Notre Dame Journal of Formal Logic Volume XII, Number 2, April 1971

INTUITIONISTIC NEGATION

W. RUSSELL BELDING

Within Heyting's intuitionistic mathematics there are at least two distinct types of negation. The first is that which Heyting [1] (p. 18) has called "de jure" falsity. If p is a proposition then the negation of p has been proved, $\vdash \sim p$, if it has been shown that the supposition of p leads to a contradiction. That is, $\vdash p \rightarrow F$ where F is any contradiction. Intuitionistically, if p and q are propositions then $\vdash p \rightarrow q$ if a construction has been effected which together with a construction of p would constitute a construction of q. While Heyting holds that only "de jure" negation should play a part in intuitionistic mathematics [1] (p. 18), there has been a second type of negation introduced into Heyting's work which I have called "in absentia" falsity. That is $\vdash \sim p$ if it is certain that p can never be proved. This "in absentia" negation is used explicitly by Heyting in [1] (p. 116, lines 16, 17) and mentioned in [2] (pp. 239-240). In this paper I wish to show that "de jure" falsity and "in absentia" falsity lead to a contradiction in informal intuitionistic mathematics.

Consider the following definitions:

Definition 1 (vide [1], p. 115) A proposition p has been tested if $\vdash \sim p \lor \sim \sim p$.

Definition 2 A proposition p has been decided if $\vdash p \lor \sim p$.

It is well known that because of the intuitionistic interpretation of disjunction, $\vdash p \lor q$ if and only if at least one of $\vdash p$ or $\vdash q$. Consequently $q \lor \sim q$ does not possess universal intuitionistic validity so long as there are undecided mathematical problems.

Proposition 1 A decided proposition has been tested. Proof: $\vdash p \rightarrow \sim \sim p$.

In a chapter on "Controversial Subjects", Heyting [1] presents some intuitionistic results of Brouwer which if interpreted classically mean that classical mathematics is contradictory.

Proposition 2 (i.e., Theorem 2, [1], p. 118) It is contradictory, that for every real number (generator) $a, a \neq 0$ would imply $a \ge 0 \lor a \le 0$.

Received July 18, 1969

The following definitions are necessary:

Definition 3 A real number generator (rng) $\{b_n\}$ is an infinitely proceeding sequence (ips) of rational numbers subject to the condition, $\forall k \exists n : |b_{n+j} - b_n| \leq 1/k$, for all j.

For the intuitionistic interpretation of the universal and existential quantifiers see Heyting, [1] (pp. 102-3) or Myhill, [3] (pp. 281-2). The letters i, j, k, m, n are used for positive integers; a, b, c, d for rng's; and p, q, r for propositions.

Definition 4 b = c, b coincides with c, if $\forall k \exists n : |b_{n+j} - c_{n+j}| < 1/k$, for all j. Definition 5 $b \neq c$ if $\sim (b = c)$. Definition 6 b > c (c < b) if $\exists k, n : b_{n+j} - c_{n+j} > 1/k$, for all j. Definition 7 $b \Rightarrow c$ if $\sim (b > c)$. Definition 8 $b \equiv c, b$ is identical with c, if $b_n = c_n$ (rational equality), for all n.

In order that a rng $b \equiv \{b_n\}$ be well defined it is not necessary that each term b_n be known at a specified time. It is sufficient that given any positive integer *n* an effective procedure is possessed to find b_n . It is thus an effective procedure and not necessarily a (predetermined) law for the components which guarantees the existence of a rng. Of course a law, (e.g.) $b \equiv \{1/n\}$, yields an effective procedure for computing b_n for any *n*. Other effective procedures are able to take into account further decisions or further knowledge. (e.g.) $b \equiv \{b_n\}$ where $b_1 = 1/2$ is chosen at some time t_1 and b_n , for $n \ge 2$ is chosen at the (n-1)th minute after t_1 such that $b_n = b_{n-1}/2$ if it is raining in Wellington and $b_n = b_{n-1}$ if it is not raining in Wellington. Others are absolutely lawless, (e.g.) $c \equiv \{c_n\}$ where $c_1 = j_1 \cdot 10^{-1}$ and for $n \ge 2 \cdot c_n = j_n \cdot 10^{-n} + \sum_{k=1}^{n-1} c_k$ and each j_k is chosen freely from $S \equiv \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$.

The following discussion shows that an essential part of the proof of Proposition 2 should be rejected because it employs an "in absentia" falsity which leads to an intuitionistic contradiction.

For each *i* let ω_i be a finite set of mathematical deductions. Let $\sigma_n \equiv \bigcup_{i=1}^n \omega_i$ and $\Omega \equiv \bigcup_n \sigma_n$. Let *p* be some mathematical proposition. Define the rng $b \equiv \{b_n\}$ as follows: $b_n = 2^{-n}$ if σ_n does not contain a deduction of $\sim p$ or of $\sim \sim p$. $b_{n+j} = 2^{-n}$, for all *j*, if σ_n contains a deduction of $\sim p$ or of $\sim \sim p$. For each *n*, ω_n is finite so *b* is well defined.

Troelstra, [4] (p. 212) remarks that since 1945 Brouwer argued from a solipsist situation in which he was concerned with the thoughts of an individual mathematician or a group of mathematicians having all information in common. In the following proposition suppose σ_n contains all deductions made, (a finite number) up until b_n is chosen.

Proposition 3 (vide [1], p. 116) $b(p, \Omega) \neq 0$. Proof: (i) Assume b = 0. $\therefore \forall m \exists n : |b_n| < 2^{-m}$. $\therefore \forall m, b_m = 2^{-m}$, by induction and definition of b.

- (ii) Suppose $\exists m : \sim p \epsilon \sigma_m$.
 - $\therefore b_{m+j} = 2^{-m}$, for all *j*, a contradiction.
 - $\therefore \forall m \sim p \notin \sigma_m, \text{ by } \vdash \sim (\exists x)A(x) \rightarrow (\forall x) \sim A(x).$
- (iii) Similarly $\forall m, \sim \sim p \notin \sigma_m$.
- (iv) Suppose $\sim p \in \Omega$, then $\exists m : \sim p \in \sigma_m$, a contradiction. $\therefore \sim p \notin \Omega$.
- (v) Similarly $\sim \sim p \notin \Omega$.
- (vi) (iv) and (v) show that p is never tested.
 ∴ ~ (~p v ~ ~ p) by "in absentia" falsity.
 ∴ ~ ~ p ∧ ~ ~ ~ p by ⊢~ (q v r) → ~ q ∧ ~ r, a contradiction.
 (vii) ∴ b ≠ 0.

Consider the following specialisation of the conditions of Proposition 3. Construct the rng $\{c_n\}$ as follows. $c_1 = j_1 \, 10^{-1}$ and for $n \ge 2$, $c_n = j_n \, 10^{-n} + \sum_{k=1}^{n-1} c_k$ where each j_n is chosen freely from S. Let P(c) be the proposition "c is rational". Construct the rng $d(c) = \{d_n\}$ as follows. c_1 is chosen first and σ_n is the set of deductions made up until d_n is chosen. c_{n+1} is chosen after d_n and before d_{n+1} . $d_n = 2^{-n}$ if P(c) has not been tested in σ_n . $d_{n+j} = 2^{-n}$, for all j if P(c) is tested in σ_n .

Proposition 4 $\forall c(d \neq 0)$ (vide [1], pp. 118, line 6). *Proof*: as for Proposition 3.

Proposition 5 $\forall c(d = 0)$

Proof: It is impossible, under the given construction for c, that either $\sim P(c)$ or $\sim \sim P(c)$ belongs to Ω . Suppose P(c) is tested in σ_m .

- (i) Suppose $\sim P(c)\epsilon\sigma_m$. Now impose the first restriction on c, namely, $c_{m+j} = 0$, for all j. Thus P(c), which is a contradiction. $\therefore \sim P(c) \notin \sigma_m$.
- (ii) Suppose $\sim \sim P(c) \epsilon \sigma_m$. Now impose the first restriction on c, namely, $j_{m+j} = (\sqrt{2})j$, for all j, where $(\sqrt{2})j$ is the *j*-th digit in the decimal expansion of $\sqrt{2}$. Thus $\sim P(c)$, which is a contradiction. $\therefore \sim \sim P(c) \notin \sigma_m$

(i) and (ii) show that $\sim \exists m : P(c)$ is tested in σ_m .

- $\therefore \forall m P(c) \text{ is not tested in } \sigma_m.$
- $\therefore \forall m \ d_m = 2^{-m}$
- d = 0.
- $\therefore \forall c (d = 0).$

Proposition 5 could be proved without mentioning restrictions on c by appealing to the intuitionistic fan theorem (vide [1] or [6]) or to the intuitionistic continuity postulate of Kreisel (vide [5]). Using one of these, the supposition, for example, that $\sim P(c) \epsilon \sigma_m$ would imply that all decimal numbers agreeing with c in their first m decimal places would also be irrational, which is also contradictory.

Proposition 5 does not employ the "in absentia" falsity and also proves that $\sim P(c)_{v} \sim \sim P(c)$ is never proved in Ω ; say it is certain that $\vdash \sim P(c)_{v} \sim \sim P(c)$ can never be proved. It seems that Heyting's use of the "in absentia" negation amounts to the following rule of inference. If α is any well formed formula of intuitionistic first order predicate calculus and it is certain that $\vdash \alpha$ can never be proved then $\vdash \sim \alpha$. The previous discussion has shown that this use of the "in absentia" negation leads to a contradiction.

Definition 5 has a stronger intuitionistic counterpart.

Definition 9 b lies apart from c, b # c, if $\exists k, n : |b_{n+j} - c_{n+j}| > 1/k$ for all j.

Given that $\sim (\forall x) A(x) \rightarrow (\exists x) \sim A(x)$ is not an intuitionistic thesis [1] (p. 103), it is clear that b # c is a stronger condition than $b \neq c$. The "in absentia" negation is also essential to the following:

Proposition 6 (i.e., Theorem 1, [1] p. 117) It is contradictory that for every real number $a, a \neq 0$ would imply $a \neq 0$.

If this proposition is also rejected then, so far as I know, there is no example of a rng b such that $b \neq 0$ while b # 0 has not been proved.

Remark: In the semantic considerations of intuitionistic logic by Beth [7], Grzegorczyk [8] and Kripke [9], only the "in absentia" negation can play a part. Supposing familiarity with [9] and considering only intuitionistic propositional calculus let $\langle G, K, r \rangle$ be an intuitionistic model structure and ϕ a model on $\langle G, K, r \rangle$. Let p and q be propositional letters and F be $q \land \sim q$. Then for $H, H' \in K, \phi(\sim p, H) = 1$ if for all H' such that $H \ r H', \phi(p, H') = 0$. The case $\phi(p \rightarrow F, H) = 1$ reduces to $\phi(\sim p, H) = 1$ because $\phi(F, H') = 0$ for all H' such that $H \ r H'$.

A similar result can be extended for any well formed formula of intuitionistic propositional or first order predicate calculus.

REFERENCES

- [1] Heyting, A., Intuitionism, an Introduction, (2nd ed.) North Holland (1966).
- [2] Heyting, A., "Axiomatic Method and Intuitionism," Essays on the Foundations of Mathematics, Hebrew University Press (1967).
- [3] Myhill, J., "Notes Towards an Axiomatization of Intuitionistic Analysis," Logique et Analyse, vol. 35-36 (1966), pp. 280-297.
- [4] Troelstra, A. S., "The Theory of Choice Sequences," Logic, Methodology and Philosophy of Science III, (Eds. van Rooteslaar and Stall), North Holland (1968).
- [5] Troelstra, A. S., "The Use of Brouwer's Principle in Intuitionistic Mathematics," Contributions to Mathematical Logic, (Eds. Heyting, Mostowski, Robinson, and Suppes), North Holland (1968).
- [6] Belding, W. R., "Note on the Intuitionist Fan Theorem," Notre Dame Journal of Formal Logic, vol. XI (1970), pp. 484-486.
- [7] Beth, E. W., The Foundations of Mathematics, North Holland (1965), pp. 444-462.
- [8] Grzegorczyk, A., "Assertions Depending on Time and Corresponding Logical Calculi," Compositio Mathematica, vol. 20 (1968), pp. 83-87.

[9] Kripke, S. A., "Semantic Analysis of Intuitionistic Logic I," Formal Systems and Recursive Functions, (Eds. Crossley and Dummet), North Holland (1965), pp. 92-130.

Victoria University of Wellington Wellington, New Zealand