
238
Notre Dame Journal of Formal Logic
Volume XII, Number 2, April 1971

ISOMORPHISMS OF ω-GROUPS

CHARLES H. APPLEBAUM

1. Introduction* Let ε stand for the set of non-negative integers {numbers),
V for the class of all subcollections of ε(sets), and Λ for the set of isols. A
function has as its domain and range subsets of ε. If / is a function we
write δf and pf for its domain and range respectively. The relation of in-
clusion is denoted by c and the sets a and β are recursively equivalent
(written: a =* β), if δf = a and pf = β for some function / with a one-to-one
partial recursive extension. We denote the recursive equivalence type of a,
{σevlσ ^ a], by Req(α). The reader is assumed to be familiar with the con-
tents of [3].

The concept of an co-group was studied by Hassett. He defined two
co-groups to be recursively isomorphic if there is an isomorphism between
them which has a one-to-one partial recursive extension. In this paper we
will reserve the term recursive isomorphism for a mapping between two
r.e. groups and for arbitrary ω-groups we will refer to a recursive iso-
morphism as an ω-isomorphism (written: Gι =ω G2, for co-groups Gt and
ft).

It is natural to ask if the partial recursive extension of an co-iso-
morphism is itself a recursive isomorphism from a r.e. group onto
a r.e. group. For arbitrary co-groups this question remains open.
However, this question can be settled positively in the case of co-groups
of the form P(σ) for an isolated set σ. In Proposition P4 we present a
proof of this result. It is also of interest to consider when an co-auto-
morphism of an co-group can be extended to a recursive automorphism of a
r.e. group. This question can also be answered positively, P3, in the case
of co-groups of the form P(σ) for σ an isolated set. Finally we show in P8
that every co-automorphism of P(o)f for an immune set σ, is an inner ω-
automorphism if and only if Req (σ) is multiple-free.

*The results presented in this paper are part of a doctoral dissertation sub-
mitted to the Graduate School of Rutgers University in June, 1969, in partial fulfill-
ment of the requirements for the degree of Doctor of Philosophy. The author wishes
to express his appreciation to his thesis advisor, Professor J. C. E. Dekker, for his
encouragement and guidance in the preparation of this thesis.
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2. Basic concepts We need the following theorem [1, Prop. 1].

(1) / has a one-to-one partial recursive extension if and only if f and f1

have partial recursive extensions and f is one-to-one.

Definition. An ω-isomorphism 0 from an ω -group Gx onto an ω -group G2 is
regular if there exist r.e. supergroups Gx' and G2' of Gλ and G2 respectively
and a recursive isomorphism 0O from Gχr onto G2' such that 0O is an
extension of 0.

Definition. A recursive automorphism of a r.e. group G is a recursive
isomorphism from G onto itself.

Definition. Let 0 be an automorphism of the π-group P(α). Then 0 is called

(i) an ω-automorphism of P(a), if 0 is an ω-isomorphism fromP(α)
onto itself,

(ii) a strong ω-automorphism of P(α), if 0 can be extended to a
recursive automorphism 0O of a π-group of the form P(a0), where a0 is
some r.e. superset of a.

The question of whether every ω-automorphism of an isolated π-group
can be extended to a recursive ω-automorphism of a r.e. supergroup will
be settled if we can show that every ω-automorphism of an isolated π-group
is strong. This is what we will do. For this purpose we introduce the
following concepts.

Definition. A recursive permutation is a partial recursive function g such
that g is a permutation of the r.e. set δg.

Definition. Let /be a permutation of the set a. Then / is called

(i) an ω - per mutation of α, if / has a one-to-one partial recursive
extension,

(ii) a regular ω -permutation of a, if / can be extended to a recursive
permutation f0 of some r.e. superset a0 of a.

Proposition PI. Let f be a permutation of the set a. If a is isolated, f is a
regular ω-permutation of a if and only iff is an ω-permutation of a.

Proof. Left to reader.

Notation. In this paper we will denote the group of all finite permutations
of a set σ, i.e., those permutations which move only finitely many elements
of σ, by P (σ). Also if /, g e P (σ) and n e σ then we denote / applied to n by
(n)f and (n)(fg) = ((n)f)g.

Remark. We recall from [3] that a permutation / of a set σ is a member of
P (σ) if/ moves finitely many elements of σ and δf = ε. In the following
discussion we will run across permutations, /, whose domain is not all of ε.
However, if such permutations move only finitely many elements of σ then
it is clear that they can be extended to a member of P(σ). Thus when we
say/ e P (σ) we really mean the extension of/ to ε, which moves the same
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elements as / moves, is a member of P(cr); and that the Gδdel number/*
of such a permutation / is the Gό'del number of this extension to ε.

3. Strong ω-automorphisms

Notation. We let η = {/*| / € P (ε)}.

Notation. Let J c />(ε), then 9* = {/* eη\fe 9}.

Notation. Let φ be a function from a subfamily J of P (ε) into />(ε). Then
0* is the function from a subset of 77 into 77 such that

(i) 60* = J*, and
(ii) for / e £, 0(/) « g if and only if 0*(/ *) = g*.

Definition. A function 0 from a subfamily of P (ε) into /* (ε) is effectively
computable if the function 0* from a subset of η into 77 is partial recursive.

Proposition P2. Let ot be an immune set. (a) If σ is an ω-permutation of a
and

(2) Ψ*[f*] • (σ 'Vσ)*, /or /*e P(α) ,

ί&ew ψ* is a strong ω-automorphism of P{OL). (b) For every ω-auto-
morphism ψ* of P(a), there is exactly one ω-permutation σ of ot such that
(2) holds.

Proof: Let Q(a) be the group of all permutations of a and 9(a) the group
of all restrictions to a of functions in P(a). Suppose that σ e Q{a). Then
the mapping

0 : / ^or'Vcr, for fe Q{a),

is an inner automorphism of Q(a). Since 9(a) is a normal subgroup of
Q(a), we see that the restriction of 0 to 9(a) is an automorphism of 9(a).
Thus the mapping

Φσ f-^σ'1 fa tor fe P(a),

is an automorphism of P(ά), while the mapping ψ* defined by (2) is an
automorphism of P(a). We now make the additional assumption that the set
a is immune and σ is an ω-permutation of a. By PI there exists an
extension σ' of σ which is a recursive permutation of a r.e. superset af

of of. Define

M/Wσ 1 )" 1 /* ' , for/e P(a'),

(Ψ')*[/] = ((σ')~7σ')*, for/* e P(α').

Then φσ, is an automorphism of Pia*) which is an extension of φσ, while
(ψ f)* is a recursive automorphism of P{af) which is an extension of ψ*.
Hence ψ* is a strong ω-automorphism of P(a).

(b) We shall first prove that for every automorphism ψ* of P(a)s there
is at most one permutation σ of a related to ψ* by (2). Let σt and σ2 be
permutations of a. Consider the corresponding automorphisms of 9{a), the
mappings 0! and 02 such that for/ e 9(a),
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0i(/) = CTΓVOΓI, Hf) = σ2"Vσ2.

We shall use the following lemma, whose proof is left to the reader.

Lemma. Let σ be a permutation of a. and φ the automorphism of 3(a.) such
that

Φ:f ->σ'ιf(J,forfe 9{a).

If φ is the identity mapping on 9{a), then σ is the identity permutation of α.

Now assume 0! = φ2f i.e., φiif) = φ2(f), for / € 9(a). Then it follows by
the lemma that σ1σ2"

1 is the identity permutation of a, i.e., that σx = σ2.
Thus for every ω -automorphism ψ* of P(a), there is at most one ω-
permutation σ of a such that (2) holds.

Let, for any ω -permutation σ of α,

{φσ)* :f -> (σ-7σ)*, for /* e P{a).

We proceed to prove that for every ω -automorphism ψ* of P(a), there is at
least one ω -permutation σ of a such that ψ* = (0σ)*. Our proof is suggested
by Kent's proof of a related but different theorem, [4, p. 360].

Assume that ψ* is an ω -automorphism of P(a). Then ψ* has a
one-to-one partial recursive extension, say (ψo)* Since the set of all
Gδdel numbers of finite permutations is recursive, we may assume without
loss of generality that δ(ψo)* and p(ψo)* consist of Gδdel numbers of finite
permutations. Let

for /* e P(a), ψ(f) = g mean: ψ*(/*) = g*f

for / * e δ(ψ0)*, Ψo(f) = g mean: ψ*(f*) = g*.

Thus ψ is an automorphism of P(a) and ψ o i s a one-to-one extension of ψ
which is effectively computable. We point out three properties of the
mapping ψ.

(i) Let the order, o(/), of a finite permutation / be the unique number
n such that / w = i, fm Φ i9 for 0 < m < n, where i is the identity permutation.
Then o(ψ(/)) = o(/), for/ e P{a).

(ii) Let My, M2cp\a). If ψ(Mι)CM2 and ψ~\M2)CiMu then ψ(Mx) = M2.
(iii) If C is the conjugacy class of P(a), so is ψ(C).

Let Ct be the conjugacy class of P(a) which consists of all transposi-
tions of elements in a (completed to functions defined on ε). We say that a
subset S of P{a) has property Γ, if

(fi>f29gi,g2 e S) and (o{flgl) = o(f2g2)) then fιgl is conjugate to f2g2.

We claim that Ct is the one and only conjugacy class of P(a) which has
property Γ and consists of elements of order 2. First of all, it is readily
seen that Ct has property Γ, and Ct trivially consists of elements of order
2. Now suppose A is a conjugacy class of P(a) which contains only
elements of order 2 and such that Jfc Φ Ct* Let f eS> and/ = yL. . . γk be the
decomposition of/ into disjoint cycles. Then o(/) = 2 implies o(γt) = 2, for
1 < i < k. Also 3>Φ Ct entails k ^ 2.
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Let hnbe the principal function of a, i.e., the function which enumerates
a in increasing order. Put

fi = (huhj(htohj. . .(h2k-ι>h2k),
Sι = {h 2k+ι, hzk+2) . . . (h4k.l9 h4k),

g2 = (h1,h2)(h2k+1,h2k+2). . . (λ4*-a»*4*-2)

Hence fu f2, gXy g2 e 3>} since they belong to the same cycle class as /.
However,

/i gx = ( h u h 2 ) . . . ( h A k ^ u h4k),

fa ' 8* = ( h * hd (hAk-s> h*k-2)

both have order 2, but are not conjugate. Thus Jb does not have property Γ.
We now consider ψ(Ct). This is a conjugacy class of P(a) by (iii) and

consists of elements of order 2 by (i). It is easily seen that property Γ is
preserved under ψ, hence ψ{Ct) has property Γ. Therefore ψ(Ct) = Ct*
Define

T» = {{n,x)\ x e a and x Φ n}, for n e a.

We observe that

(a) the product of any two distinct elements of Tn has order 3,

(b) if the product of two transpositions is of order 3, they have exactly
one element in common.

Using (a), (b) and (ii) we obtain

n e a => (3w) [m e a and ψ(Tn) = Tm].

Let, for n e a, (n) σ = m mean: φ(Tn) = Tm. It follows that σ maps a into
itself. For p,q e a,

pΦq^Tp ΦTq=> ψ(Tp) Φ ψ(Tq) =» T{p)σ Φ T{q)σ => (p)σ Φ (q)σ.

Moreover, since ψ" 1 is also an automorphism of /*(#),

m e a =̂> (3w) [n e a and Tn = ψ'\Tm)]
=>(ln) [n e a and ψ(Tn) = Tm]
=> m e (a)σ.

Hence σ is a permutation of a. Let xu x2ί x3 be three distinct elements of a.
Suppose any number n e a is given. Then at least two of the three numbers
Xι9 x2, #3 are different from n. We may assume without loss of generality
that n Φxι and n Φx2. Since ψ has an effectively computable extension,
namely ψ0, we can compute

Ψ[(n,Xi)] = (m, JO, ψ[{n,x2)] = (m, y2),

where m, 3;̂  y2 are distinct elements of a. Then

(n)σ = m = common element of (m, yx) and (w, 3̂ 2),
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can be effectively found. It is readily proved that σ has a partial recursive
extension. Note that ψ~ι also has an effectively computable extension,
namely ψo1. Thus given any number m e a we can (assuming without loss
of generality that m Φ xlf m Φ x2) compute

ψ~ι[(m, xύ] = (n,y3), Ψ'^im.x^] = (n,y4),
(ra)σ"1 = n- the common element of (n, y3) and (n,yA).

It can be proved (in the same way as for σ) that σ"1 has a partial recursive
extension. We conclude by (1) that the permutation σ of a has a one-to-one
partial recursive extension, i.e., that σ is an ω-permutation of a.

It remains to be shown that

ψ*(f*) = (σ~7σ)*, for/* e P(a),

or equivalently that

(3) ψ(f) = <J~ιf(J, for/ e P(a).

Define θ(f) = σψ(f)σ~\ for / e P(a). Let / be a transposition of a, say
/ = {n,x). Suppose that ψ(f) = {m,y), then (n)σ = m, (x)σ = y or vice versa.
We will assume (n)σ = m, (x)σ = y. Then

(n)θ(f) = {n)[σψ{f)σ-1} = {m)[^{f)σ'1] = (^)σ-1 = ^
(x)θ(f) = ωtσψί/Jσ'1] = (^JtΨί/)^1] = {nήσ-1^ n.

Moreover, if z e a, but 2 / {Λ;, W},

(«)β(/) = (z^σψi^σ'1] = (̂ ) σσ"1 = z.

We have therefore proved that θ(f) =/, for every transposition/ of a. The
definition of θ implies that θ is an automorphism of P{d). Thus, since
every element of P(a) can be expressed as a product of finitely many
transpositions of a, θ must be the identity mapping. Hence σψ(/) σ'1 =/,
for / e P(a) and ψ(f) = σ"1/^, for / e /'(of). Thus (3) holds and this com-
pletes the proof.

Proposition P3. Let a be a non-empty isolated set. Then every ω-auto-
morphίsm of P(a) is strong.

Proof: Let a be finite. Then every automorphism of P(a) is a recursive
automorphism, hence we are through. If, on the other hand, a is immune,
the desired result follows from the two parts of P2.

4. Regular ω-isomorphisms

Proposition P4. Let a and β be non-empty isolated sets. Then every
ω-isomorphism from P(a) onto P(β) is regular.

Proof: Let ψ* be an ω-isomorphism from P(ά) onto P(β), then ψ* has a
one-to-one partial recursive extension, say ψ*. We may assume without
loss of generality that both δψ* and pψ* consist of Gδdel numbers of finite
permutations. Define δ = δψ*> p = pψ*> A = {/ e /*(ε)l/* e δ}, and
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for / e P(a), ψ(f) = g means: ψ*(/*) = g*f

for / e i>, ψo(/) = g means: ψj(/*) = g*.

Then ψ is an isomorphism from P(ά) onto /*(#) which has an effectively
computable one-to-one extension, namely ψ0. Let A = Req(α), B = Req(/3),
then o(P(of)) = A!, o(P(β)) = B!. The fact that ψ$ maps P(α) onto P(β)
implies that A! = B\. Since A,£ >0, it follows that A = £, i.e., α ̂  β, say
by p. Define X(^) = /^/Γ1, for ge P{β), and X0(g) = pgp'\ for g e />(p/>).
Note that forg e P(β),

ne a^>(n)pe β=>(n)pge β=>(n)pgp"1 e αf=>(n)[Xfe )]e a.

Since ^ changes at most finitely many elements of βf X(g) changes at most
finitely many elements of a. Thus g e P{β) implies that X(g) e P(a). It is
readily proved that X is an isomorphism from J>(β) onto P(a). Similarly,
one can prove that XQ is an isomorphism from fi(ρp) onto P(δp). More-
over, Xo is an effectively computable extension of X. Put θ = Xψ}

20={feJΰ\ψ0(f)e<P(pp)},
θo(f) = ΛΌΨo(/), for/ej&0.

Then 0 is an automorphism of /*(α) which has an effectively computable
one-to-one extension, namely θ0. Define

for /*€ P(a), θ*(f*) *g* means: θ(f) = g,
for/*ei)*, i9*(/*) =g* means: θo{f)=g.

It follows that 61* is an automorphism of P(α) which has a partial recursive
one-to-one extension, namely θ*. Hence θ* is an ω-automorphism of P(a).
Applying P2 we conclude that there exists an ω -permutation σ of a such that
θ(f) = σ~ιfσ, for fe P(a). Substituting Xψ for θ and using the definition of
X, we obtain

Xψ(f) = σ"7σ, for feP(a),
pψiflp-^σ-'fσtiorfePia),
Ψ(f) = (σp)~ιf(σp), for /e />(α).

The ω-permutation σ of α has a partial recursive one-to-one extension, say
σ0. Define

ao = {xe δσol(Λ:)σoe δ/>},

(x)q = (x)σop, forxe QΌ,

3o=(^o)^

Then αCff0C δ/>, where a0 is r.e. Since q is the composition of two partial
recursive one-to-one functions, it is itself a partial recursive one-to-one
function. Moreover, q is an extension of σp. While σp maps a onto β,
q maps the r.e. superset a0 of a onto the r.e. superset β0 of β. Define
Ψi(f) - q~lfq, f° r fe P((Xo)' Then ψi is an extension of ψ, an isomorphism
from P(a0) onto /^βo) and an effectively computable mapping. Let for
/*eP(α 0), Ψ*(/*) =^ * mean: ψχ(/) = ^ . It follows that ψ* is a recursive
isomorphism from the r.e. supergroup P(a0) of P(a) onto the r.e. supergroup
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P(ι3o) of P(β). Since ψ* is also an extension of ψ*f the ω-isomorphism ψ*
is regular.

5. Inner ω-automorphisms

Definition. Let φ be an automorphism of the ω- group G. Then φ is an
inner (or outer) ω-automorphism of G, if 0 is both an inner (respectively
outer) automorphism of G and an ω -automorphism of G.

Notations. For an ω-group G,

Aut(G) = the group of all automorphisms of G,
ln(G) = the group of all inner automorphisms of G,

Autω(G) = the group of all ω-automorphisms of G,
lnω(G) = the group of all inner ω -automorphisms of G.

Notation. We write H^G for H is a subgroup of the group G.

Remark. We immediately see that for an co-group G, we have Autω(G) ^
Aut(G) and !nω(G) ^ ln(G). The second relation can be strengthened.

Proposition P5. Let G be an ω-group. Then every inner automorphism of
G is an ω-automorphism of G, i.e., ln(G) = lnω(G).

Proof: Left to reader.

Proposition P6. Let a be an infinite set. Then the ω-group P (a) has exactly
c automorphisms. Among them exactly No are inner automorphisms and
exactly c are outer automorphisms.

Proof'. For every permutation σ of a, the mapping

φσ:f-*σ~1fσ, for fePia)

is an automorphism of P(a). In our proof of P2 we showed (only using the
fact that a is infinite) that for permutations σ, r of a,

σ Φ τ = > 0 σ Φ φr.

Taking into account that a has exactly c permutations, since a is denu-
merable, it follows that P(a) has at least c automorphisms. However, there
are only c mappings from P{ot) into itself, hence P{a) has exactly c
automorphisms. If σ ranges without repetition over the denumerable family
of all finite permutations of a, φσ ranges without repetition over the family
of all inner automorphisms of P(ά). Hence there are exactly No inner
automorphisms of P{a). The remaining c automorphisms of P(a) must be
outer ones.

Remark. Let a be an infinite set and G =P(a). In view of P6, lnω(G) ^
Autω(G)< Aut(G). We wish to find out for which immune sets a, \nω(G) <
Autω(G). This clearly depends only on Req(α).

Definition. An isol A is multiple-free if for every isol-B, 2B— A=s>Be ε.

It is readily seen that c isols are multiple-free while c are not. For if
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X is an infinite indecomposable isol. X is multiple-free, but 2X is not.
Moreover, there are exactly c infinite indecomposable isols.

Notation. (1) The cardinality of the set a will be denoted by cαrd(α).
(2) For two sets a and β, a\β means a is separable from β.

The following proposition is due to B. Cole.
Proposition P7. Let Te A - ε and re T. Then there is an ω-permutation of
T which moves infinitely many elements ofτ if and only if T is not multiple^

free.

Proof: Let ΓeΛ-ε and τeT. Suppose that / is an ω-permutation of τ
which moves infinitely many elements of T. Define

y* = {*,/M,/2(*),...}, forxeδ/,
D ={γx\γx is finite},

δ = union of all sets in D,
c(x) = mίn γx> 6{x) = max γxf for xe δ.

Then Tcδcδ/, where δ is an r.e. set. Also c(x) and ό{x) are partial
recursive functions. Put

σ' = {χe δ | card-yx^2}rσ = {xeτ| card γx-2],

then σcσ f where σ1 is r.e. Define

α' = c(σf), /3'=d(σ'), a = c(σ), 0 = d(σ),A = Req(αr).

Note that aca\ β<zβ\ where a1 and β1 are disjoint r.e. sets. Hence a\β.
Moreover

c(^) -> d(Λτ), for xe σr

is a partial recursive one-to-one function which maps a onto β. It follows
that a ̂  β and

(4) Req(αU/3) = Req(α) + Req(j3) = A + A = 2A.

Observe that #e σf if and only if C(ΛΓ) Φ ό(x), for x e δ, and AT e αf U/3f if and
only if x = c(#) or # = d(#), for ΛΓ€ σ'. We conclude that for xe δ,

xe a'Όβr<=>c(x) Φ 6(x) and [x = c(#) or ΛΓ = d(#)],
Aτ̂ α'Ui3'«=5>c(Ar) = d(jv) or [x Φ c(x) and xφ 6{x)].

Since C(Λ ) and ό(x) are defined on δ, the sets a'ΌB' and δ-(of'U^0 are
disjoint and r.e. Thus aΌβCa'Uβ', τ-(αfU|3)cδ-(α? 'U 0'), and

(5) α?Uj3|τ-(αU/3), Req(o?U|3) ^ Γ .

Combining (4) and (5) we obtain 2A^Γ. The set σ is infinite because/
moves infinitely many elements of T. This implies that the set a and the
isol A are infinite. Hence T is not multiple-free.

To prove the converse we suppose that the infinite isol Γ is not
multiple-free. Let A be an infinite isol such that 2A^T. Suppose that
a I, a2ε A and tfilα2 Let oti' and a2

r be disjoint r.e. sets and h(x) & partial
recursive one-to-one function such that
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ffiCαf/, α 2 c α 2

f , ffiCδfe, h(aj = a2.

We may assume that δh= ax\ pk= a2

r. In view of the fact that 2A^ T, we
may also suppose that

α 1 U α 2 c τ , oiίΌazl T-ίdfiUα^).

Let γ and δ be disjoint r .e. sets such that # i U α 2 c y a n d τ-(ffiUα2)cδ. De-
fine the functions f(x), fo(x) by

δ/= T, δ/0= δuία/UαfaO y,

^ , if Λ:<α!Uα2,
/(AT) = h(x) , iixe al}

h~\x), iίxe a2,

(x , if xe δ,
/o(*) = ]fc(*) , if.Λreα/Π r,

{h~\x), iίxe a2

rnγ.

First of all, /(#) is a permutation of r and /0(#) a partial recursive one-to-
one extension of f(x). Thus /(#) is an ω -permutation of r. Moreover, /
moves all elements of the subset αx of r, while αx is infinite, since a^A.
It follows that / moves infinitely many elements of r.

Remark. Proposition P7 enables us to characterize all immune sets a for
which the co-group P(a) has No outer ω-automorphisms.

Proposition P8. Let oί be an immune set. Then P(ot) has$0 outer ω-auto~
morphίsms if and only if the isol Req (a) is not multiple-free.

Proof: Let for every ω-permutation σ of a, the ω-automorphism φσ* be
defined by

0σ*:/*->(σ" 1/σ)*, f o r / * e P ( α ) .

According to P2 every ω-automorphism of P(a) is of the form 0σ* for some
σ and the mapping σ—>φσ* is one-to-one. Clearly, φσ* is an outer ω-auto-
morphism of P(a) if and only if σ moves infinitely many elements of a.
Thus by P7, P(cί) has an outer ω-automorphism if and only if the isol Req(α)
is not multiple-free. But P(a) has at least one outer ω-automorphism
implies P(a) has No outer ω-automorphisms since there are tf0 distinct
inner co-automorphisms of P{a) and the composition of an outer ω -auto-
morphism with an inner co-automorphism is an outer co-automorphism.
This completes the proof.

Remark. Proposition P8 can also be phrased as follows: for an immune
set of, AutωP(a) = lnωP(α) if and only if Req(α) is multiple-free and
cαrd(AυtωP(o') - \nωP{a)) = No

 i f a n d o n l y i f Req(oί) is not multiple-free.
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