
225
Notre Dame Journal of Formal Logic
Volume XII, Number 2, April 1971

A SYSTEM OF MODALITY

LOUIS F. GOBLE

1. Introduction In this paper I develop a system of modality designed to
answer to one intuition one might have about possibility and necessity which
has so far been overlooked by other, common systems of modal logic.

Before expressing this intuition as a general principle, perhaps I can
elicit a sense for it by two examples. Given, what we all know, that the
earth revolves about the sun, suppose one is asked what would be the case
if the earth did not so revolve. Out of context this is a strange question;
after a moment's hesitation, however, one might be inclined to reply that if
the earth did not revolve about the sun, then anything is possible. Again:
given that Caesar crossed the Rubicon, if one is asked what would have
happened if he had not, one might be inclined to respond that in that case
anything could have happened.1

One might be inclined to make this kind of reply because one adheres to
something like the following general principle:

If a proposition, p, is true, then if p were not the case, then anything, q,

would be possible.

Or, to express it in more convenient symbols:

(P) p -> . ~ p -> Mq ,

where, as usual, the arrow represents an appropriate implication, ζ~> rep-
resents negation, and 'M' possibility. I am not now concerned with the
philosophical credentials of this principle. Rather I am interested in what
results when (P) is combined with other, obvious assumptions about modal-
ity and implication.

2. Implication Before we can evaluate the principle (P) from a formal
point of view, we must interpret the implication ('if . . . then ;) operative

1. The thrust of these replies is not just that anything regarding astronomical
phenomena or regarding the later history of Rome is possible, but that anything
whatsoever is possible. I recognize that, on first reading, these answers will
strike many as counter-intuitive; others may be more receptive to them. In
Section 6 I will suggest one sort of support which might be offered in their
defense.
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in it. If we take the arrow to represent material implication, then (P) is a
trivial instance of the tautology A —> . ~ A -» B. But this is not the intui-
tion, that if A is true, then not -A implies that anything, B, would happen,
but that anything could happen.

Suppose then we interpret the connective in (P) as strict implication,
in the sense of one of the normal Lewis modal systems M, S4, or S5. (P)
is provable in none of these systems; in particular, it is not a consequence
of the paradoxes of strict implication, e.g. NA -» .B -> A, which it might
be thought to resemble. This can be verified by means of Lewis' matrix
group ΠI which satisfies all of these systems;2 it also follows from the
result below.

The addition of (P) to any of these three systems has the unacceptable
consequence of reducing all proper modalities to non-modal assertions—
i.e. both NA -> A (or A -> MA) and A -» NA (MA -> A) are provable in the
extended systems—and hence of reducing these systems to classical logic.
NA -> A is, of course, provable in any alethic modal logic. That A -> NA
is provable can be demonstrated.as follows:

(P) is equivalent to3

(1) A -> .NB->A

which, in these systems, is equivalent to

(2) A -> .N(NB DA).

(3) A -> .NNB 3 NA

follows from (2) together with the appropriate instance of the theorem
(schema) N(Λ => B) -> . NA 3 NB. From (3)

(4) NNB -> . A D NA

is derivable by permutation. Let B be any proposition such that its double
necessity is provable; e.g. let B be />->/>. It follows that

(5) AΌNA

is provable, and hence so is

(6) A -> NA

by the rule that if A is provable then so is NA, for any A 4

The proof above applies whenever the implications in (P) carry the
force of necessity, i.e. whenever A —> B says that B follows necessarily
from A. It does not depend on the paradoxes of strict implication. Thus,

2. Lewis and Langford [11], p. 493. When A takes the value 3 and B takes the value
4, A -*• ~A — MB takes the undesignated value 4.

3. By contraposition and the equivalence of NB with ~M~B. For convenience I
will hereafter work with (P) in the form of (1).

4. This proof will not, of course, go through in systems, such as S3, in which no
proposition of the form NftB is provable. However, since these systems have
little else to recommend them, I will not consider them further.
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the proof goes through in the system E of eritailment developed by Anderson
and Belnap (see, e.g. [2], [3], or [4]), replacing the horseshoes with arrows
throughout and letting necessity be defined so that NA is equivalent to
A -> A -> A. As a result, E too is unsuited to provide a background theory
of implication for (P).

It thus appears that if the principle (P) is to have any interest or
plausibility at all, what is required is a theory which (i) is free of the
paradoxes of implication, and (ii) formalizes a non-apodictic implication.
These conditions are met by the system R of relevant implication, also de-
veloped by Anderson and Belnap (e.g. in [2] and [3]). R, like E, is free of
the paradoxes but, unlike E, it makes no modal distinctions. One might say
that relevant implication stands to entailment as material implication
stands to strict implication.

Much of the main motivation behind the development of R is in the
thought that A implies B only if A is relevant to B, in the sense that they
share some element of meaning (however that be explicated). Failure to
meet this condition is what makes B -» .A —> A a paradox. In the same
regard, (P) should be paradoxical, for it would permit true, even provable,
propositions of the form NB -> A where B and A have nothing to do with
each other. Whatever dissatisfaction this produces may, however, be
assuaged somewhat if one takes necessitative (possibilitive) propositions—
propositions which are provably equivalent to propositions of the form
NA (MA)— to be relevant to any proposition. Be that as it may, it turns out
that whatever irrelevance is introduced with the addition of (P) to R is kept
under some control; it is always the product of the application of necessity
and does not infect the underlying pure theory of implication.

The system formed by the addition of (P), and other, obvious assump-
tions concerning modality, to R I shall call the system G.

3. Formulation of G The system G is formulated in a language possessing
the usual equipment and grammar for a propositional calculus containing
modal operators. It is defined by the following axiom schemata and rules: 5

Al A -> A
A2 A^>B^>.B-*C->.A-^C
A3 (A -> . B -» C) -> . B -> . A -> C
A4 (A -> . A -» B) -> . A -> B
Rl Modus ponens: from A and A -> B, to infer B

A5 ~~A->A
A6 A -> ~ ~ A
A7 A->B->.~B^~A

A8 A -> ~A . -> ~A

A9 A & B -> A

A10 A & B -> B

5. Ά ' , ίB), 'C ' , etc. are used as variablesfor well formed formulas in the language
of G. Church's conventions for the elimination of parentheses are used through-
out. (Church [7], pp. 74-75.)
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All (A -^ B)&(A -» C)-» .A -»(5&C)
R2 Adjunction: from A and B, to infer A &, B

A12 A - ^ A v ΰ

A13 ΰ-^Avΰ
A14 (A^5)&(C^β)->.(AvC) -»5
A15 A &(£ vC) -» (A &£) vC

A16 iVA -> A

A17 JV(A -> B) -> .NA -+ NB
A18 NA &NB-> N(A &B)
R3 Necessitation: from A, to infer NA

A19 A ^ . J V £ - * A A20 ATA -> NNA

Al - A15, with Rl and R2, define the system R of relevant implication.
I regard A16 - A18, with R3, to be a sine qua non of any reasonable theory
of necessity. A19 is, of course, the principle (P) (with possibility defined in
the usual way in terms of necessity and negation). A20 is an optional axiom;
it effects S4-like reductions among modalities, whereas the system without
A20 has an M-like theory of modality. In what follows I shall consider the
two systems, obtained by including A20 or not, together referring to them
indifferently as G, except where mentioned.

The addition of the further postulate

A21 ~ NA -> N ~ NA

to produce S5-like reductions among modalities has the unfortunate effect
of reducing relevant implication to material implication: A -> . B -> A is
provable; thus

1. A -> .N~N~B ->A A19
2. ~N~B ->N~N~B A21
3. A -> .~ N~B -> A 1,2 transitivity
4. B -*~N~ B A16, etc.
5. A -> .B -+A 3,4 transitivity.

Since the system with A21 thus collapses to S5 itself, I shall not consider it
further.

Since what is of primary interest is the interplay between (P) and the
other assumptions about implication and modality, in what follows I will
consider only the implication-negation-necessity fragment of G, defined by
Al - A8, A16 - A19 (A20) with Rl and R3.6 I shall call this fragment GT N .
No new difficulties are expected when the results given below for GjN are
extended to the full system G with conuunction and disjunction, except for
the results of section 5.

Since GyN is an extension of Ry (the implication-negation fragment of R),
the deduction theorem for that system applies to GyN as well.

6. Since R3 is not an elementary rule, it is often desirable (e.g., for the deduction
theorem) to eliminate it in favor of a principle for defining axioms such that if
A is an axiom, then so is NA. (Cf. Anderson [1].)
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Tl. If there exists a proof of B from Ax,. .. ,An in which all of Aίy... ,An

are used in arriving at B and Rl is the only rule applied, then there exists
a proof of An -^B from Alf... ,An-i satisfying the same conditions.

(From [3], p. 36, where an explication of 'use' is also given.) Further-
more, with the principles for necessity we have

T2. // there exists a proof of B from Al9.. . ,Anin which all of Al9... ,An

are used in arriving at B and Rl is the only rule applied, then there exists
a proof of N(An -> B) from NAl9... 9NAn.i satisfying the same conditions.

And, given A20, T2 may be strengthened to

T2' If there is a proof of B from NAl9. .. ,NAn-lf An, satisfying the same
conditions as in T2, then there is a proof of N(An -> B)from NAl9... ,NA n -i
satisfying the same conditions.

A Replacement Theorem of the customary sort also holds for GjN which
can be proved in the usual way:

T3. If \-A -*> B and KB -> A, then f-C -» C and \-C -> C, where C ' is the
result of replacing one or more occurrences of A in C by B.

The consistency of GjN is established by the following matrices (adapted
from [4], p. 15):

- > | l 2 3 4 5 6 7 8 | ~ | i V

1 8 8 8 8 8 8 8 8 8 1

2 1 7 1 7 1 1 7 8 7 1
3 1 1 6 6 1 6 1 8 6 1
4 1 1 1 5 1 1 1 8 5 1
*5 1 2 3 4 5 6 7 8 4 5
*6 1 1 3 3 1 6 1 8 3 5
*7 1 2 1 2 1 1 7 8 2 5
*8 1 1 1 1 1 1 1 8 1 5

which have starred values designated. It can be easily, if tediously, verified
that all the axioms of GyN are satisfied by this group and that the rules pre-
serve this property.

In contrast to the (extended) systems briefly considered in section 2,
GTN is free from the paradoxes of material and strict implication, and it
preserves modal distinctions. That is to say, none of A -» .B -> A,
NA -> .B -> A, A -> NA, etc. are provable in GyN. This may be checked
against the matrices above. (When A takes the value 6 and B takes the
value 2, then each of these formulas assumes the undesignated value 1).
This fact follows from these two more general theorems:

T4. If A contains no N, then for no B is A -> NA provable.

Assign the value 6 to all the variables in A; since A contains no N, A
assumes either the value 3 or the value 6. NB assumes the value 1 or 5 for
any assignment to its values. But 3 - > l = 3 - > 5 = 6 - > l = 6 ^ 5 = l which
is undesignated; hence A -> NB is unprovable.
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T5- If A and B contain no N then A -> B is provable only if A and B share a
variable.

Suppose A and B do not share a variable; assign all the variables in A
the value 6 and all the variables in B the value 7, then A assumes either 3
or 6 as values while B takes either 2 or 7. But 3-^2 = 3 - ^ 7 = 6 - ^ 2 =
6 -> 7 = 1. Hence A -> B is unprovable. (Cf. [4], p. 16.)

T5 is also a consequence of the fact that GyN is a conservative exten-
sion of Ry (proved in section 5), and the fact that the theorem holds for that
system.

One might be tempted to think that stronger results would hold for Gj-N,
that no non-necessitative proposition implies a necessitative, and that if A
is non-necessitative then A -> B is provable only if A and B share a vari-
able. Both of these claims are shown to be false, however, by the fact that
C ^> C -> NA -> NB is provable whenever NB is provable, even though A, C
and B may share no variables.

1. v-NB hypothesis
2. \-NΆ ->NB 1, A19, Rl
3. hC -» C -> NA -> NA theorem of R
4. v-C -> C -> NA -> NB 2,3 transitivity

C -> C ^> NA is not, in general, a necessitative proposition; NB, of course,
is. Nevertheless, T4 and T5 do demonstrate that whatever fallacies of
modality and fallacies of relevance (see [3], pp. 42 ff.) occur in GχN must be
the result of the operation of necessity.

4. A natural deduction system One feature which makes a formal system
interesting and which gives it an air of naturalness is the ability to present
it in a variety of different forms. In the preceding section I considered GjN

as an axiomatic system; in this section I formulate it as a Fitch-style
natural deduction system with subordinate proofs. In the next I will present
it in the form of a Gentzen consecution calculus.7

We adopt Fitch's notions of subordinate proof (subproof) and strict
subordinate proof (see [9]), and deploy the method, due to Anderson and
Belnap ([3]), of indexing hypotheses to keep track of what is relevant to
what. The system GjN* is then defined by the following rules:

(Hyp) Any wff, A, may be introduced as the hypothesis of a new subproof
(or strict subproof); each new hypothesis receives a unit class {k}
of numerical subscripts, except that where A is of the form NB, it
receives the subscript {Λ}, where Λ is understood to be a (tacit)
member of every class of subscripts.8

7. Strictly speaking these should be considered three different systems, which can
all be proved equivalent in an appropriate sense.

8. I.e. inferences from A | Λ | to (A -+B)a by (-*I)

Ba

are admissible (similarly for (~I)).
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(Rep) Aa may be repeated in a subproof (or strict subproof), retaining
relevance index α.

(Reit) Aa may be reiterated into a regular subproof, without restriction,
retaining a.

(Reit*)i NΛa may be reiterated into a strict subproof as Aa.
(Reit*)2 NAa may be reiterated into a strict subproof (as NΛa).9

(-> E) From Aa and (A -> B)b to infer BaUb .
(->I) From a proof of Ba with hypothesis A\k\ to infer (A -> B)a.\k\, pro-

vided that & is in a (or & = Λ, see note 8).
( E) From ~~Aa to infer Afl.
( I) From Aa to infer Aa.
(~ E) From ~ Ba and (A -> B)̂ ,, to infer ~AaUb
(~ I) From a proof of ~ Aa on the hypothesis A^}, to infer ~Aa.\k\, pro-

vided that k is in β (or k = Λ).
(NE) From iVArt, to infer AΛ.
(Nl) From a strict proof of Aa with no hypotheses, to infer NAa.

A proof in GjN* is categorical if all its hypotheses have been discharged
by means of (->I) or (~ I). A formula, A, is a theorem of GjN* just in case
it is the last step of a categorical proof.

The great advantage of GyN* is the ease it affords the construction of
proofs of theorems. This advantage extends to GγH since the two systems
are equivalent:

T6. A is a theorem of GyN* if and only if A is provable in GJN

To show that GγN is contained in GjN* is a small matter. All axioms of
the former are easily proved in the latter. (Verification is left to the
reader.) Rl of GJN is just the rule (-> E). To see that R3 is admissible in
GjN* one need only observe that any categorical proof of A can be converted
into a categorical proof of NA simply by making it subordinate to a strict
proof without hypotheses.

The proof that all theorems of GyN* are provable in GχN follows closely
that given by Anderson and Belnap in [3] for the equivalence of Ej* and Ej"
so, rather than reconstruct their proof here, the reader is referred to that
work, or to [2]. (The only interesting modification of their method for con-
structing axiomatic proofs from given natural deductions is that we must
allow for the case in which a reiterated formula shares an index with the
hypothesis of the subproof into which it is reiterated; this occurs when the
hypothesis is of the form NA and so bears the subscript {Λ}. This case is
easily accommodated through the insertion of the necessary form of A19
into the quasi-proof.)

9. Two alternate versions of the rule (Reit*) are given. (Reit*)1 assures an M-
like theory of modality; (Reit*)2 an S4-like theory. As with the axiom A20, I
shall not specify which version is to be adopted. The system with (Reit*)2 is
equivalent to GJN without A20; while the system with (Reit*)2 is equivalent to
G ΐ N with A20.
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The device of subscripting each hypothesis with a relevance index, with
the restrictions on the rules (-> I) and (~ I), blocks the proofs of the para-
doxes of implication in the Anderson-Belnap systems Rf* and Ej* and also
in GJN*. Thus the proof of A -> . J3-=»A would require discharging an
hypothesis by (-> I) which was not used in the derivation of the consequent:

1. M{il Hyp
2. Lβ|2[ Hyp
3. [A^ 1, Reit
4. (B->A){1} 2,3 -> I (Invalid)
5. A -^.B ->A 1,4 -VI.

However, when the hypothesis is a necessitative proposition, in effect, the

restrictions on the rules no longer apply. Thus, compare the 'proof just

given with the proof of A19 in GjN*:

1. I A (!} Hyp
2. 1 NB[A] Hyp
3. IA { l j 1, Reit
4. (NB->A){1] 2,3 -^ I
5. A -> . NB -> A 1,4 -> I.

In this case step 4 is admissible because of the peculiarities of Λ. By sub-
scripting all hypotheses of the form NA with {Λ}, and supposing that Λ
belongs to all subscripts on all formulas in a proof, we, in effect, render
the relevance index irrelevant when working with necessitative proposi-
tions. (This reflects the remark made at the end of section 2, that one
might regard necessitatives as relevant to all propositions.)

But if the relevance indices are irrelevant for necessitative proposi-
tions and it is the use of these indices which distinguishes relevant implica-
tion from material implication, then one might expect necessitatives to
satisfy classical laws. This is indeed the case.

T7. If A, B, and C are necessitative propositions, then all of the following

are all derivable in GyN:

(1) A -> . B -> A

(2) (A -> .B -> C) -> .A -> B -> .A -> C
(3) ~B ^>~A -> .A->B
(4) From A and A -> B, to infer B.

(2), (3), and (4) are all instances of theorems (or rules) of Rγ and so of
GTN Where A is equivalent to ND and B is equivalent to NE, (1) is equiva-
lent to ND -» .NE -> ND, which is an instance of A19. ((1) - (4) are, of
course, a complete set of postulates for the classical propositional cal-
culus.) Thus, if all propositions were necessitative, GτN would reduce to
the classical calculus. GjN shares this feature with Lewis' system S4,
though not with E.

5. A Gentzen-style system In this section I present a Gentzen-style con-
secution calculus, LGyN, which is equivalent to GjN. It should be remarked
at this point that it is not yet known how to construct the full theory of re le-
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vant implication (with positive truth functions) as a consecution calculus

satisfying the elimination theorem. In the absence of such a system, the

results given below for GjN cannot yet be extended to the full system G.

'a', (β', ζγ9, etc. range over finite (perhaps null) sequences of well

formed formulas. ζA\ (B\ ' C , etc. range over wff's as before. Elemen-

tary statements, consecutions, in LGTN are of the form a ih β. The system

LGTN is then defined by:

Primes: (where A is a propositional variable)

(Pr) A ih A

Structural Rules (where a'(β') is some permutation of a(β)):

(Clh) a \\- β (ihC) a 1H β

a' Ih β a IH βf

(Win) a, A, A IH β (ihW) a l h A, A, β (KNlh) a Ih β

a, A\\- β α l h A, β a,NA\^β

Logical Rules (where Na is the result of prefixing every member of a with

( - > IH) q\\-A9γ β,B\\-b (ll >) a, A \\- B, β

a, β,A -> B IH y,δ a IH A - ^ B, β

(-IH) q IH A, j3 (|H~) a, A IH β

a,~A\ϊ-β a\\—A9β

(NIH) q, A IH β (lHN)i a IHA (IHN)2 iVa IH A

a, iVA IH j8 iVa IH NA Na IH JVA

The rule (KN1H) deserves special mention. In the Fitch varients of

natural deduction, the restrictions on the rules (->l) and (~I) distinguish

relevant implication from material implication. As remarked, these r e -

strictions are (really) irrelevant to necessitative propositions in GγN*, and

so, as a connection between necessitatives, relevant implication is indis-

tinguishable from material implication. In the Gentzen systems it is the

absence of an admissible rule of weakening

(KIH) a th/3

α, A IH jS

which makes relevant implication distinct from material implication. With

the inclusion of the weaker rule of weakening (KNIH) in LGyN we, in effect,

apply classical rules to necessitative propositions while preserving the

relevance preserving rules for the rest.

The Elimination Theorem (E.T.) holds for LG T N ; that is,

T8 The following rule is admissible in LGjN:

10. As before, there is an option for principles governing necessity on the right.
( Ih N)χ determines an M-like theory, (Ih N)2 an S4-like theory.
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a II-A,y β9 A It- δ
a,β\\-γ9δ

This can be proved along the lines of Gentzen [10]. Given E.T., LGJN
can be shown to be equivalent to GTN

T9. If A is provable in GjH, then IKA is provable in LGTN

It is a small matter to show that the analogues of all the axioms of GyN

are provable in LGjN. Rl, modus ponens, is a special case of the elimina-
tion rule. R3, necessitation, is a special case of the rule (ihN). Hence,
GTN is contained in LGjN.

To show that LGγN is contained in GχN, the consecutions of the one are
interpreted in the wff's of the other as follows.
Where Γ (in LGjN) has the form Al9... ,An \*-Blf... ,Bm, let Γ r (in GτN)
have the form

A1 -> . -> . An -> . ~ Bx -> . • • • - > . " £„-,. -> Λ,

or, in case m = 0, A x -> . -> .Aw - 1 -> - A*.11 With Γ and Γ' so defined,
then

T10. If Vis provable in LGJN, then Γf is provable in GJN

The proof is by induction on the proof of Γ in LGJN
Basis. If Γ is prime, then Γ" has the form A —> A, an axiom of GJN
Induction. Suppose T10 holds for the premisses of each of the rules;

we show it holds for the conclusion by cases:
(a) if Γ i s from Γi by (Cli-) or (li-C), then Γ' follows from Γ{ by Gener-
alized Permutation12 (and, if m = 0, by contraposition as well).
(b) if Γ is from T\ by (Wlh) or (iHW), then Γ' is from Γ{ by Generalized
Contraction.12

(c) If Γ i s from Γi by (KNlh ), then Γ f is from T{ and Al9 by transitivity
(and, if m = 0, contraposition).
(d) If Γ is from Γi by (in ->), then Γf is from Γ/ by permutation (and con-
traposition as necessary).
(e) in case Γ is from Γi and Γ2 by (-> Ih ), then Γr is from Π and Tί by
Generalized Transitivity12 (and permutation and contraction as necessary).
(f) When Γ is from ΓΊ by (~IH) then T' = Tί (or, if m = 0 , Γ" follows from
Γi and A6 by transitivity).
(g) if Γ is from Tt by (li—), then T' follows from i γ and A6.
(h) When Γ is from Γx by (Nlh), Tf is from T{ and A16.
(i) If Γ is from Γi by (lf-N)x, then Γ' follows from Tί thus:

1. f-Ai -> . -> .An -» ~ B (= Γi) inductive hypothesis

11. No interpretation is given in case both n- 0 and m =0 since the consecution,
Ih , is not provable in LGj^.

12. See Belnap and Wallace [5] , p. 280 for a statement of these principles. (It
should be noted that for GJN» an<^ R"Γ» permutation is not restricted to implicative
propositions as it is for Ej.)
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2. hN(A1 -> . -> . An -> ~ B) R3
3. H-iNΓCAi -> . -» . A« -> - 5) ->

. iVAi - > . • • • - > . iVAw -» iV~ 5 A17, general ized
4. f-iVA x -> . ^ . iVAw -> N ~ B 2,3 R l
5. hJV ~ B -^>~ NB from A16
6. hiVA JL -> . ~> . NAn ^>~ NB (= T'). 4,5 transitivity

(if) If (IHN)2 is used instead of (l^N)i, the derivation of Γ' from Π is sim-
ilar to that for (i), except that the equivalence of NAi with NNAi (guaranteed
by A20) must be invoked as well. This completes the proof of T10.

An immediate corollary of T10 is that if I HA is provable in LGjN, then
A is provable in G T N , establishing the equivalence of the two systems. This
result constitutes, in a sense, a completeness theorem of GjN»

LGTN has the sub-formula property, where

(i) A is a sub-formula of A;
(ii) if C is a sub-formula of A or B, then C is a sub-formula of

A -» B, ~ A, and NA) and
(iii) all the sub-formulas of A are defined by (i) and (ii).

T i l . All constituents of any Tiin a proof of Tin LGχN are constructed only
out of sub-formulas of constituents of Γ.

That this is so can be seen by examination of the rules of LGγN.
LGJN has the separation property:

T12. If an operation, φ, does not occur in any constituent in a consecution,

Γ, then if Γ is provable in LGγN, it can be proved without using rules gov-

erning φ.

This follows from Ti l . (Cf. Curry [8], p. 226).
From T12 it follows that GγN is a conservative extension of Rτ:

T13. If a wff, A, contains no N, then A is provable in GyN if and only if A is

provable in Rγ.

By T9, if A is provable in GjN, H-A is provable in LGfN, and by T12, if
A contains no N, IKA is provable without applying (Nlh), (ihN) or (KN\\-). But
the remaining postulates define a system equivalent to Rj. Hence, if A,
without N, is provable in GγN, it is provable in Rτ. The converse is obvious.

T14. LGjN is decidable.

The decision procedure given by Belnap and Wallace in [5] applies to
the system LG- '̂ got from LGχu by (i) letting consecutions of the form
Nα, A, Nβ Ih A be prime (when A is a propositional variable); (ii) modifying
each of the rules so that the principle constituent and its sub-alterns need
not be the rightmost (leftmost) constituents on the left (right) sides; and
(iii) deleting (KNlh). LGyN' is readily shown to be equivalent to LGTN
Hence, LGT N is decidable, and so is G T N , by the equivalence of those sys-
tems.

6. Concluding remarks In the preceding sections I did not attempt to give
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philosophical grounds for the acceptance of the principle that, ifp is true,
then if not-/) then anything, q, is possible. It might be worthwhile, however,
to consider briefly what might underlie the adoption of this principle (P).
(This discussion is independent of the foregoing formal development.)

One basic view behind the acceptance of the principle (P) is a picture
of the (material) world as such an integrated, coherent system of facts that
any change in one of its parts may effect changes elsewhere throughout the
structure. This picture is reminiscient of an Idealist metaphysic, accord-
ing to which every fact is 'relevant1 to every other (Cf. [6], chapter 9).
Nevertheless, acceptance of the principle does not commit one to a doctrine
of internal relations, and it certainly does not commit one to an Idealist
ontology.

Indeed, the principle might instead be based on a simple sort of deter-
minism. Thus, if one supposes, contrary to fact, that a given proposition is
false, that an event (or series of events) which did did not occur, then one
must also suppose that whatever configuration of events which cause the
given event(s) must be other than it is, either in whole or in part. But if
this configuration were different, then whatever caused the events in the
configuration which are supposed to be changed must likewise be supposed
to be different from what it, in fact, is; and so on throughout the causal
chain. Furthermore, events which are otherwise unrelated to the original
given event might be effects of groups of events which now must be
imagined not to obtain; so these events too could be supposed not to occur.
They could also be preserved, provided that other causes could be found for
them. As this process ramifies, it becomes appropriate to say that any-
thing is possible.

This picture can, perhaps, be dramatized by considering the first
illustration given in section 1. The earth revolves about the sun, but
suppose that it did not; what would follow if the earth's position relative to
the sun were fixed? Amongst other things, one might say, there could no
longer be seasonal change, and to the extent that certain meterological
conditions depend on these changes they too could no longer obtain, etc. But
the story is not that simple.

The earth does not casually gambol around the sun. Its revolution is
ruled by the laws of mechanics and set by certain initial conditions which
are, in turn, determined by further laws and conditions. Hence, if one
supposes that the earth does not revolve about the sun, one must also sup-
pose that the laws do not hold or else that the antecedent conditions were
other than they, in fact, are (or that some cataclysmic event has happened
to freeze the earth in its orbit.) One cannot abandon the laws of mechanics,
etc. without making extensive readjustments throughout the rest of the
framework of theories to preserve the order, not to mention consistency, of
one's system. Similarly, unless one believes in miracles, one cannot
suppose the antecedent conditions to be other than they are (or that such a
cataclysm has occurred) without re-evaluating points elsewhere in the
structure. In either case, the world would be constituted quite otherwise
than it is. It could be that in the new theoretical frame the effects of sek-
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sonal change would be preserved. Perhaps not. The original supposition
does not determine what alterations must be made in the scientific theories;
it does not determine what facts should be preserved and what should be
abandoned. In this sense, anything is possible.

This line of thought may be extended to other kinds of cases, such as
the historical example of section 1, merely by regarding all such events to
be similarly law governed (though the relevant laws might be less readily
identified.) It might be further extended to any domain in which it is
appropriate to speak of one fact or proposition being a consequence of
others.

Finally, one might not care to accept (p) with its unrestricted general-
ity. Thus it is perverse to think, in common sense, that if Caesar had not
crossed the Rubicon, given that he did, then it would be possible for Uranus
to travel in a square orbit. Accordingly, one might prefer to restrict the
range of the variables in (P) to range only over propositions of a certain
kind (e.g. astronomical propositions, historical propositions, etc.) or to
range only over propositions of the same kind (however these kinds be
identified). Nevertheless, within the restricted range (P) should possess
the properties I have described, and perhaps more besides.
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