INDE PENDENCE OF THE AXIOMS AND RULES OF INFERENCE OF ONE SYSTEM OF THE EXTENDED PROPOSITIONAL CALCULUS

NADEJDA GEORGIEVA

In [1] A. Church introduced an extended propositional calculas P, built up by a logical operator, \supset (implication), an universal quantifier and propositional variables. The only operator variables in P are propositional variables.

The axioms of P are the three following:
A1. $p \supset q \supset \cdot q \supset r \supset \cdot p \supset r$
A2. $p \supset q \supset p \supset p$
A3. $p \supset \cdot q \supset p$
The primitive rules of inference are:

R1.
$\frac{A \supset B, A}{B} \quad$ (modus ponens)
R3. $\frac{A \supset B}{A \supset(a) B}$
R2: $\frac{A}{\stackrel{v}{S}_{B}^{p} A \mid .} \quad$ (rule of substitution)
R4. $\frac{A \supset(a) B}{A \supset B}$

In R3 and R4 a is a propositional variable, which is not free in A.
The purpose of this work is to show, that the axioms and rules of \mathbf{P} are independent.

1. Theorems Now we go on to the proof of some theorems of P.
2. $\vdash p \supset p$

By A1, R2, A3 and R1:
$\vdash q \supset p \supset r \supset . p \supset r$
$\vdash p \supset q \supset p \supset p \supset \cdot p \supset p$
Hence by A2 and R1:
$\vdash p \supset p$

$$
\text { 2. } \vdash p \supset[p \supset q] \supset . p \supset q
$$

By A1, R2 and R1:
$\vdash q \supset r \supset[p \supset r] \supset s \supset . p \supset q \supset s$
By R2, A2 and R1 obtain 2.
3. $\vdash p \supset \cdot p \supset q \supset q$

By A1, R2:
$\vdash p \supset q \supset p \supset . p \supset q \supset \cdot p \supset q \supset q$
By A3, A1, R2 and R1:
$\vdash p \supset \cdot p \supset q \supset \cdot p \supset q \supset q$
Hence by 2, A1, R2 and R1 obtain 3.

$$
\text { 4. } \vdash p \supset[q \supset r] \supset \cdot q \supset[p \supset r]
$$

By 3, A1, R1 and R2:
$\vdash q \supset r \supset r \supset[p \supset r] \supset . q \supset[p \supset r]$
By A1 and R2:
$\vdash p \supset[q \supset r] \supset . q \supset r \supset r \supset[p \supset r]$
Then use A1 and R2 to obtain 4.
5. $\vdash A \supset B \supset . A \supset(a)[B \supset(s) s] \supset(s) s$

By R4, 1, R1, R2:
$\vdash(a)[B \supset(s) s] \supset . B \supset(s) s$
By A1, R2, R1, 3:
$\vdash B \supset(s) s \supset(s) s \supset .(a)[B \supset(s) s] \supset(s) s$
$\vdash B \supset .(a)[B \supset(s) s] \supset(s) s$
$\vdash A \supset B \supset . B \supset[(a)[B \supset(s) s] \supset(s) s] \supset . A \supset .(a)[B \supset(s) s] \supset(s) s$
Hence by 4, R2 and R1, 5 follows.
6. $\vdash(s) s \supset a$ and $\vdash(s) s \supset(a) a$

By 1, R4 and R1:
$\vdash(s) s \supset(s) s$
$\vdash(s) s \supset s$
Owing to R2, R3 we have 6.
7. $\vdash p \supset(s) s \supset(s) s \supset p$

By A1, 4, 6, R1, R2:
$\vdash p \supset(s) s \supset(s) s \supset . p \supset(s) s \supset p$
Hence by A1, A2, R1, R2 establish 7.
8. $\vdash A \supset[B \supset[B \supset(s) s \supset(s) s] \supset(s) s] \supset . A \supset B$

By A3, 3, R1, R2:
$\vdash B \supset(s) s \supset . B \supset[B \supset(s) s \supset(s) s]$

By A1, R2, R1:
$\vdash B \supset(s) s \supset(s) s \supset B \supset . B \supset[B \supset(s) s \supset(s) s] \supset(s) s \supset B$
Then use 7, R1 and R2.
2. Independence of the Axioms and Rules of \mathbf{P}. Let \mathbf{P}_{1} be a propositional calculus built up by propositional variables, a logical constant f and logical operators: \supset and $\&$ (conjunction). The axioms of P_{1} are A1, A2, A3 and the primitive rules of inference are R1 together with:

$$
\begin{array}{ll}
\mathrm{R} 2^{\prime}: \frac{A}{\mathrm{~S}_{B}^{p} A \mid \cdot} & \mathrm{R} 4^{\prime}: \frac{A \supset \mathrm{f}}{A \supset a} \\
\mathrm{R}^{\prime}: & \frac{A \supset B_{1}}{A \supset B_{1} \& B_{2}}
\end{array}
$$

where B_{2} is $S_{p}^{a} B_{1} \mid$. and a is a propositional variable which does not occur in A.

Every wff A from \mathbf{P} corresponds to wff A^{*} from \mathbf{P}_{1} which is obtained according to the following procedure. If A does not contain an universal quantifier, then A^{*} is A. If there are universal quantifiers in A, then all occurrences of (s) s (where s is any propositional variable) are replaced by f and wfp of the form $(a) B(a)(B(a)$ is not $a)$ are replaced by $B(a) \& B(a \supset \mathbf{f})$ where B^{*} is the corresponding formula of \bar{B}.

Let any proof D be given of a theorem T in P and let a_{1}, \ldots, a_{n} be the complete list of variables which are quantifier variables occurring in the proof. Choose propositional variables c_{1}, \ldots, c_{n}, which are distinct among themselves and distinct from all variables in D. Throughout D substitute c_{1}, \ldots, c_{n} for a_{1}, \ldots, a_{n} respectively. Then any wff is to be replaced by the corresponding formula. We shall show how this list of wffs can be transformed into a proof of T^{*} in P_{1}. The proof proceeds by mathematical induction with respect to the length of D. If T is an axiom then T^{*} is an axiom in P_{1} too. If B is inferred by R 1 from premisses $A \supset B$ and A then from $(A \supset B)^{*}$ and A^{*} by R^{\prime} and R 1 we may infer B^{*}. When R 2 is applied, there are two cases: (a) A does not contain a free occurrence of p in the scope of (x), where x is a free variable of B. From R2:

$$
\frac{A}{\mathbf{S}_{\vec{B}}^{p} A \mid} \text { stands for } \frac{A}{\mathrm{~S}_{B}^{p} A \mid}
$$

Hence by $\mathrm{R} 2^{\prime}$ from A^{*} we can establish $\left(S_{B}^{p} A \mid\right) *$. (b) A contains some p in the scope of (x). By R2: $\stackrel{V}{\mathbf{V}}_{\bar{B}}^{p} A \mid$ stands for A. Then the proof of T^{*} is that one of A^{*}. If $A \supset(a) B$ is inferred from premiss $A \supset B$ by R3, then A does not contain a free variable a, and so by R^{\prime}, R^{\prime}, $\mathrm{R4}^{\prime}$ it is possible to infer $A^{*} \supset B^{*}(a) \& B^{*}(a \supset \mathrm{f})$, which is $(A \supset(a) B)^{*}$. When $A \supset B$ is inferred from $A \supset(a) B$ by R4, A does not contain free a and then $(A \supset B(a))^{*}$ is inferred by R4', R4' and R2'.

From this it follows that if we show the independence of the rule of modus ponens and each of the axioms $A 1, A 2, A 3$ for P_{1} we have, for P,
the independence of each of R1, A1, A2 and A3. Independence of the A1, A2, A3 and R1 can be established by the following truth-tables. The designated truth-values in it are 0 for A1, A2, R1; 0,1 for A3. The theorem of P_{1}, which is not a tautology according to the truth-table for $R 1$ is $p \supset p .5$ is assigned to the primitive constant f as a value for A1; 2 for A2 and A3; 1 for R1.

A1											A2				A3				R1			
p p q	$p \supset q$	$p \& q$	p	q	$p \supset q$	$p \& q$	p	q	$p \supset q$	$p \& q$	p	q	$p \supset q$	$p \& q$	-	q	$p \supset q$	$p \& q$	p	q	$p \supset q$	$p \& q$
00	0	0	2	0	0	2	4	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0
	3	0	2	1	3	2	4	1	0	4		1	1	0	0	1	0	0	0	1	0	0
	4	0	2	2	3	2	4	2	0	4		2	1	0	0	2	2	0	0	2	0	0
	1	0	2	3	0	2	4	3	1	4		0	0	1	1	0	2	1	1	0	0	1
	2	0	2	4	0	2	4	4	1	4		1	0	1	1	1	2	1	1	1	2	1
	5	0	2	5	3	2	4	5	1	4		2	1	1	1	2	2	1	1	2	0	1
	0	1	3	0	0	3	5	0	0	5		0	0	2	2	0	0	2	2	0	0	2
111	2	1	3	1	0	3	5	1	0	5		1	0	2	2	1	0	2	2	1	0	2
	0	1	3	2	4	3	5	2	0	5		2	1	2	2	2	0	2	2	2	0	2
	0	1	3	3	4	3	5	3	0	5												
14	2	1	3	4	0	3	5	4	0	5												
15	2	1	3	5	4	3	5	5	0	5												

For the independence of $R 2$, consider the transformation upon the wffs of \mathbf{P} which consists in omitting the universal quantifier (with its variable) whereever it occurs. This transforms every axiom into a theorem and every primitive rule except R 2 into a primitive or derived rule. But $\vdash(s) s \supset a$ transforms into the non-theorem $s \supset a$.

For the independence of R3, consider the transformation upon the wffs of \mathbf{P} which consists in replacing every wfp of the form (a) A by $A \supset[A \supset$ $(s) s \supset(s) s] \supset(s) s$. This transforms every axiom into a theorem and every primitive rule except R3 into a primitive or derived rule (for R4 see 8). But it transforms the theorem $\vdash p \supset(a)[a \supset a]$ into a non-theorem;
$p \supset . a \supset a \supset[a \supset a \supset(s) s \supset(s) s] \supset(s) s$
Finally, in order to establish the independence of R4, we use a transformation upon the wffs of \mathbf{P} which consists in replacing (a) A by (a) [$A \supset$ $(s) s] \supset(s) s$. Except for R4, all the axioms and rules of \mathbf{P} transform into axioms and primitive or derived rules (for R3 see 5). But the theorem, $\vdash(a) a \supset a$, is transformed into a non-theorem,
(a) $[a \supset(s) s] \supset(s) s \supset a$

If we assume that it is a theorem, then by R2:
$\vdash(a)[a \supset(s) s] \supset(s) s \supset p$
by R4, A1, R1, R2:
$\vdash a \supset(s) s \supset(s) s \supset p$
By 3, R2, A1, R1:
$\vdash a \supset p$
which is a non-theorem. With this the independence of the axioms and rules of P is proved.

REFERENCES

[1] Church, A., Introduction to Mathematical Logic, vol. 1, Princeton: Princeton University Press (1956).

Sofia, Bulgaria

