Notre Dame Journal of Formal Logic
Volume XII，Number 3，July 1971
NDJFAM

CONCERNING SOME EXTENSIONS OF S4

BOLES£AW SOBOCIŃSKI

In my papers［9］，［11］and［12］several problems concerning some extensions of 54 are left open．＊Namely：
（A）In［9］，pp．355－359，sections 2.6 and 2．7，it has been proved about the modal formula

T1 『e® $p q q C 厄 厄 N p q q q$

which was observed by Grzegorczyk in［1］，p．128：（i）that，in the field of S4，T1 implies J1，i．e．，the proper axiom of K1．1，cf．［10］and［9］，p．349； （ii）that T 1 is a consequence of $\mathrm{K} 1.2, c f$ ．［10］and［9］，p．349；（iii）and that T1 is verified by characteristic matrix which，cf．［2］，Makinson has constructed for his system D^{*} ，i．e．，for my system K3．1，cf．［5］．

But I was able neither to prove logically that T1 is a consequence of K1．1 nor to establish that the systems K1．1．1（＝\｛S4；T1\}) and K2.2 （＝\｛K2；T1\}), cf. [9], p. 367, are the proper extensions of K1.1 and K2.1 respectively．
（B）As Geach has observed，cf．［4］，p．139，and［11］，p．305，in the field of S4．2，the so－called Diodorean modal formulas N1 and M1 are inferentially equivalent．Although，clearly，in the field of $S 4,\{\mathrm{M} 1\} \rightarrow\{\mathrm{N} 1\}$ ，up to now it was unknown whether，in the field of the same system，$\{\mathbf{N} 1\} \rightarrow\{\mathbf{M} 1\}$ ． Consequently，the problems whether $\mathrm{S} 4.1(=\{\mathrm{S} 4 ; \mathrm{N} T\})$ and S4．1．2（ $=\{\mathrm{S} 4 ; \mathrm{L} 1$ ； $\mathrm{N} 1\}$ ）are properly contained in S 4.1 .1 （ $=\{\mathrm{S} 4 ; \mathrm{M} 1\}$ ）and in S4．1．3（ $=\{\mathrm{S} 4 ; \mathrm{L} 1$ ； M1\}) respectively remained open, $c f$ ．［11］，p．311，and［12］．
（C）In［9］，pp．363－366，sections 3．4－3．6，it has been proved that the system $\operatorname{S4.7}$ which Schumm has established in［6］，contains $\mathbf{S 4 . 6}(=\{\mathrm{S} 4 ; \mathrm{S} 1\})$ which in its turn contains $S 4.5(=\{S 4 ; E 1\} \rightleftarrows\{S 4 ; E 2\})$ ．Moreover，it has been

[^0]shown that S 4.5 is a proper extension of $S 4.4$ and that $S 4.6$ is properly contained in V1. But, an open problem remained whether S4.5 and S4.6 are the proper subsystems of S 4.6 and S 4.7 respectively.

All the problems mentioned above are solved negatively now due to the research of Schumm [7] and of Zeman [14]. Namely:
(D) In [7] Schumm has proved metalogically that the following formulas
§I CLCLCLCCpLqLCpLqCpLqCpLqCLCLCpLqLqCLCLCNpLqLqLq
ভII CCLCLCCpLpLCpLpCpLpCMLCpLpCpLpCCLCLCCNpLNpLCNpLNp CNpLNpCMLCNpLNpCNpLNpCLCLCpLpLpCMLpLp
๔III CCMLpLMpCMCMCpMqMqCMCMCNpMqMqMq
ভIV CCMCMCрMNCррMNCррСMCMCNpMNCррMNCррMNCррCMLpLMp
are provable in S4. Therefore, since, in the field of $S 4,\{T 1\} \rightarrow\{J 1\}$ and $\{\mathrm{M} 1\} \rightarrow\{\mathrm{N} 1\}$, the formulas $\mathfrak{\mathrm { Sl }}$ and Sll show that, in the field of the same system, $\{\mathrm{T} 1\} \rightleftarrows\{\mathrm{J} 1\}$ and $\{\mathrm{M} 1\} \rightleftarrows\{\mathrm{N} 1\}$. Hence, we have $\{\mathrm{K} 1.1 .1\} \rightleftarrows\{\mathrm{K} 1.1\}$, $\{\mathrm{K} 2.2\} \rightleftarrows\{\mathrm{K} 2.1\},\{\mathrm{S} 4.1 .1\} \rightleftarrows\{\mathrm{S} 4.1\}$ and $\{\mathrm{S} 4.1 .3\} \rightleftarrows\{\mathrm{S} 4.1 .2\}$ immediately. Additionally, a provability of ©III and ©IV which has been established in [7] shows that the formula

G3 厄MCMCpMqMqCMCMCNpMqMqMq

can serve as the proper axiom of S4.2.
(E) In [14], pp. 349-353, Zeman investigated Schumm's system S 4.7 which he calls S 4.9 . Besides other results, he has proved that S 4.9 (i.e., S 4.7) is properly contained in V1. And the methods which he used in order to establish his axiomatizations of S4.9, cf. [14], p. 355, allow him to remark that the systems S4.5, S4.6 and S4.7 (i.e., his S4.9) are inferentially equivalent, $c f$. the last paragraph of [9], p. 367.

Since in [7] Schumm has obtained his results in a purely metalogical way which does not indicate entirely how in S4 the formulas ©I-ভIV can be obtained logically, in section 1 of this note such logical proof will be presented. Moreover, it will be shown that, in the field of S4, the following formula

N3 厄๔๔pqqC®®NpqqCMLpq

is inferentially equivalent to N 1 , and, therefore, can serve as the proper axiom of S4.1, and that G3 is inferentially equivalent to G1 not only in the field of $S 4$ but also in the field of S3. And, since in [14] Zeman did not elaborate his mentioned above remark, in section 2 a proof which is essentially based on Zeman's method will be given that $\{S 4.5\} \rightleftarrows\{S 4.6\} \rightleftarrows$ $\{S 4.7\} \rightleftarrows\{S 4.9\}$.
REMARK: In a letter of 9.23.1970 Dr. Krister Segerberg, Åbo Academy, Åbo, Finland, informed me that some results discussed in [7], [9], [12], [14] and the present note were known to him, but not yet published. Cf. his short abstract "On some extensions of S4" in The Journal of Symbolic Logic, vol. 35 (1970), p. 363.

1 Let us assume S4．Then：
1．1 In the field of S 4 the proper axiom of K 1.1 ，i．e．，thesis J 1 is infer－ entially equivalent to Grzegorczyk＇s axiom T1，cf．Schumm［7］．Logical proof：

```
Z1 ©NpCpq
[S1 ]
```



```
Z4 厄Lpp [S1]
```



```
Z6 << L<<<<pq< pqCpq<<pq<<<<pqqC<<N Nqqq
```



```
                                    Z4, p/C『pqq;Z3, s/q,w/p; S1']
Z7 ङ๕pq®LpLq [S3}\mp@subsup{}{}{\circ}
S1 <<<<Cpq< pqCpqCpq<<< pqqC<<Npqqq
                            [Z7,p/^^Cpq®pqCpq,q/Cpq;Z6;S1]
```

It is self－evident that，in the field of $S 4, S 1$ is inferentially equivalent to Schumm＇s formula ©I．Now，by S4 and

J1 secpLppp

we obtain
T1 ©e§
at once．Since，$c f .[9]$, p．355，in the field of S4，T1 implies J1，we have

$$
\begin{array}{r}
\{\mathrm{K} 1.1\} \rightleftarrows\{\mathrm{S} 4 ; \mathrm{J} 1\} \rightleftarrows\{\mathrm{S} 4 ; \mathrm{T} 1\} \rightleftarrows\{\mathrm{K} 1.1 .1\} \tag{i}\\
\{\mathrm{K} 2.1\} \rightleftarrows\{\mathrm{S} 4.2 ; \mathrm{J} 1\} \rightleftarrows\{\mathrm{S} 4.2 ; \mathrm{T} 1\} \rightleftarrows\{\mathrm{K} 2.2\}
\end{array}
$$

1．2 In the field of S 4 the formulas N 1 and M 1 ，i．e．，the proper axioms of S4．1 and S4．1．1 respectively，are inferentially equivalent，cf．Schumm［7］． I shall present here two logical proofs of these facts．In the first proof it will be shown that，in the field of S4，M1 implies a formula N3，as far as I know， previously unobserved，which in its turn gives M1 and N1 at once．In the second proof Schumm＇s formula ©ll will be deduced logically．

1．2．1 Formula N3．

Z9 §CMLCNpqrCMLpr［S2 ${ }^{\circ}$ ］
$Z 10$ 厄®pCqresrsCLpCqs
211 厄く厄 $N p q q C$ 『 $M L C N p q$ s $N p q C M L p q$
［Z10，p／CMLCNpq®Npq，q／MLp，r／®Npq，s／q；Z9，r／®Npq；S1 ${ }^{\circ}$ ］

$\left[53^{\circ}\right]$

 s / L © $C N p q$ © $N p q$ ®Npq；$Z 11 ; Z 8, w / N p, s / q]$
S2
 ［Z7，p／®๔CNpq®Npq®Npq，q／CMLCNpq®Npq；Z13； $\mathrm{S1}^{\circ}$ ］

Thus，$S 2$ is provable in the field of 54 ．Hence，let us assume $S 2$ and M1 厄『లpLpLpCMLpLp． Then：

N3 厄®๔ $p q q C$ 厄 $N p q q C M L p q$ ．
$\left[S 2 ; \mathrm{M} 1, p / C N p q ; \mathrm{S}^{\circ}\right]$
Now，assume S4 and N3．Then：
$Z 14$ ©®NpLpLp
$\left[S 2^{\circ}\right]$
M1 『®
$\left[\mathrm{N} 3, a / L p ; Z 14 ; \mathrm{S1}^{\circ}\right]$
Since，$c f$ ．［11］，p．308，section 2．3，in the field of S4，M1 implies N1，we have $\{S 4.1\} \rightleftarrows\{\mathrm{S} 4 ; \mathrm{N} 1\} \rightleftarrows\{\mathrm{S} 4 ; \mathrm{N} 3\} \rightleftarrows\{\mathrm{S} 4 ; \mathrm{M} 1\} \rightleftarrows\{\mathrm{S} 4.1 .1\}$ ，and，moreover， $\{S 4.1 .2\} \rightleftarrows\{S 4.1 ; L 1\} \rightleftarrows\{S 4 ; N 1 ; L 1\} \rightleftarrows\{S 4 ; N 3 ; L 1\} \rightleftarrows\{S 4 ; M 1 ; L 1\} \rightleftarrows\{S 4.1 .3\}$.

1．2．2 Proof of Schumm＇s formula ©II：

$Z 15$ © © NppCpLp［S2 ${ }^{\circ}$ ］
216 『『『pLpLp『『pLpp

$Z 18$ 厄くく $p L p L p$ ©
［Z17，v／®®pLpLp，q／®pLp，r／p，p／Np，s／CpLp；Z16；Z15］
219 © $p q$ © v © $p r s$ © v © $q r s$
$Z 20$ §§§ $p L p L p$ § $C p L p$ § $p L p C p L p$
［Z19，p／Np，q／CpLp，v／®®pLpLp，r／®pLp，s／CpLp；Z1，q／Lp；Z18］
$Z 21$ §CMLCqLprCMLpr［S4］

$Z 23$ ๔C®๔CpLp®pLpCpLpCMLCpLpCpLpC®®pLpLpCMLpCpLp
 $s / C M L p C p L p ; Z 20 ; Z 21, q / p, r / C p L p]$
$Z 24$ ©sくpqresNrLNpLr

［Z17，v／®®pLpLp，q／®NpLNp，r／Lp，s／Lp；Z25］

228 厄pCNpq
$\left[S 1^{\circ}\right]$
$Z 29$ § $L p C N p q$

［S4］
$Z 31$ ©®
$[Z 30, t / L p, s / C N p L N p, q / C p L N p, v /$ ©くpLpLp，r／§NpLNp； Z29，q／LNp；Z28，q／LNp；Z27］
Z32 ©CMLCNpqrCMLpr
［ $\mathrm{S} 2^{\circ}$ ］
$Z 33$ ๔CMLCNpqCNpLNpCMLpCMpp［Z32，r／CNpLNp； $\left.\mathrm{S1}^{\circ}\right]$
$Z 34$ 厄C®®CNpLNp®NpLNpCNpLNpCMLCNpLNpCNpLNp C®®pLpLpCMLpCMpp
$[Z 22, p /$ §๔ $p L p L p, q /$ ©く $C N p L N p$ §NpLNpCNpLNp，
$r / C M L C N p L N p C N p L N p, s / C M L p C M p p ; Z 31 ; Z 33, q / L N p]$
Z35 © CqrCCpqCpr
$\left[S 1^{\circ}\right]$
Z36 厄CMpLq®pLq
［S4 $\left.{ }^{\circ} ; c f .[8]\right]$

237	『®pCqre¢rs®pCqs［S3 $\left.{ }^{\circ}\right]$
Z38	$\circledR<$ $[z 37, p / C p L p, q / C M p p, r / C M p L p, s / \mathbb{S} p L p ;$ $Z 35, q / p, r / L p, p / M p ; Z 36, q / p]$
Z39	®C®qrCsqC®qrCsr［S2］
240	
S3	『C® くCpLp®pLpCpLpCMLCpLpCpLpCC『く CNpLNp®NpLNpCNpLNp CMLCNpLNpCNpLNpC®e $p L p L p C M L p L p$ ［ $240, v / C p L p, w / C M p p, t / 厄 p L p, q /$ © $¢ p L p L p, r / M L p, z / L p$, p／C®厄CpLp®pLpCpLpCMLCpLpCpLp，u／C®®CNpLNp®NpLNp CNpLNpCMLCNpLNpCNpLNp；Z38；Z39，$q /$ § $p L p, r / L p$ ， $s / M L p ; Z 23 ; Z 34]$
	S3 is Schumm＇s formula ©II．Thus，$\{$ S4；N1\} $\rightleftarrows\{$ S 4 ；M1\}.
1.3	Proof of the formulas ¢ІІl and ¢IV．
241	®LMpCrCMLNpq［S1 $\left.{ }^{\circ}\right]$
242	『MKpqMp［S2 ${ }^{\circ}$
243	『®vs『くpCrCsq®pCrCvq［S3］
244	$\mathrm{S} p \mathrm{CqCrr}^{\text {［ }}$［ $\left.1^{\circ}\right]$
245	© $L M p C r C N L C L N p M q M q$ ［Z43，v／MKLNpNMq，s／MLNp，p／LMp， $\left.q / M q ; Z 42, p / L N p, q / N M q ; Z 41, q / M q ; S 1^{\circ}\right]$
246	
247	『CLpMqMCpq［S2 ${ }^{\circ}$ ；cf．［13］，pp．71－72］
248	© $L M p C r C M C M C N p M q M q M q$ $\left[Z 46 ; Z 47, p / N p, q / M q ; Z 47, p / M C M C N p M q M q, q / M q ; \mathrm{S1}^{\circ}\right]$
249	®NMLpCMCMCpMqMqCrMq［Z48，p／Np； $\mathrm{S1}^{\circ}$ ］
S4	© CMLpLMpCMCMCpMqMqCMCMCNpMqMqMq $\left[Z 49, r / M C M C N p M q M q ; Z 48, r / M C M C p M q M q ; S 2^{\circ}\right]$
$Z 50$	® L Nq®CpqNp［S2 $\left.{ }^{\circ}\right]$
Z 51	LNMNCqq［ $\mathrm{S4}^{\circ}$ ］
Z52	®CpMNCqqNp［Z50，q／MNCqq；Z51］
Z53	${ }^{\text {© } M C p M N C q q M N p ~}{ }^{\text {a }}$［Z52；S2 $\left.{ }^{\circ}\right]$
Z54	© MNpMCpq［S2 $\left.{ }^{\circ}\right]$
Z55	®MNpMCpMNCqq $\quad\left[Z 54, q / M N C q q ; Z 53 ; S 1^{\circ}\right]$
Z56	¢ MpMCNpMNCqq［ $\left.255, p / N p ; S 1^{\circ}\right]$
Z57	®NpCpMNCqq［Z1，q／MNCqq； $\left.252 ; \mathrm{S1}^{\circ}\right]$
Z58	¢pp［S1 $\left.{ }^{\circ}\right]$
Z59	© CMNMNpNMNMpCMLpLMp［ $\left.258, p / C M L p L M p ; S 1^{\circ}\right]$
Z60	®CMNMCpMNCqqNMNMCNpMNCqqCMLpLMp［Z59；Z55；Z56； 11 $\left.^{\circ}\right]$
261	〔CMCMCpMNCqqMNCqqNMCMCNpMNCqqMNCqqCMLpLMp $\left[Z 60 ; Z 55, p / M C p M N C q q ; Z 55, p / M C N p M N C q q ; S 1^{\circ}\right]$
S5	§ CMCMCpMNCppMNCppCMCMCNpMNCppMNCppMNCppCMLpLMp ［ $\left.Z 61, q / p ; Z 57, p / M C M C N p M N C p p M N C p p, q / p ; \mathrm{S}^{\circ}\right]$

$S 4$ and S5 are Schumm＇s formulas ©III and ©IV．Hence，in the field of S4，$\{\mathbf{G} 1\} \rightleftarrows\{\mathbf{G} 3\}$ ．

1．3．1 In［13］，pp．75－76，section 2．6，I have proved that each of the proper
axioms of S4．2，i．e．，G1 and G2（formerly L1）possesses a property that its addition to $S 3$ generates $S 4.2$ ．It will be shown here that Schumm＇s axiom G3 also has this property．For this end assume G3 and let us use only the formulas provable in S 3 in the following deductions．Then：
$Z 62$ © 厄 pCqreNrCpNq［ $\mathrm{S2}^{\circ}$ ］
Z63 LNKpNp
Z64 СМСМСрМКрNрМКрNрLNCMCNрМКрNрМКрNр
［Z62，p／МСМСрМКрNрМКрNр，q／MCMCNрМКрNрМКрNр，r／MKрNр； G3，$q / K p N p ;$ S1 $^{\circ}$ ；Z63］
Z65 ๔CMpLq®pq
［ $\left.\mathrm{S} 2^{\circ}, c f .[8]\right]$
$Z 66$ 〔CMCpMKрNрMKрNpNCMCNpMKрNpMKрNр
［Z65，p／CMCpMKpNpMKpNp，q／NCMCNpMKpNpMKpNp；Z64］
267 ©くpNCqrepNr
［S2 ${ }^{\circ}$ ］
$Z 68$ © $C M C р M K p N p M K p N p L N K p N p$
［Z67，$\left.p / C M C p M K p N p M K p N p, q / M C N p M K p N p, r / M K p N p ; Z 66 ; S 1^{\circ}\right]$
$Z 69$ © Cbqreqr
［S2 ${ }^{\circ}$ ］
$Z 70$ © $\mathrm{C}_{2} K p N p L N K p N p \quad[Z 69, p / M C p M K p N p, q / M K p N p, r / L N K p N p ; Z 68]$
271 © $\mathbb{C} M p L q L L C p q$
［ $\left.Z 65 ; \mathrm{S}^{\circ}\right]$
$Z 72$ LLCKpNpNKpNp
［ $Z 71, p / K p N p, q / N K p N p ; Z 70]$
Since Parry has proved in［3］，p．148，that an addition of any formula of the form $L L \alpha$ to $S 3$ implies a system containing S4，we know，by $Z 72$ ，that $\{$ S3；G3\} $\rightarrow\{$ S4\}. Therefore, due to provability of S4 and S5 in S4, we have

$$
\{S 4.2\} \rightleftarrows\{S 4 ; G 1\} \rightleftarrows\{S 4 ; G 2\} \rightleftarrows\{S 4 ; G 3\} \rightleftarrows\{S 3 ; G 1\} \rightleftarrows\{S 3 ; G 2\} \rightleftarrows\{S 3 ; \text { G3 }\}
$$

2 Inferential equivalence of the systems $\mathrm{S} 4.5, \mathrm{~S} 4.6$ and S 4.7 ．As mentioned above，Zeman has remarked，see［9］，pp．363－366，sections 3．4－3．6，that the systems S4．5 and S4．6 are inferentially equivalent to Schumm＇s system S4．7．Since in［9］it was proven that $\{S 4.7\} \rightarrow\{S 4.6\} \rightarrow\{S 4.5\}$ ，it will be sufficient to show that $\{S 4.5\} \rightarrow\{S 4.7\}$ ．Although，formally，the deductions given below differ in some respects from the proof which Zeman used in ［14］，pp．349－353，in order to show that in the field of S4．4 system S4．7 implies his system S4．9，the idea of both these proofs is essentially the same and is due to Zeman．

Let us assume S4 and，$c f$ ．［9］，section 3．5，the proper axiom of S4．5
$A 『 M L p L p A L p A 『 p q 『 p N q$ ．
Hence，we have at our disposal S4．4．Then：
$L A \Subset M L p L p A L p A \Subset p q \Subset p N q$
［E2；S4 ${ }^{\circ}$ ］
Z2 § $L p \mathbb{C} q L p$
Z3 © ©pqCMLpMLq
$Z 4$ ©®pNqNMKpq
$Z 5$ 『『 q 『『 $r v$ 『® $s N t$ 『LApAqArs®NpCtv
$Z 6$ © N © $M L p L p C M K p q C M L p M L q \quad[Z 5, q / L p, p / \mathbb{S} M L p L p, r / ® p q$ ， $v / C M L p M L q, s / \S p N q, t / M K p q ; Z 2, q / M L p ; Z 3 ; Z 4 ; Z 1]$
$Z 7$ ©N®MpqMp
Z © $82 p C L M q M K p q$ [S4 ${ }^{\circ}$]
Z9 厄くpq『くqCst『®pCtCqv®pCsv [S3 ${ }^{\circ}$]
$Z 10$ © $N \mathbb{C} M L p L p$ 『 $L M q M L q \quad[Z 9, p / N \Subset M L p L p, q / M L p, s / L M q, t / M K p q$,
$v / M L q ; Z 7, p / L p, q / L p ; Z 8 ; Z 6]$
$Z 11$ §N®MLpLp®MLMqMLq
[Z11; S4 ${ }^{\circ}$]
R1 © $M L p C p L p$
[E2; S4; cf. [9], p. 364, section 3.5.1]
Q1 A 『MLpLp『MLMqCqLq
[$211 ; \mathrm{R} 1, p / q ; \mathrm{S1}^{\circ}$]

Thus，in the field of S4，E2 implies Q1，i．e．，the proper axiom of S4．7 （S4．9），cf．［9］，pp．361－362，section 3．1．Since $\{S 4.7\} \rightarrow\{S 4.6\} \rightarrow\{S 4.5\}$ ，the proof is complete．

3 Due to results which were discussed above the following rectifications in the enumeration of the extensions of S4 and their proper axioms，introduced in［9］，pp．347－350，should be made：

1．System S4．1（＝$\{\mathrm{S} 4 ; \mathrm{N} 1\}$ ）．Besides
N1 厄e『pLppCMLpp
each of the following formulas
N2 ©e®pLpLpCMLpLp
［Formerly M1］
N3 厄く厄pqqC厄厄NpqqCMLpq ［Cf．section 1．2］
N4 『e§ CpLp®pLpCpLpCMLCpLpCpLp
［An inspection of Schumm＇s formula ©II］ can serve as the proper axiom of this system．

2．System S4．2（＝\｛S4；G1\}). Besides
G1 © $M L p L M p$
G2 © $M L p L M L p$
also

G3 厄 $M C M C p M q M q C M C M C N p M q M q M q$

can be adopted as the proper axiom of $\mathbf{S 4 . 2}$ ．
3．System S 4.9 （＝$\{\mathrm{S} 4 ; \mathrm{Q} 1\}$ ）．I am accepting a suggestion of Zeman，$c f$ ．［14］， p．353，that Schumm＇s system 54.7 should be renamed．Besides

Q1 A 厄MLpLp厄MLMqCqLq
each of the following formulas

Q2	A ® $M L p L p A L q A$ 『qr®qNr	［Formerly S1］
Q3	$A 『 M L p L p A L q A ® q p ¢ q N p$	［Formerly E1］
Q4	$A ® M L p L p A L p A \subseteq p q ® p N q$	［Formerly E2］

can serve as the proper axiom of this system．I omitted here the axiom－ systems of S4．9 given in［7］and［14］，p．355，since instead of S4 they are based on S4．4．

REFERENCES

[1] Grzegorczyk, A., 'Nieklasyczne rachunki zdaf a metodologiczne schematy badania naukowego i definicje pojęć asertywnych," (in Polish) "Non-classical propositional calculi in relation to methodological patterns of scientific investigation," Studia Logica, vol. XX (1967), pp. 117-132.
[2] Makinson, D. C., "There are infinitely many Diodorean functions," The Journal of Symbolic Logic, vol. 31 (1966), pp. 406-408.
[3] Parry, W. T., 'Modalities in the Survey system of strict implication," The Journal of Symbolic Logic, vol. 4 (1939), pp. 137-154.
[4] Prior, A. N., "Tense-logic and the continuity of time," Studia Logica, vol. XIII (1962), pp. 133-151.
[5] Schumm, G. F., "On a modal system of D. C. Makinson and B. Sobociński," Notre Dame Journal of Formal Logic, vol. X (1969), pp. 263-265.
[6] Schumm, G. F., "On some open questions of B. Sobociński," Notre Dame Journal of Formal Logic, vol. X (1969), pp. 261-262.
[7] Schumm, G. F., "Solutions to four modal problems of Sobocinski," Notre Dame Journal of Formal Logic, vol. XII (1971), pp. 335-340.
[8] Sobocinski, B., "A note on modal systems," Notre Dame Journal of Formal Logic, vol. IV (1963), pp. 155-157.
[9] Sobociński, B., "Certain extensions of modal system S4," Notre Dame Journal of Formal Logic, vol. XII (1970), pp. 347-368.
[10] Sobociński, B., "Family K of non-Lewis modal systems," Notre Dame Journal of Formal Logic, vol. V (1964), pp. 313-318.
[11] Sobociński, B., "Modal system S4.4," Notre Dame Journal of Formal Logic, vol. V (1964), pp. 305-312.
[12] Sobocinski, B., 'Note on Zeman's modal system S4.04," Notre Dame Journal of Formal Logic, vol. XI (1970), pp. 383-384.
[13] Sobociński, B., "Remarks about axiomatizations of certain modal systems," Notre Dame Journal of Formal Logic, vol. V (1964), pp. 71-80.
[14] Zeman, J. J., "A study of some systems in the neighborhood of S4.4," Notre Dame Journal of Formal Logic, vol. XII (1971), pp. 341-357.

University of Notre Dame
Notre Dame, Indiana

[^0]: ＊An acquaintance with the papers cited in this note and especially，with the enumeration of the extensions of S4 and their proper axioms introduced in［9］，pp． $347-350$ ，and in［12］，is presupposed．

