Notre Dame Journal of Formal Logic
Volume XII, Number 3, July 1971
NDJFAM

A CLASS OF MODELS FOR INTERMEDIATE LOGICS

B. van ROOTSELAAR

Let α be an ordinal, $c(\alpha)$ its cardinality and B a $c(\alpha)$-field of sets, with union + , intersection - and complementation '. By $L_{\alpha}(B)$ we denote the set of weakly decreasing functions from α into B. A lattice structure is defined on $\mathrm{L}_{\alpha}(B)$ by putting

$$
\begin{aligned}
& (f+g)(\kappa)=f(\kappa)+g(\kappa) \\
& (f \cdot g)(\kappa)=f(\kappa) \cdot g(\kappa)
\end{aligned}
$$

for all $\kappa \leq \alpha$ and $f, g \in \mathrm{~L}_{\alpha}(B)$. There is a zero 0 in $\mathrm{L}_{\alpha}(B)$ and a one 1 . As is well-known $\mathrm{L}_{\alpha}(B)$ is not complemented for $\alpha>1$. However a relatively pseudocomplemented structure can be defined on $L_{d}(B)$.

Definition: For $f, g \in \mathrm{~L}_{\alpha}(B)$ let $f \rightarrow g$ be defined by

$$
(f \rightarrow g)(\kappa)=\sum_{\rho \leq \kappa} f(\rho)^{\prime} \cdot \prod_{\sigma<\rho} g(\sigma)+g(\kappa)
$$

Remarks:

1. The void product $\prod_{\sigma<1} g(\sigma)$ is put equal to $1 \epsilon B$.
2. Notice the following recursive relation

$$
(f \rightarrow g)(\kappa+1)=f(\kappa+1)^{\prime} \cdot(f \rightarrow g)(\kappa)+g(\kappa+1) .
$$

Theorem 1: If $f, g \in \mathbf{L}_{\alpha}(B)$, then $f \rightarrow g \in \mathrm{~L}_{\alpha}(B)$.
Proof. By the assumed nature of B the $(f \rightarrow g)(\kappa)$ are in B for all $\kappa \leq \alpha$. If $\tau<\kappa$ then

$$
\begin{aligned}
(f \rightarrow g)(\kappa) & =\sum_{\rho \leq \kappa} f(\rho)^{\prime} \cdot \prod_{\sigma<\rho} g(\sigma)+g(\kappa) \\
& =\sum_{\rho \leq \tau} f(\rho)^{\prime} \cdot \prod_{\sigma<\rho} g(\sigma)+\sum_{\tau<\rho \leq \kappa} f(\rho)^{\prime} \cdot \prod_{\sigma<\rho} g(\sigma)+g(\kappa) \\
& \leq \sum_{\rho \leq \tau} f(\rho)^{\prime} \cdot \prod_{\sigma<\rho} g(\sigma)+g(\tau) \\
& =(f \rightarrow g)(\tau)
\end{aligned}
$$

i.e. $f \rightarrow g$ is weakly decreasing.

Theorem 2: $\left\langle\mathrm{L}_{\alpha}(B),+, \cdot, \rightarrow\right\rangle$ is relatively pseudocomplemented.

Proof. First of all $f \cdot(f \rightarrow g) \leq g$ for

$$
f \cdot(f \rightarrow g)(\kappa)=f(\kappa) \cdot \sum_{\rho \leq \kappa} f(\rho)^{\prime} \cdot \prod_{\sigma<\rho} g(\sigma)+f(\kappa) g(\kappa) .
$$

If $\rho \leq \kappa$ then $f(\rho) \geq f(\kappa)$, so $f(\rho)^{\prime} \leq f(\kappa)^{\prime}$, consequently $f \cdot(f \rightarrow g)(\kappa)=$ $f(\kappa) \cdot g(\kappa) \leq g(\kappa)$ for all $\kappa \leq \alpha$. Next suppose $f \cdot h \leq g$, then

$$
h(\kappa) \leq \prod_{\lambda \leq \kappa}\left(g(\lambda)+f(\lambda)^{\prime}\right) \text { for all } \kappa \leq \alpha .
$$

Let $x \in h(\kappa)$, then consider

$$
\mathbf{A}(x)=\left\{\lambda ; \lambda \leq \kappa \& x \in f(\lambda)^{\prime}\right\}
$$

If $\mathrm{A}(x)=\phi$, then $x \in f(\lambda)$ for all $\lambda \leq \kappa$, so $x \in f(\kappa)$. Since $x \in g(\kappa)+f(\kappa)^{\prime}$, it follows $x \in g(\kappa)$, so $x \in(f \rightarrow g)(\kappa)$. If $\mathbf{A}(x) \neq \phi$, then there is a least λ_{0} in $\mathbf{A}(x)$, so $x \in f\left(\lambda_{0}\right)^{\prime}$, whereas $x \in f(\lambda)$ for all $\lambda<\lambda_{0}$. Because $x \epsilon g(\lambda)+f(\lambda)^{\prime}$ for these λ, it follows $x \in g(\lambda)$ for all $\lambda<\lambda_{0}$, hence

$$
x \in \prod_{\sigma<\lambda_{0}} g(\sigma)
$$

and consequently

$$
x \in f\left(\lambda_{0}\right)^{\prime} \cdot \prod_{\sigma<\lambda_{0}} g(\sigma),
$$

so $x \in(f \rightarrow g)(\kappa)$. So, if $f \cdot h \leq g$, then $h \leq f \rightarrow g$, which completes the proof that $\mathrm{L}_{\alpha}(B)$ is relatively pseudocomplemented.

Remarks:
3. The pseudocomplement of $f \in \mathrm{~L}_{\alpha}(B)$ assumes a very simple form:

$$
(f \rightarrow 0)(\kappa)=f(1)^{\prime} .
$$

Notice, that $((f \rightarrow 0) \rightarrow 0)(\kappa)=f(1) \geq f(\kappa)$, hence reciprocity of complement does not occur in general (i.e. for $\alpha>1$).
4. If $f=1$ and $f \rightarrow g=1$, then also $g=1$, so every $\mathbf{L}_{\alpha}(B)$ is a model for intuitionistic logic, with meet, join, relative pseudocomplement and pseudocomplement as interpretations of conjunction, disjunction, implication and negation respectively.

$$
\text { Let } \mathrm{D}(f, g) \text { stand for }(f \rightarrow g)+(g \rightarrow f) .
$$

Theorem 3: $\mathbf{D}(f, g)=1$ in $\mathbf{L}_{\alpha}^{-}(B)$.
Proof. If $\mathbf{D}(f, g) \neq 1$ then there is an x and a $\kappa \leq \alpha$ such that $x \in \mathbf{D}(f, g)(\kappa)^{\prime}$. Now
$\mathbf{D}(f, g)(\kappa)^{\prime}=\prod_{\rho<\kappa}\left(f(\rho)+\sum_{\sigma<\rho} g(\sigma)^{\prime}\right) \cdot \sum_{\sigma<\kappa} g(\sigma)^{\prime} \cdot \prod_{\rho<\kappa}\left(g(\rho)+\sum_{\sigma<\rho} f(\sigma)^{\prime}\right) \cdot \sum_{\sigma<\kappa} f(\sigma)^{\prime}$.
Let $\sigma(x)$ be the least σ such that $x \in g(\sigma)^{\prime}$ and $\tau(x)$ the least σ such that $x \in f(\sigma)$ '. Then since $x \in \mathbf{D}(f, g)(\kappa)^{\prime}$ it follows

$$
x \in f(\sigma(x))+\sum_{\sigma<\sigma(x)} g(\sigma)^{\prime},
$$

hence $x \in f(\sigma(x))$, and consequently $\tau(x)>\sigma(x)$. On the other hand

$$
x \in g(\tau(x))+\sum_{\sigma<\tau(x)} f(\sigma)^{\prime},
$$

so $x \in g(\tau(x))$, consequently $\sigma(x)>\tau(x)$. Hence the assumption: for some $\mathbf{D}(f, g)(\kappa) \neq 1$ is contradictory, so $\mathbf{D}(f, g)(\kappa)=1$ for all κ.

This theorem shows that the $L_{\alpha}(B)$ are models of intermediate logics. A particular case arises when $B=\{0,1\}$, because in that case $L_{\alpha}(B)$ is an $\alpha+1$ chain, in which implication has the form

$$
f \rightarrow g=\left\{\begin{array}{l}
1 \text { if } f \leq g \\
g \text { if } f>g
\end{array}\right.
$$

This can be seen as follows: if $(f \rightarrow g) \neq 1$, then there is an x such that

$$
x \in(f \rightarrow g)(\kappa)^{\prime} \text { for some } \kappa \leq \alpha .
$$

So

$$
x \in g(\kappa)^{\prime} \cdot \prod_{\rho \leq \kappa}\left(f(\rho)+\sum_{\sigma<\rho} g(\sigma)^{\prime}\right)
$$

If $\sigma(x)$ is the least σ such that $x \in g(\sigma)^{\prime}$, then it follows $x \in f(\sigma(x))$. However also $x \in g(\sigma(x))^{\prime}$, hence if $f \leq g$, we have also $x \in f(\sigma(x))^{\prime}$, a contradiction, so there can be no κ such that $(f \rightarrow g) \neq 1$, hence $f \rightarrow g=1$.

If $f>g$, then there is a $\kappa \leq \alpha$, such that $f(\kappa)>g(\kappa)$. Then $f(\lambda)=1$ for all $\lambda \leq \kappa$ and $g(\mu)=0$ for all $\mu \geq \kappa$. By definition of $f \rightarrow g$ then follows $(f \rightarrow g)(\rho)=g(\rho)$ for all $\rho \leq \alpha$, so $f \rightarrow g=g$.

If α is finite, say n, and $B=\{0,1\}$ then $\mathrm{L}_{\alpha}(B)=\langle(0, \ldots, 0),(0, \ldots, 0,1)$, $\ldots,(1, \ldots, 1)\rangle$ is a chain of $n+1$ elements. The relations of these chains to Peirce's law is interesting (cf. [1] and also [2] and [3]). Let

$$
\mathbf{P}\left(f_{1}, f_{2}\right)=\left(\left(f_{2} \rightarrow f_{1}\right) \rightarrow f_{2}\right) \rightarrow f_{2}
$$

and let its iterates be defined by

$$
\mathbf{P}\left(f_{1}, \ldots, f_{n+1}\right)=\mathbf{P}\left(\mathbf{P}\left(f_{1}, \ldots, f_{n}\right), f_{n+1}\right)
$$

then $\mathbf{P}\left(f_{1}, \ldots, f_{n}\right)$ is equal to 1 on $\mathbf{L}_{m}(\{0,1\})$ for $m<n$ and different from 1 for $m \geq n$. This result is not typical for $L_{m}(\{0,1\})$ and it can be shown for arbitrary $\mathrm{L}_{m}(B)$. In order to do so, we calculate the function $\mathbf{P}(f, g)$. A convenient description of $\mathbf{P}(f, g)(k+1)$ results from the following theorems.

Theorem 4: $(g \rightarrow f)(k)=f(k)+((g \rightarrow f) \rightarrow g)(k)^{\prime}$, for all finite $k \geq \alpha$.
Proof. Put $g \rightarrow f=r$ and $r \rightarrow g=t$, then we have to prove $r(k)=f(k)+t(k)!$. First of all $r(1)=f(1)+g(1)^{\prime}$ and $t(1)=g(1)+r(1)^{\prime}=g(1)+g(1) f(1)^{\prime}=g(1)$, so

$$
r(1)=f(1)+t(1)^{\prime}
$$

Next suppose $r(k)=f(k)+t(k)^{\prime}$, then first notice $r(k+1)=f(k+1)+$ $g(k+1)^{\prime} \cdot r(k)=f(k+1)+g(k+1)^{\prime} \cdot f(k)+g(k+1)^{\prime} \cdot t(k)^{\prime}$, hence

$$
g(k+1)^{\prime} \cdot t(k)^{\prime} \leq r(k+1)
$$

which we use in the following reduction

$$
\begin{aligned}
f(k+1)+t(k+1)^{\prime} & =f(k+1)+g(k+1)^{\prime} \cdot\left(r(k+1)+t(k)^{\prime}\right) \\
& =f(k+1)+g(k+1)^{\prime} \cdot\left(f(k+1)+g(k+1)^{\prime} \cdot\left(r(k)+t(k)^{\prime}\right)\right) \\
& =f(k+1)+g(k+1)^{\prime} \cdot r(k)+g(k+1)^{\prime} \cdot t(k)^{\prime} \\
& =r(k+1)+g(k+1)^{\prime} \cdot t(k)^{\prime} \\
& =r(k+1) .
\end{aligned}
$$

Theorem 5: $t(k+1)=g(k+1)+r(k)^{\prime}$ for all finite $k<\alpha$.
Proof.

$$
\begin{aligned}
t(k+1) & =g(k+1)+r(k+1)^{\prime} \cdot t(k) \\
& \left.=g(k+1)+f(k+1)^{\prime} \cdot(g(k+1)+r(k))^{\prime}\right) \cdot t(k) \\
& =g(k+1)+t(k) \cdot f(k+1)^{\prime} \cdot r(k)^{\prime} \\
& =g(k+1)+t(k) \cdot f(k)^{\prime} \cdot g(k)+r(k-1)^{\prime} \\
& =g(k+1)+t(k) \cdot r(k)^{\prime} \\
& =g(k+1)+r(k){ }^{\prime} .
\end{aligned}
$$

Theorem 6: $\mathbf{P}(f, g)(k+1)=g(k+1)+(g \rightarrow f)(k)$ for all finite $k<\alpha$.
Proof. We use the fact that $\mathbf{P}(f, g)(k) \geq(g \rightarrow f)(k)$, which is easily established. We again use r for $g \rightarrow f$ and t for $r \rightarrow g$. Then

$$
\begin{aligned}
\mathbf{P}(f, g)(k+1) & =g(k+1)+t(k+1)^{\prime} \cdot \mathbf{P}(f, g)(k) \\
& =g(k+1)+g(k+1)^{\prime} \cdot r(k) \cdot \mathbf{P}(f, g)(k) \\
& =g(k+1)+r(k) \cdot \mathbf{P}(f, g)(k) \\
& =g(k+1)+r(k) .
\end{aligned}
$$

Concerning the iterates of Peirce's law we have the following
Theorem 7: $\mathbf{P}\left(f_{1}, \ldots, f_{n}\right)(n-1)=1$ for all finite $n \leq \alpha$.
Proof. Evidently $\mathbf{P}\left(f_{1}, f_{2}\right)(1)=1$. Further

$$
\begin{aligned}
\mathbf{P}\left(f_{1}, \ldots, f_{n+1}\right)(n) & =f_{n+1}(n)+\left(f_{n+1} \rightarrow \mathbf{P}\left(f_{1}, \ldots, f_{n}\right)\right)(n-1) \\
& \geq \mathbf{P}\left(f_{1}, \ldots, f_{n}\right)(n-1) .
\end{aligned}
$$

So if $\mathbf{P}\left(f_{1}, \ldots, f_{n}\right)(n-1)=1$, then also $\mathbf{P}\left(f_{1}, \ldots, f_{n+1}\right)(n)=1$.
The above theorem expresses the fact that $\mathbf{P}\left(f_{1}, \ldots, f_{n}\right)=1$ on any $\mathbf{L}_{m}(B)$ where $m<n$. We next derive a formula for $\mathbf{P}\left(f_{1}, \ldots, f_{n}\right)(n)$ from which it will be clear that $\mathbf{P}\left(f_{1}, \ldots, f_{n}\right) \neq 1$ on $\mathbf{L}_{n}(B)$, and consequently on all $\mathrm{L}_{m}(B)$ where $m \geq n$.
Theorem 8: $\mathbf{P}\left(f_{1}, \ldots, f_{n}\right)(n)=\sum_{k=1}^{n} f_{k}(k)+\sum_{k=2}^{n} f_{k}(k-1)^{\prime}$ for all finite n, satisfying $2 \leq n \leq \alpha$.
Proof. Evidently $\mathbf{P}\left(f_{1}, f_{2}\right)(2)=f_{2}(2)+f_{1}(1)+f_{2}(1)^{\prime}$. If the formula holds for n, then it also holds for $n+1$, because

$$
\begin{aligned}
\mathbf{P}\left(f_{1}, \ldots, f_{n+1}\right)(n+1) & =f_{n+1}(n+1)+\left(f_{n+1} \mathbf{P}\left(f_{1}, \ldots, f_{n}\right)\right)(n) \\
& =f_{n+1}(n+1)+\mathbf{P}\left(f_{1}, \ldots, f_{n}\right)(n)+f_{n+1}(n)^{\prime} \\
& =\sum_{k=1}^{n+1} f_{k}(k)+\sum_{k=2}^{n+1} f_{k}(k-1)^{\prime} .
\end{aligned}
$$

From this formula it is clear how to choose the f_{k} so as to obtain
$\mathbf{P}\left(f_{1}, \ldots, f_{n}\right)(n) \neq 1$, and such a choice is possible for any $\mathrm{L}_{m}(B)$, where $m \geq n$ and B arbitrary.

Remark:
5. The sequence $\mathbf{P}=\left\{\mathbf{P}\left(f_{1}, \ldots, f_{n}\right)\right\}(n<\omega)$ is weakly increasing and no member is equal to 1 on $\mathbf{L}_{\omega}(B)$. One should notice that the behaviour of \mathbf{P} is best discussed in the context of infinitary logics (cf. e.g. [4]). Because we consider non-classical logics a few modifications are required, because for example the infinite disjunction

$$
W_{n} F_{n}
$$

is not introduced by means of negation and infinite conjunction, and we should add the axiom

$$
F_{k} \rightarrow \mathbb{W}_{n} F_{n}
$$

and the rule

$$
\begin{gathered}
\text { if } F_{1} \rightarrow G, F_{2} \rightarrow G, \ldots, F_{k} \rightarrow G, \ldots \text { then } \\
W_{n} F_{n} \rightarrow G
\end{gathered}
$$

Instead of the usual axioms for classical propositional logic one should accept an intermediate set, e.g. the intuitionistic system with $\mathbf{D}(f, g)$ added. For such logics the infinite disjunctions are interpreted as unions in the following way in the case of P :

$$
\left[\bigcup_{n} \mathrm{P}\left(f_{1}, \ldots, f_{n}\right)\right] \quad(k)=\bigcup_{n}\left[\mathbf{P}\left(f_{1}, \ldots, f_{n}\right)(k)\right]
$$

Then it is clear from Theorem 7 that

$$
\bigcup_{n} \mathbf{P}\left(f_{1}, \ldots, f_{n}\right)=1
$$

on all $\mathrm{L}_{\alpha}(B)$ where $\alpha \leq \omega$. So on $\mathrm{L}_{\omega}(B)$ the infinite disjunction of the iterates of Peirce's law is valid while no finite iterate is.

REFERENCES

[1] Gödel, K., "Zum intuitionistischen Aussagenkalkül," Ergebnisse eines mathematischen Kolloquiums, Heft 4, 1931-2 (1933), p. 40.
[2] Horn, A., "Logic with truth values in a linearly ordered Heyting algebra," The Journal of Symbolic Logic, vol. 34 (1969), pp. 395-408.
[3] Hosoi, T., "The separable axiomatization of the intermediate propositional systems S_{n} of Gödel," Proceedings of the Japan Academy of Sciences, vol. 42 (1966), pp. 1001-1006.
[4] Karp, C., Languages with expressions of infinite length, North-Holland Publishing Co., Amsterdam (1964).

Landbouwhogeschool, afedling Wiskunde
Wageningen, Holland

