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ISOMORPHISMS OF w-GROUPS

CHARLES H. APPLEBAUM

1. Introduction* Let & stand for the set of non-negative integers (numbers),
V for the class of all subcollections of £(sets), and A for the set of isols. A
function has as its domain and range subsets of €. K f is a function we
write 8f and pf for its domain and range respectively. The relation of in-
clusion is denoted by C and the sets @ and B are recursively equivalent
(written: a =~ g), if 8f = e and pf = B for some function f with a one-to-one
partial recursive extension. We denote the recursive equivalence type of a,
{oeVlo ~ al, by Req(a). The reader is assumed to be familiar with the con-
tents of [3].

The concept of an w-group was studied by Hassett. He defined two
w-groups to be recursively isomorphic if there is an isomorphism between
them which has a one-to-one partial recursive extension. In this paper we
will reserve the term recursive isomorphism for a mapping between two
r.e. groups and for arbitrary w-groups we will refer to a recursive iso-
morphism as an w-isomorphism (written: G; =, G,, for w-groups G; and
Ge).

It is natural to ask if the partial recursive extension of an w-iso-
morphism is itself a recursive isomorphism from a r.e. group onto
a r.e. group. For arbitrary w-groups this question remains open.
However, this question can be settled positively in the case of w-groups
of the form P(o) for an isolated set ¢. In Proposition P4 we present a
proof of this result. It is also of interest to consider when an w-auto-
morphism of an w-group can be extended to a recursive automorphism of a
r.e. group. This question can also be answered positively, P3, in the case
of w-groups of the form P(o) for o an isolated set. Finally we show in P8
that every w-automorphism of P(o), for an immune set o, is an inner w-
automorphism if and only if Req (0) is multiple-free.

*The results presented in this paper are part of a doctoral dissertation sub-
mitted to the Graduate School of Rutgers University in June, 1969, in partial fulfill-
ment of the requirements for the degree of Doctor of Philosophy. The author wishes
to express his appreciation to his thesis advisor, Professor J.C. E. Dekker, for his
encouragement and guidance in the preparation of this thesis.
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2. Basic concepts We need the following theorem [1, Prop. 1].

(1) f has a one-to-one pavtial vecursive extension if and only if f and f~*
have partial vecursive extensions and f is one-to-one.

Definition. An w-isomorphism ¢ from an w-group G; onto an w=-group G, is
regular if there exist r.e. supergroups G,’ and G,' of G, and G, respectively
and a recursive isomorphism ¢, from G,’ onto G,' such that ¢, is an
extension of ¢.

Definition. A recursive automorphism of a r.e. group G is a recursive
isomorphism from G onto itself.

Definition. Let ¢ be an automorphism of the m-group P(a). Then ¢ is called

(i) an w-automovphism of P(a), if ¢ is an w-isomorphism from P(a)
onto itself,

(ii) a strong w-automorphism of P(a), if ¢ can be extended to a
recursive automorphism ¢, of a m-group of the form P(q,), where q, is
some r.e. superset of a.

The question of whether every w-automorphism of an isolated 7-group
can be extended to a recursive w-automorphism of a r.e. supergroup will
be settled if we can show that every w-automorphism of an isolated m-group
is strong. This is what we will do. For this purpose we introduce the
following concepts.

Definition. A recursive permutation is a partial recursive function g such
that g is a permutation of the r.e. set §g.

Definition. Let f be a permutation of the set a. Then f is called

(i) an w-=-permutation of a, if f has a one-to-one partial recursive
extension,

(ii) a regular w-permutation of a, if f can be extended to a recursive
permutation f, of some r.e. superset aq of a.

Proposition P1. Let f be a permutation of the set a. If a is isolated, f is a
regular w-permutation of a if and only if f is an w-permutation of a.

Proof. Left to reader.

Notation. In this paper we will denote the group of all finite permutations
of a set o, i.e., those permutations which move only finitely many elements
of o, by £ (0). Alsoif f, ge # (0) and n ¢ o then we denote f applied to n by
(n)f and (n) (fg) = ((n) f)g.

Remark. We recall from [3] that a permutation f of a set o is a member of
P (0) if f moves finitely many elements of ¢ and 6f = €. In the following
discussion we will run across permutations, f, whose domain is not all of €.
However, if such permutations move only finitely many elements of o then
it is clear that they can be extended to a member of # (o). Thus when we
say f € # (o) we really mean the extension of f to €, which moves the same
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elements as f moves, is a member of £ (0); and that the Gdel number f*
of such a permutation f is the Gédel number of this extension to €.

3. Strong w-automorphisms
Notation. We letn = {f*| fe P (g)}.
Notation. Let 3C £ (g), then F* = {f* ¢ n|fe g1

Notation. Let ¢ be a function from a subfamily # of # (g) into £ (¢). Then
¢* is the function from a subset of 7 into 7 such that

(i) 6¢* = %, and
(ii) for fe 3, ¢(f) = g if and only if ¢*(f*) = g*.

Definition. A function ¢ from a subfamily of £ (g) into P (¢) is effectively
computable if the function ¢* from a subset of 1 into 7 is partial recursive.

Proposition P2. Let @ be an immune set. (@) If ois an w-pevmutation of a
and

) U] = (07 fo)*, for fre Pla),

then Y* is a strong w-automovphism of P(a). (b) For every w-auto-
movrphism Y * of P(a), theve is exactly one w-permutation o of @ such that
(2) holds.

Proof: Let G(a) be the group of all permutations of o and $(a) the group
of all restrictions to o of functions in #(a). Suppose that o € G(a). Then
the mapping

¢:f =0 *fo, for fe G(a),

is an inner automorphism of G(a). Since ¥(a) is a normal subgroup of
G(a), we see that the restriction of ¢ to F(a) is an automorphism of %(a).
Thus the mapping

6, f — 0 *fo, for fe Pla),

is an automorphism of #£(a), while the mapping /* defined by (2) is an
automorphism of P(a). We now make the additional assumption that the set
a is immune and o is an w-permutation of a. By P1 there exists an
extension o' of o which is a recursive permutation of a r.e. superset o'
of a. Define

do[f]=(c)7" fo!, for fe Pla"),
WY 1] = (o) fo)*, for f*e P(a’).

Then ¢, is an automorphism of #P(a’) which is an extension of ¢,, while
(¢N* is a recursive automorphism of P(a') which is an extension of y*.
Hence y* is a strong w-automorphism of P(a).

(b) We shall first prove that for every automorphism ¢ * of P(a), there
is at most one permutation ¢ of a related to ¢* by (2). Let o, and o, be
permutations of a. Consider the corresponding automorphisms of %(a), the
mappings ¢, and ¢, such that for f ¢ $(a),
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o f) = 0'1-1f0'1: $a(f) = Uz-lfcz .
We shall use the following lemma, whose proof is left to the reader.

Lemma. Let o be a permutation of @ and ¢ the automorphism of 3(a) such
that

o: f — 0" 'fo, for fe F(a).
If ¢ is the identity mapping on F(a), then o is the identity pevmutation of a.

Now assume ¢, = ¢,, i.e., §:(f) = ¢.(f), for f € F(a). Then it follows by
the lemma that 0102'1 is the identity permutation of q, i.e., that o, = 0,.
Thus for every w=automorphism y* of P(a), there is at most one w-
permutation ¢ of @ such that (2) holds.

Let, for any w-permutation o of g,

(¢o)*: f —> (0™ fo)*, for f* € P(a).

We proceed to prove that for every w-automorphism i * of P(a), there is at
least one w-permutation o of @ such that ¢ * = (¢,)*. Our proof is suggested
by Kent’s proof of a related but different theorem, [4, p. 360].

Assume that y* is an w-automorphism of P(@). Then Y* has a
one-to-one partial recursive extension, say (Yo)*. Since the set of all
GoOdel numbers of finite permutations is recursive, we may assume without
loss of generality that &({¢)* and p(y,) * consist of Gédel numbers of finite
permutations. Let

for f* € P(a), Y(f) = g mean: Y*(f*) = g%,
for f* € (W o)*, wolf) = g mean: YgH(f*) = g*.

Thus ¥ is an automorphism of #£(a) and Y, is a one-to-one extension of ¥
which is effectively computable. We point out three properties of the
mapping .
(i) Let the ovder, o(f), of a finite permutation f be the unique number

n such that f”=14, f"+# i, for 0 <m <n, wherei is the identity permutation.
Then o(Y(f)) = off), for f € £(a).

(ii) Let My, M,C P(a). If Y(M,) CM, and  ~*(M,) CM,, then Y(M)) = M,.

(iii) If € is the conjugacy class of £(a), so is Y(C).

Let C;, be the conjugacy class of #£(a) which consists of all transposi-
tions of elements in a (completed to functions defined on g£). We say that a
subset § of P(a) has property T, if

(fufzg,82€S) and (o f141) = o(f,89) then f, g, is conjugate to f2ge.

We claim that ¢, is the one and only conjugacy class of #(a) which has
property T and consists of elements of order 2. First of all, it is readily
seen that (, has property T, and (, trivially consists of elements of order
2. Now suppose D is a conjugacy class of P(a) which contains only
elements of order 2 and such that D # C,. Let fed andf =v,.. .y, be the
decomposition of f into disjoint cycles. Then o(f) = 2 implies o(y,) = 2, for
1=¢{ ="k Alsod # (C, entails k= 2.
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Let %, be the principal function of g, i.e., the function which enumerates
a in increasing order. Put

fr=(Ryyhy) (Rgyhy) o o« (hgp sy Bag),

&1= (R opyr, hortd) -« (Rag-1, ha),

fe=r1,

&2= (By, o) (Mopgrs Popyo) « « - (Rapms, Bag).
Hence fy, f,, g1, g2 € D, since they belong to the same cycle class as f.
However,

frrg=(hyhy) . o (lapery hap),
for &= (hg hy) . .. (hqk-sg Pgpmd)

both have order 2, but are not conjugate. Thus B does not have property T.

We now consider (C,;). This is a conjugacy class of #£(a) by (iii) and
consists of elements of order 2 by (i). It is easily seen that property I' is
preserved under y, hence Y(C,) has property I'. Therefore ¥(C,) = C;.
Define

T, = {n,x)|xe aand x #n}, forn € a.
We observe that

(a) the product of any two distinct elements of T, has order 3,
(b) if the product of two transpositions is of order 3, they have exactly
one element in common.

Using (a), (b) and (ii) we obtain
nea= (IAm)[m e aand Y(T,) = Ty].

Let, for n € a, (0 o =m mean: Y(T,) = Tn. It follows that ¢ maps qa into
itself. For p,q € o,

p #* q = TP * Tq = ll/(Tp) # W(Tq) = T(p)o # T(q)zr = (p)q G ((1)0'-
Moreover, since ¥ ' is also an automorphism of #(a),

mea=@n)[neaand T, =y Tn)]
= (An) [n € a and Y(T,) = Tp]
= me (a)o.

Hence ¢ is a permutation of a. Let x;, x,, x5 be three distinct elements of a.
Suppose any number 7 € a is given, Then at least two of the three numbers
X1, X3, ¥3 are different from n. We may assume without loss of generality
that #» #x, and n #x,. Since Y has an effectively computable extension,
namely Y, we can compute

w[ (n’xl)] = (m, yl)) ll'/[(”:xz)] = (m’ 'yz),
where m, 3,, ¥, are distinct elements of a. Then

(n)o = m = common element of (m, y,) and (m, 3,),
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can be effectively found. It is readily proved that o has a partial recursive
extension. Note that y~! also has an effectively computable extension,
namely wo'l. Thus given any number m ¢ o we can (assuming without loss
of generality that m # x,, m # x,) compute

Y, 2)] = (n, 39, w7 [(my 53] = (m, 34),

(m)o™! = n=the common element of (%, ¥;) and (%, y,).

It can be proved (in the same way as for o) that 0"'has a partial recursive
extension. We conclude by (1) that the permutation ¢ of @ has a one-to-one
partial recursive extension, i.e., that ¢ is an w-permutation of a.

It remains to be shown that

Y*(f*) = (67 fo)*, for f* € P(a),
or equivalently that
(3) Y(f) = o 'fa, for f € P(a).
Define 6(f) = oy(f)o™", for f € P(a). Let f be a transposition of a, say

f = (n,x). Suppose that Y(f) = (m,y), then (n)o = m, (x)o =7y or vice versa.
We will assume (n)o = m, (¥)0 = y. Then

(W6 f) = W[ow(F™] = (M[W(o™] = ()0~ = %,
(%) 6(f) = (D[ow (o™ = (») [W(Ho™"] =(

Moreover, if z € a, but z ¢ {x, n},
(2)6(f) = (A[ow(f)o™'] = (2) 007" = 2.

We have therefore proved that 6(f) =f, for every transposition f of @. The
definition of 6§ implies that 6 is an automorphism of AP(a). Thus, since
every element of P(a) can be expressed as a product of finitely many
transpositions of @, § must be the identity mapping. Hence oy/(f) ™' = fs
for f € P(a) and Y(f) = 0~ ' fo, for f € P(a). Thus (3) holds and this com-
pletes the proof.

Proposition P3. Let a be a non-empty isolated set. Then every w-auto-
morphism of P(a) is strong.

Proof: Let a be finite. Then every automorphism of P(@) is a recursive
automorphism, hence we are through. If, on the other hand, ¢ is immune,
the desired result follows from the two parts of P2.

4, Regular w-isomorphisms

Proposition P4. Let a and B be non-empty isolated sets. Then every
w~-isomorphism from P(a) onto P(B) is regular.

Proof: Let ¢* be an w-isomorphism from P(a) onto P(B), then y* has a
one-to-one partial recursive extension, say Y. We may assume without
loss of generality that both 5y and pw;‘ consist of G6del numbers of finite
permutations. Define 6 = 5y/3, p = p¥¥, D= {f ¢ P()|f* € 6}, and
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for fe P(a), Y(f) = g means: Y*(f*) = g*,
for fe D, Yolf) = g means: Yi(f* = g*.

Then  is an isomorphism from #P(a) onto £(B) which has an effectively
computable one-to-one extension, namely y,. Let A = Req(a), B = Req(f),
then o(P(a)) = A!, o(P(p)) = B!. The fact that ¥ maps P(a) onto P(p)
implies that A! = B!. Since A,B >0, it follows that A = B, i.e., a =~ B, say
by p. Define X(g) = pgp™', for ge P(B), and Xo(g) = pgp™', for ge P(pp).
Note that for ge £(p),

nea=m)pep=>(n)pge B=>(n) pgp~'c a=>m)[X(g)]e a.

Since g changes at most finitely many elements of 8, X(g) changes at most
finitely many elements of a. Thus ge P(pP) implies that X(g)e P(a). It is
readily proved that X is an isomorphism from A(p) onto #(a). Similarly,
one can prove that X, is an isomorphism from #(pp) onto P(56p). More-
over, X, is an effectively computable extension of X. Put 6 = Xy,

Do={redluyf)e Plop)l,
eo(f) = Xo‘l/o(f), for f € D,.

Then 6 is an automorphism of #(@) which has an effectively computable
one-to-one extension, namely 6,. Define

for f*e P(a), 6*%(f*) = g* means: 6(f) =g,
for f*e DY, 65(f*) =g* means: 64(f) =g.

It follows that 6* is an automorphism of P(a) which has a partial recursive
one-to-one extension, namely 93‘. Hence 60* is an w-automorphism of P(a).
Applying P2 we conclude that there exists an w-permutation o of @ such that
6( f) = o' fo, for fe £(a). Substituting Xy for 6 and using the definition of
X, we obtain

XY(f) = 0" fo, for fe P(a),
pY(fip™" = 0" fo, for fe Pla),
Y(f) = (op)~' f(op), for fe Pla).

The w-permutation o of o has a partial recursive one-to-one extension, say
0o. Define

ap=1{xe 5Uo|(x)006 6p},
(x)g = (x)0op, for x € aq,
Bo = (@) g

Then aCa,C 0p, where qis r.e. Since g is the composition of two partial
recursive one-to-one functions, it is itself a partial recursive one-to-one
function. Moreover, g is an extension of op. While op maps o onto B,
g maps the r.e. superset g, of a onto the r.e. superset 3, of 8. Define
V(f) =q 'fq, for fe Play). Theny, is an extension of ¥, an isomorphism
from #P(a,) onto £(B,) and an effectively computable mapping. Let for
f*e Plag), Wi(f*) = g* mean: ¢ ,(f) =g. It follows that ¢ is a recursive
isomorphism from the r.e. supergroup P(a,) of P(a) onto the r.e. supergroup
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P(By) of P(B). Since ¢} is also an extension of iy *, the w-isomorphism  *
is regular.

5. Inner w-automovphisms

Definition. Let ¢ be an automorphism of the w-group G. Then ¢ is an
inmer (or outer) w-automorphism of G, if ¢ is both an inner (respectively
outer) automorphism of G and an w-automorphism of G.

Notations. For an w-group G,

Aut(G) = the group of all automorphisms of G,
In(G) = the group of all inner automorphisms of G,
Auto(G) = the group of all w-automorphisms of G,
In,(G) = the group of all inner w-automorphisms of G.

Notation. We write H=G for H is a subgroup of the group G.

Remark. We immediately see that for an w-group G, we have Auty(G)=
Aut (G) and In,(G) = In(G). The second relation can be strengthened.

Proposition P5. Let G be an w-grvoup. Then evevy innev automorvphism of
G is an w-automorphism of G, i.e., In(G) = Iny(G).

Proof: Left to reader.

Proposition P6. Let @ be an infinite set. Then the w-group P (a) has exactly
¢ automovphisms. Among them exactly Bo are inner automovphisms and
exactly ¢ are outey automovphisms.

Proof: For every permutation o of @, the mapping
6,:f =0 'fo, for fe Pla)

is an automorphism of £(a). In our proof of P2 we showed (only using the
fact that ¢ is infinite) that for permutations o, 1 of q,

O+ T=>0s# @

Taking into account that a has exactly ¢ permutations, since @ is denu-
merable, it follows that £(a) has at least ¢ automorphisms. However, there
are only ¢ mappings from #(a) into itself, hence #P(a) has exactly ¢
automorphisms. If o ranges without repetition over the denumerable family
of all finite permutations of @, ¢, ranges without repetition over the family
of all inner automorphisms of P(a). Hence there are exactly 8, inner
automorphisms of #£(a). The remaining ¢ automorphisms of £(a) must be
outer ones.

Remark. Let a be an infinite set and G = P(a). In view of P6, Iny,(G)=
Autu(G) < Aut(G). We wish to find out for which immune sets @, Iny(G)<
Auto(G). This clearly depends only on Req(a).

Definition. An isol A is multiple-free if for every isol B, 2B=A=Be ¢.

It is readily seen that ¢ isols are multiple-free while ¢ are not. For if
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X is an infinite indecomposable isol. X is multiple-free, but 2X is not.
Moreover, there are exactly ¢ infinite indecomposable isols.

Notation. (1) The cardinality of the set ¢ will be denoted by card(a).
(2) For two sets o and B, alB means a is separable from B.

The following proposition is due to B. Cole.
Proposition P7. Let Te A -¢ and Te T. Then theve is an w-permutation of
T which moves infinitely many elements of 7 if and only if T is not multiple-

free.

Proof: Let Te A-¢ and T7e T. Suppose that f is an w-permutation of 7
which moves infinitely many elements of 7. Define

Yx = {x}f(x):fz(x), .. '}: for xe€ Gf;
D ={y,ly, is finite},
8 = union of all sets in D,
c(x) = min v,, d(x) = max y,, for x€ 6.

Then 7c6c 8f, where 6 is an r.e. set. Also c(x) and d(x) are partial
recursive functions. Put

o' ={x€ 6|card y,=2},-0 = {xeT | card y, =2},
then oo’ whereo' is r.e. Define
a'=c(o”), 8" =d(a"), a=c(0), B =d(0), A = Req(a).

Note that aca’, BcB’, where o' and B’ are disjoint r.e. sets. Hence alB.
Moreover

c(x) - d(x), for xe o’

is a partial recursive one-to-one function which maps a onto 8. It follows
that o=~ g3 and

(4) Req(aUB) = Req(a) + Req(B) = A + A = 24,

Observe that xe of if and only if c(x) # d(x), for x € 6, and x € ¢'UB’ if and
only if x = c(x) or x = d(x), for xe o’. We conclude that for xe 5,

xe a'UB'<>c(x) # d(x) and [x = c(x) or x = d(«)],
xf @'UB'<>c(x) = d(x) or [x # c(x) and x # d(¥)].

Since c(x) and d(x) are defined on §, the sets a'UB’ and 6-(a'URB’) are
disjoint and r.e. Thus aUBC a'UB’, 7-(aUB) C 6-(a'U B"), and

(5) aUBlT-(aUp), Req(aUB) =T.

Combining (4) and (5) we obtain 2A=T. The set o is infinite because f
moves infinitely many elements of 7. This implies that the set ¢ and the
isol A are infinite. Hence T is not multiple-free.

To prove the converse we suppose that the infinite isol T is not
multiple-free. Let A be an infinite isol such that 2A=T7T. Suppose that
ay, € A and a,]@,. Let a,'and a,’ be disjoint r.e. sets and 4(x) a partial
recursive one-to-one function such that
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o Ca,’, %Ca', a,Coh, h(a) = a,.

We may assume that 6z = a,', p2=a,’. In view of the fact that 2A=T, we
may also suppose that

U, C T, a1V, | 7-(aUay).

Let y and 6 be disjoint r.e. sets such that ¢;Ua,Cy and 7-(a,Uaz) © 6. De-
fine the functions f(x), fo(x) by

o = 7, 8fo = 8U(a1"Vas") - v,

x , if X fayUa,
fx) =qhx) ,ifxe a,
h7Y(x), if x € a,

X , ifxed,
folx) = {h(x) , ifxea'Ny,
R (%), if x€ ay'Ny.

First of all, f(x) is a permutation of 7 and fy(x) a partial recursive one-to-
one extension of f(x). Thus f(x¥) is an w-permutation of 7. Moreover, f
moves all elements of the subset a; of 7, while g, is infinite, since o, € A.
It follows that f moves infinitely many elements of 7.

Remark. Proposition P7 enables us to characterize all immune sets a for
which the w-group P(a) has 8, outer w-automorphisms.

Proposition P8. Let @ be an immune set. Then P(a) has 8o outer w-auto-
movphisms if and only if the isol Req (@) is not multiple-free.

Proof: Let for every w-permutation o of @, the w-automorphism ¢U* be
defined by

85" 1% (57 f0)%, for f*¢ P(a),

According to P2 every w-automorphism of P(e) is of the form ¢,* for some
o and the mapping 0—>¢,,* is one-to-one. Clearly, ¢,* is an outer w-auto-
morphism of P(q) if and only if ¢ moves infinitely many elements of a.
Thus by P7, P(a) has an outer w-automorphism if and only if the isol Req(a)
is not multiple-free. But P(a) has at least one outer w-automorphism
implies P(a) has R, outer w-automorphisms since there are 8, distinct
inner w-automorphisms of P(a) and the composition of an outer w-auto-
morphism with an inner w-automorphism is an outer w=-automorphism.
This completes the proof.

Remark. Proposition P8 can also be phrased as follows: for an immune
set a, AutyP(a) = In,P(a) if and only if Req(e) is multiple-free and
card (Auvt,P(a) - In,P(@)) = R, if and only if Req(a) is not multiple-free.
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