to get $\left(\sim P_{j_{1}} \cdot \sim P_{j_{2}}\right) \cdot \sim P j_{j_{3}}$ by ($2 j-5$) applications of Assoc. and ($j-3$) applications of Com., $P_{j_{4}}$ then extracted and grouped with this enlarged first conjunct by Assoc. ($2 j-7$) times and Com. $(j-4)$ times to get $\left(\left(\sim P_{j_{1}} \cdot \sim P_{j_{2}}\right) \cdot \sim P_{j_{3}}\right) \cdot \sim P_{j_{4}}$, and so on (except that if in any of these cases $P_{j_{d}}$ is the last letter of the whole formula, it requires only the same number of uses of Assoc. as would $P_{(j-1) d}$, and one more use of Com.). If $\sim P_{i_{1}} \neq \sim P_{1}$, then (2) becomes a conjunction with $\sim P_{j_{1}}$ as first major conjunct by ($2 j-1$) applications of Assoc. and ($j-1$) applications of Com.; $\sim P_{j_{2}}$ can then be grouped with it by Assoc. ($2 j-3$) times and Com. ($j-2$), and so on. Thus (2) can be regrouped so that the negations of all P_{i} 's of kinds (1) and (2) form, in conjunction, the first conjunct of the derived formula. All double negations can be cleared by iterated DN. Referring to the first conjunct of this new formula as ' G ', then from $\sim P$ we have derived as an equivalent line

$$
\begin{equation*}
\boldsymbol{G} \cdot\left(\sim P_{k_{1}} \cdot\left(\sim P_{k_{2}} \cdot\left(\ldots \cdot \sim P_{k_{r}}\right) \ldots\right)\right. \tag{3}
\end{equation*}
$$

G will not be grouped by association to the right, but the 2 nd conjunct of (3) will be so grouped, this being guaranteed by the routine by which the P_{j} 's are extracted. Now each P_{k} in this formula has a known structure, being of kind (3); let $P_{k_{1}}, P_{k_{12}}, \ldots, P_{k_{15}}$ be the elements of kinds (1) and (2) that in conjunction make up $P_{k_{1}}$, grouped, by the β-case assumption, by association to the right; then $\sim P_{k_{1}}$ is, by ($s-1$) applications of De M.,

$$
\sim P_{k_{1_{1}}} v\left(\sim P_{k_{1_{2}}} v\left(\ldots \vee \sim P_{k_{k_{s}}}\right) \ldots\right)
$$

where double negations are then all cleared by iterated DN. A similar analysis holds for $\sim P_{k_{2}}$ to $\sim P_{k_{r}}$. Thus from $\sim P$ we can derive as an equivalent line

$$
\begin{align*}
& \mathcal{G} \cdot\left(\left(\sim P _ { k _ { 1 _ { 1 } } } \vee (\sim P _ { k _ { 1 _ { 2 } } } \vee (\ldots \vee \sim P _ { k _ { 1 5 } }) \ldots) \cdot \left(\left(\sim P_{k_{2_{1}}} \vee\left(\sim P_{k_{2_{2}}} \vee\left(\ldots \vee \sim P_{k_{2_{t}}}\right) \ldots\right)\right.\right.\right.\right. \\
& \cdot \ldots \cdot\left(\sim P_{k_{r_{1}}} \vee\left(\sim P_{k_{r_{2}}} \vee\left(\ldots \vee \sim P_{k_{r_{u}}}\right) \ldots\right) \ldots\right) \tag{4}
\end{align*}
$$

By Assoc. once (4) yields as an equivalent line (5) a conjunction with

$$
\begin{equation*}
\boldsymbol{G} \cdot\left(\sim P_{k_{1_{1}}} \vee\left(\sim P_{k_{1_{2}}} v\left(\ldots v \sim P_{k_{1_{s}}}\right) \ldots\right)\right. \tag{6}
\end{equation*}
$$

as first conjunct, and by Dist. $(s-1)$ times, (6) becomes the DNF

$$
\begin{equation*}
\boldsymbol{G} \cdot \sim P_{k_{1_{1}}} \vee\left(\boldsymbol{G} \cdot \sim P_{k_{1_{2}}} \vee\left(\ldots \vee \boldsymbol{G} \cdot \sim P_{k_{1 s}}\right) \ldots\right) \tag{7}
\end{equation*}
$$

Now by Assoc. once we group (7) with the first conjunct of the second major conjunct of (5), i.e. with

$$
\begin{equation*}
\sim P_{k_{2_{1}}} v\left(\sim P_{k_{2_{2}}} v\left(\ldots v \sim P_{k_{2_{t}}}\right) \ldots\right) \tag{8}
\end{equation*}
$$

to get a conjunctive formula (9) with

$$
\begin{align*}
& \left(\boldsymbol{G} \cdot \sim P_{k_{1_{1}}} \vee\left(\boldsymbol{G} \cdot \sim P_{k_{12}} \vee\left(\ldots \vee \boldsymbol{G} \cdot \sim P_{k_{1_{5}}}\right) \ldots\right)\right) \cdot\left(\sim P _ { k _ { 2 _ { 1 } } } \vee \left(\sim P_{k_{2_{2}}}\right.\right. \\
& \left.\left.\quad \vee\left(\ldots v \sim P_{k_{2} t}\right) \ldots\right)\right) \tag{10}
\end{align*}
$$

as first major conjunct.
If $s=t=1$ then (10) is already in DNF, and standardly grouped.
If $s=t>1$, then by Dist. 3 times, Com. twice and Assoc. once, it becomes

$$
\begin{aligned}
& \sim P_{k_{2_{1}}} \cdot\left(\boldsymbol{G} \cdot \sim P_{k_{1_{1}}}\right) \vee\left(\left(\sim P_{k_{2_{1}}} \cdot\left(\boldsymbol{G} \cdot \sim P_{k_{1_{2}}} \vee\left(\ldots v \boldsymbol{G} \cdot \sim P_{k_{1_{5}}}\right) \ldots\right)\right.\right. \\
& \quad v\left(\left(\boldsymbol{G} \cdot \sim P_{k_{1_{1}}} \cdot\left(\sim P_{k_{2_{2}}} v\left(\ldots v \sim P_{k_{2_{t}}}\right) \ldots\right)\right) \vee\left(\left(\sim P_{k_{2_{2}}} v\left(\ldots v \sim P_{k_{2_{t}}}\right) \ldots\right)\right)\right. \\
& \left.\left.\left.\quad \cdot\left(\boldsymbol{G} \cdot \sim P_{k_{1_{2}}} v\left(\ldots v \boldsymbol{G} \cdot \sim P_{k_{k_{s}}}\right) \ldots\right)\right)\right)\right)
\end{aligned}
$$

i.e. of the form

$$
T R \vee(T S v(R U \vee U S))
$$

where R, S, T and U are the major disjuncts of the conjuncts of (10) taken in order. TR needs no further manipulation. TS takes on DNF by Dist. ($s-2$) times. RU takes on DNF by Dist. $(t-2)$ times. Repeated use of Assoc. will restore the disjunctive grouping disturbed by the above operations, and also the conjunctive grouping, disturbed from the construction of G on. ${ }^{5}$ If $s=t>2$ then US merely repeats the problem set by (10). Another such round as that applied to (10) will either finally reduce (10) to DNF or set the same problem again. In general ($t-1$) such rounds all told will put (10) in DNF. Repeated Assoc., as before, will restore standard grouping. If $s \neq t$ and $s=1$ or $t=1$ the solution is obvious. If $s \neq t$ and $s>1$ and $t>1$ then in the manipulation of US, or of the formula which parallels US in some later round, one of U and S, or one of the formulae which parallel U and S in the later round, will reduce to a single conjunction. In this case, where the other formula retains p disjuncts, then Com. (if necessary) and Dist. ($p-1$) times will finally put US, or the formula

[^1]which parallels it in the later round, into DNF. Repeated Assoc. will again restore standard grouping. The DNF of (10) thus obtained can then be grouped by Assoc. with the first conjunct of the second major conjunct of (9), and the above account of the reduction of (10) will apply, mutatis mutandis, to this new line. By repeated such Assoc. followed up by the method described for (10), (9) can be reduced to DNF. But (9) was derived from $\sim P$ as an equivalent line, and thus the DNF to which (9) is finally reduced is too. Repeated Assoc. will suffice to restore standard grouping to this DNF.

Subcase (ii): $P \cdot Q$. By the β-case assumption we can from $P \cdot Q$ derive as an equivalent line a formula F which is the conjunction of the DNF of P with the DNF of Q, where each DNF has standard grouping. The analysis of this case will follow that of (10) above.

Subcase (iii): $P \vee Q$. By the β-case assumption we can derive from $P \vee Q$ as an equivalent line a formula F^{\prime} which is the alternation of the DNF of P with the DNF of Q, and F^{\prime} is already the DNF of $P \vee Q$. Assoc. will suffice to restore standard grouping.

REFERENCES

[1] Copi, I. M., Symbolic Logic (3rd edition), The MacMillan Company, New York (1967), pp. 246-247.
[2] Canty, J. T., "Completeness of Copi's method of deduction," Notre Dame Journal of Formal Logic, vol. IV (1963), pp. 142-144.

The University of Adelaide
Adelaide, South Australia

[^0]: 2. Canty makes this derivation depend on the completeness of RS, but this can only be a lapsus pennae.
 3. But, for brevity, the superscript ' s ' is dropped in the exposition.
 4. All references to the rules of CMD are by the abbreviations of [1], pp. 42-43.
[^1]: 5. The lemma required here, and invoked five further times below, is not proved, though it is readily provable.
