423
Notre Dame Journal of Formal Logic
Volume XII, Number 4, October 1971
NDJFAM

ORDINAL THEORY IN A CONSERVATIVE EXTENSION
OF PREDICATE CALCULUS

JOHN H. HARRIS

Let P’ denote the class-set theory which consists of just axioms Al,
A2, A3 and theorem M3 (restricted to case n=1) of [2]. Simplifying a
little, P' is thus basically a first order theory with equality having two
sorts of variables, class variables and set variables, and satisfying an
axiom of extensionality and an axiom schema which says the following: for
any wif which contains no bound class variables there is a class X of all
sets v satisfying ¢; in symbols

IX Vo [veX <>0(v)]

(As usual for class and set variables we use capital and small letters re-
spectively.) By [3] theory P' is a conservative extension of P, the first-
order predicate calculus with equality where the only non-logical symbol is
‘“e’’ and the individual variables are the set variables.

The purpose of this paper is to show that a surprisingly large portion
of the theory of Von-Neumann ordinals and natural numbers can be de-
veloped in P’. Such information could be useful in the investigation of any
formulation of set theory not using the unrestricted subset axiom

VYVx [YSx — YeV]

which involves unrestricted quantification over class variables in an essen-
tial way. An example of such a restricted set theory would be a formaliza-
tion of the set theoretical reasoning used in predicative analysis; cf. [1].
By [3] our results are equally valid for a corresponding conservative class
extension K’ of any first-order theory K. In such a case one would have in
general three types of individual variables: K, set, and class variables.

We say R is a (strict) linear-ordering of X (abbrev.: Log(X)) if and
only if R is irreflexive, connected and transitive over X; in symbols

Irrg(X), i.e., (Vu)y 7 @Ru)
Cong(X), i.e., (Vu,v)x [uRv v u =v v vRu]
Trr(X), i.e., (Vu,v, w)y [uRv . vRw — uRw ]
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We now define two notions of well-ordering: (i) R is a (strict) well-
ordering of class X and (ii) R is a (strict) strong well-ordering of X. In
symbols we have respectively

(i) Wog(X) <> Log(X). ¥y [¢ #y S X — 5 has an R-first element]
(i) WoX(X) <> Log(X). VY[¢# Y C X — Y has an R-first element]

Comment: Usually ““uRv’’ is an abbreviation for ‘“(u,vyeR’’. Now for any
two sets X,y the classes

bt =py wlu=xvu =y}
and
3y =p; Ux}, {x, 9}

are well-defined. However, without axiom A4 (the pairs axiom) we can’t
show {x,y}eV, hence we can’t even prove that (x,)) has the ordered pair
property. Thus we use ‘‘uRv’’ only suggestively. Actually we will be in-
terested in specific relations R, viz.,

E={&,» lxey}
and
s ={&, lx cy}

Thus ““uEv ’’ and ‘““uSv’’ can be considered as an abbreviation of ‘‘u ev’’ and
“ucov’ if we don’t have axiom A4 or ‘“(u,v>e E”’ and ““(u,v)e S’ if we do.

When working in a definitional extension P* of P’ we say that a defined
predicate H is P’-normal if and only if there is a wff ¢ of P’ containing no
bound class variables such that in P*

+[H(v, X) <> ¢(v, X)]

where vectors v and X represent all the free set and class variables re-
spectively appearing in H. Likewise one can define the notions of a P'-
normal function letter, constant, or restricted variable; cf. [2; p. 12].
Unless stated otherwise, all new defined symbols are P’-normal and all
proofs are carried out in (a definitional extension of) P'. We must empha-
size here that Wor is a P'-normal predicate whereas Wo% isn’t. (Of course
Wo ¥ is T-normal in any extension T of P’ satisfying the unrestricted subset
property.)

We say that set x satisfies the simple subset property (abbrev.: Sub(x))
if and only if

VyxkNyev.x -yeV]
We then define On, the class of ordinals as follows:
X €On <> Trans (x). Wog(x). Sub(x). (V) Sub(y)
where as usual

Trans (X) <> Vu[u C X—u e X].
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Variables restricted to the class On will be denoted by small Greek letters.
The definition one usually sees, viz.

x € On «> Trans(x). Wo’é‘(x),

isn’t P'-normal. However, in any extension T of P’ satisfying the unre-
stricted subset property or even a weaker version

VY Va [YSa — YeV],
the two definitions are equivalent and T-normal.
Theorem 1. Irrg(On), i.e., Ve[adal.

Theorem 2. Trans(On), i.e., Vx [xea—x€eOn]; in words, every element of
an ordinal is an ordinal.

Proof: Clearly x ea=>x € a=> Wog(x). Now we use the fourth condition in
definition of *“x €On’’ to show x ea=>Sub(x) and uex ea =>uea => Sub(u). To
show Trans(x) consider any uevexea. Then u,,xea by Trans(a). Also uEv
and vEx implies uEx by Tre(a), i.e., u€x, as desired.

Corollary 3. o« ={g|Beal; in words, each ordinal equals the set of
e-smaller ovdinals.

Theorem 4. Trans(y):y Ca — yea.

Proof: Assume yCa. Now we use the condition Sub(a) to show that a-y is
a set, in fact a non-empty subset of a. Hence by Wo¢(a), a-y has an E -first
element (which must be an ordinal by 2), call it 8. We claim that y = §.

To show yC B, consider any u«ey. Then uey C a, hence uea. Likewise
Bea. Hence:

BeuvB=uvuep

by Congla). I Bewu, then Beuey, hence Bey by Trans(y); if 8 =u, then
B = uey, hence PBey; in either case Bey, contradicting choice of Bea-y.
Thus the only possibility left is ueB, as desired.

To show BC ¥, consider any ueB8. Then ueBea, hence uea. If u¢y, then
uea-y and uef, contradicting the choice of B as the E -first element of a-2.
Thus %€y, as desired.

Corollary 5. aCB<«>ae€f.
Theorem 6. acB#a = BZLC a where ¥’ denotes ‘‘exclusive or."”

Proof: Clearly at most one of these holds. Assume none hold, i.e., a¢B
and Bga, hence aNBc aand aNBcB. Now aNp is a set since Sub(e), hence
aNB is a transitive proper subset of @, hence aNBea by 4. Likewise we
have aNBeB. Thus aNBeaNB where aNBea, contradicting Irrg(a).

Corollary 7. aef# a = 3%B¢a.
Theorem. 8. Wo¢(On)

Proof: We have Irrg(On) and Cong(On) by 1 and 7 respectively. Also we
have Trg(On) since aeB and Bey implies aey. Consider any ¢ #y S On.
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Choose any a€y. (A single choice does not require an axiom of choice.) If
a is the E-first element of y, we are through. I not, then aNy # ¢. Now we
use the condition Sub(a) to show that aNy is a set. Thus aNy has an E -first
element, say a, since Wog(a). Then we easily show that q, is the E -first
element of y.

Corollary 9. Wos(On)

When we speak of an ordering among the ordinals we of course mean
the natural ordering, denoted by <,: in symbols,

a <gBe>acBe>acP.

We say that a is a successor ordinal if and only if ¢ immediately
follows some 8. We say that a is a limit ordinal if and only if @ # ¢ and for
any 8 less than a we can always find another ordinal between 8 and a. In
symbols we have, respectively,

SUC(CI)‘_’HB[B<00’- 13y [B<o '}’<00]]
Lim(a) «>¢# a. VB[B <oa — Iy [B <o ¥ <o ]

Theorem 10. Suc(a) <> Ue ca
Proof: We have Suc(a)

<= 138[Bea. 13y [Be yea]]

< 138(gea. 8¢ Ue]

= UaCa (since Uaga by Trans (a)).
Theorem 11. Lim()«>Ua=a# ¢

Proof: We have Lim(a)
<>a#¢.VB[Bea — Iy[Beyeal]]

«ato.v8[sea —peUd]
=>a# ¢-a_C_Ua
ea# ¢ Ue = o (since Uaca by ‘Trans (a)).
Theorem 12. a = ¢ # Suc(a) # Lim (a).
Proof: Trans (a) @Uaga
=>Uac a #Ua =q

=Uosca# e =¢.Ua=a #(e#0.Ue=0a)
=>Suc(@)# a =¢#% Lim(a) .

Let us take a little closer look at successor ordinals. Let us say that
B is a successor of a if and only if

e<pB. 13y[a<y<B]
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Clearly, if Suc(B), then B is the successor of a unique ordinal a. However
given any ordinal o we can’t prove in P’ that there is some 8 which is the
successor of a. But we can say a few things. Let X+ =X U{X}.

Theorem 13. B is the successor of a<>f = a*.

Proof: If a < f we have aefB, hence aC B, hence aufe} C 8. Conversely if
v€pB, then ¥ = a since 1(a < y < B), hence yea or ¥ = a, hence 3 eaU{al}; thus

8 C aulal.
If B =aulal, then aep, hence @ < B. Also if ¥y < B, then y€epB, hence yea

or ¥ = a, hence ¥ =< a, hence 1(a <y < g).

Corollary 14. Suc(B) — B = a* where a = UB

Progf: Clearly B =a* for some unique a, by 13. It is straightforward to
show that a = UB.

Corollary 15. UBeOn for any ordinal B.

Proof: If B = ¢ or Lim(B), then UB = B, hence UBeOn. If Suc(B), then UB =

a where o = 3, hence UBeOn.
Let us now define the class w of natural numbers in the usual fashion:

xeK,«>(x =dv Suclx)).xeOn
xewe>xeK,. (V) uek,.

Let i, j, k, I, m, n denote integers. For most of the propositions 1 - 15
there are corresponding propositions which one obtains by replacing
ordinals and the class On by integers and the class w. Denote these cor-
responding propositions by 1, - 15,. Now 1, and 4, - 10, follow immedi-
ately from 1 and 4 - 10 respectively since wEOn. To prove 2, i.e.,
Trans (w), consider any x en. We need to show x ew. But clearly xeK, and

uexen=>uen (by 2) = uek, .

Of course 3, follows from 2,. By definition of K, and w we have that none
of natural numbers are limit ordinals hence 11, is vacuously true and
pointless. Corresponding to 12 we have the following:

Theorem 12,. Vn[n = ¢ Z Suc(n)].

Finally 13, - 15, follow easily from 13 - 15.
There are many forms of induction theorems we can prove.

Theorem 16. Assume X is a transitive class of ordinals. Then Vx[(VB)y[B
Cx — pex] — X S x|

Proof: Assume we have (VP)x[8Cx — Bex], yet X% x. Choose any
BeX-x. If B is the least ordinal in X - x, let B, = 8. Otherwise there are
ordinals less than 8in X - x, i.e., (BNX)-x #¢. But BNX = by Trans (X).
Hence B - x#¢. But 8 -x is a set by Sub(B), hence 8 - x has a first ele-
ment, say B, which clearly is also the least ordinal in X - x. In any case
we can say that X - x has an E-first element B,, hence B, & x. But then
Bo€x by hypothesis; contradiction.
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Corollary 17,. vx[van S x —nex] - wS x|
Theorem 18,,. Vx[0ex.Vr[nex — ntex] - wCx])

Proof: Assume w% x. As in 16, we can show that w - x has a unique first
element, say 7,. Now 7, # 0 since Oex. Hence Suc (no) by 12,, hence n, = m}
for some unique my€w by 14,. By definition of n,, we must have mex,
hence mo = no€x by hypothesis, a contradiction.

Of course to show the actual existence of an ordinal, natural number of
any set requires more axioms of set theory. In P’ we can show the exis-
tence of at least one proper class, viz. Russell’s class

R = {xl|x ¢x}.
To show class On is proper seems to require the additional weak axiom

vx,y xNyev]
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