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INTUITIONISTIC NEGATION

W. RUSSELL BELDING

Within Heyting’s intuitionistic mathematics there are at least two dis-
tinct types of negation. The first is that which Heyting [1] (p. 18) has called
‘‘de jure’ falsity. If p is a proposition then the negation of p has been
proved, ~~p, if it has been shown that the supposition of p leads to a con-
tradiction. That is,~p — F where F is any contradiction. Intuitionistically,
if p and g are propositions then +p — g if a construction has been effected
which together with a construction of p would constitute a construction of g.
While Heyting holds that only ‘‘de jure’’ negation should play a part in in-
tuitionistic mathematics [1] (p. 18), there has been a second type of negation
introduced into Heyting’s work which I have called ‘‘in absentia’’ falsity.
That is +~p if it is certain that p can never be proved. This ‘‘in absentia’’
negation is used explicitly by Heyting in [1] (p. 116, lines 16, 17) and men-
tioned in [2] (pp. 239-240). In this paper I wish to show that ‘‘de jure’’
falsity and ‘‘in absentia’’ falsity lead to a contradiction in informal intui-
tionistic mathematics.

Consider the following definitions:

Definition 1 (vide [1], p. 115) A proposition p has been tested if F~pv~~p.
Definition 2 A proposition p has been decided if —p v ~p.

It is well known that because of the intuitionistic interpretation of disjunc-
tion, -pvgq if and only if at least one of -p or -g. Consequently qv~gq does
not possess universal intuitionistic validity so long as there are undecided
mathematical problems.

Proposition 1 A decided proposition has been tested.
Proof: +p > ~~p.

In a chapter on ‘‘Controversial Subjects’’, Heyting [1] presents some
intuitionistic results of Brouwer which if interpreted classically mean that
classical mathematics is contradictory.

Proposition 2 (i.e., Theorem 2, [1], p. 118) It is contradictory, that for
every veal number (genevator) a, a # 0 would imply a 3} 0 va < 0.
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The following definitions are necessary:

Definition 3 A real number genevator (rng) {b,} is an infinitely proceeding
sequence (ips) of rational numbers subject to the condition, Vk3n :| b,y - by, |
< 1/k, for all j.

For the intuitionistic interpretation of the universal and existential quanti-
fiers see Heyting, [1] (pp. 102-3) or Myhill, [3] (pp. 281-2). The letters
i, j, By m, n are used for positive integers; a, b, ¢, d for rng’s; and p, q, »
for propositions.

Definition 4 b =c, b coincides with ¢, if Vkin: |b,,+,' - c,,+,-| < 1/k, for all j.

Definition 5 b #c if ~(b =¢).

Definition 6 b >c (c <b) if 3k, n:byyj = Cuyj > 1/k, for all j.

Definition 7 b 3} c if ~b > c).

Definition 8 b =c, b is identical with c, if b, = ¢, (rational equality), for
all ». :

In order that a rng b= {b,} be well defined it is not necessary that each
term b, be known at a specified time. It is sufficient that given any positive
integer » an effective procedure is possessed to find b,. It is thus an effec-
tive procedure and not necessarily a (predetermined) law for the compo-
nents which guarantees the existence of a rng. Of course a law, (e.g.)
b = {1/n}, yields an effective procedure for computing b, for any n. Other
effective procedures are able to take into account further decisions or
further knowledge. (e.g.)® = {p,} where # = 1/2 is chosen at some time ¢,
and b,, for » =2 is chosen at the (#-1)th minute after # such that b, = b,_,/2
if it is raining in Wellington and b, = b,-, if it is not raining in Wellington.
Others are absolutely lawless, (e.g.) ¢ = {c,} where ¢, =j, 10" and for
n=2c, =7,10" + /21 ¢, and each j, is chosen freely from S= {0, 1, 2, 3,
4,5,6,17, 8, 9}

The following discussion shows that an essential part of the proof of
Proposition 2 should be rejected because it employs an ‘‘in absentia”
falsity which leads to an intuitionistic contradiction.

For each ¢ let w; be a finite set of mathematical deductions. Let
0,= Uj=; w; and € = U,0,. Let p be some mathematical proposition. Define
the rng b= {6,} as follows: &, = 27" if 0, does not contain a deduction of ~ b
or of ~~p. buej =27" for all j, if o, contains a deduction of ~ p or of ~~ p.
For each #n, w, is finite so b is well defined.

Troelstra, [4] (p. 212) remarks that since 1945 Brouwer argued from a
solipsist situation in which he was concerned with the thoughts of an in-
dividual mathematician or a group of mathematicians having all information
in common. In the following proposition suppose o, contains all deductions
made, (a finite number) up until b, is chosen.

Proposition 3 (vide [1], p. 116) b(p, ) # 0.
Proof: (i) Assume b = 0.
Lo VmaAn: b, <27,
.. Vm, by = 27", by induction and definition of .
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(ii) Suppose Im :~ peo,.
. bm+j= 27", for all j, a contradiction.
vm~p éom, by F~@x)A(x) = (V) ~ Alx).
(iii) Similarly vm, ~~ péo,,.
(iv) Suppose ~ peQ,
then 3m :~ peo,, a contradiction.
S~ peQ.
(v) Similarly ~~ p¢Q.
(vi) (iv) and (v) show that p is never tested.
~(~p v~~p) by ““in absentia’’ falsity.
So~~SpA~~~pby B~ (g vy)— ~qa~r, a contradiction.
(vii) .. b # 0.

Consider the following specialisation of the conditions of Proposition 3.
Construct the rng {c,} as follows. ¢, =4, 107" and for # =2, ¢, = j, 107" +
EZ;i ¢, where each j, is chosen freely from S. Let P(c) be the proposition
“‘c is rational’’. Construct the rng d(c) =1{d,} as follows. c, is chosen first
and o, is the set of deductions made up until d, is chosen. c¢,,; is chosen
after d, and before d,.;. d, = 27" if P(c) has not been tested in 0,. dp.j = 277,
for all j if Plc) is tested in o,.

Proposition 4  Vc(d # 0) (vide [1], pp. 118, line 6).
Proof: as for Proposition 3.

Proposition 5 Vc(d = 0)
Proof: It is impossible, under the given construction for ¢, that either
~ Pc) or ~~ P(c) belongs to Q. Suppose Plc) is tested in o,,.

(i) Suppose ~ P(c)es,. Now impose the first restriction on ¢, namely,
Cm+j = 0, for all j. Thus P(c), which is a contradiction.

.~ Plc) dop.

(ii) Suppose ~~ P(c)eo,. Now impose the first restriction on ¢,
namely, jn.; = (/2)j, for all j, where (V2)j is the j-th digit in the
decimal expansion of V2. Thus ~ P(c), which is a contradiction.

. ~~ Pc) b0,
(i) and (u) show that~ Im: P(c) is tested in o,,.
. vm P(c) is not tested in o,,.

CoVmd,=2""
c.d=0.
‘. Ve (d =0).

Proposition 5 could be proved without mentioning restrictions on ¢ by
appealing to the intuitionistic fan theorem (vide [1]or [6] or to the intui-
tionistic continuity postulate of Kreisel (vide [5]). Using one of these, the
supposition, for example, that ~ P(c) €0, would imply that all decimal num-
bers agreeing with ¢ in their first m decimal places would also be irra-
tional, which is also contradictory.

Proposition 5 does not employ the ‘“in absentia’’ falsity and also proves
that ~ P(c)v~~ P(c) is never proved in ; say it is certain that -~ P{c)v~~
P(c) can never be proved. It seems that Heyting’s use of the ‘‘in absentia’’
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negation amounts to the following rule of inference. I @ is any well formed
formula of intuitionistic first order predicate calculus and it is certain that
l-a can never be proved then -~ @. The previous discussion has shown that
this use of the ‘“in absentia’’ negation leads to a contradiction.

Definition 5 has a stronger intuitionistic counterpart.

Definition 9 b lies apart from ¢, b # ¢, if 3,1 :|busj - oy | > 1/k for all j.

Given that ~ (Vx) A(x) — (3x) ~A(x) is not an intuitionistic thesis [1] (p.
103), it is clear that b # ¢ is a stronger condition than & # ¢. The ‘‘in
absentia’’ negation is also essential to the following:

Proposition 6 (i.e., Theorem 1, [1] p. 117) It is contradictory that for
every real number a, a £ 0 would imply a# 0.

If this proposition is also rejected then, so far as I know, there is no
example of a rng b such that & #0 while b# 0 has not been proved.

Remark: In the semantic considerations of intuitionistic logic by Beth [7],
Grzegorczyk [8] and Kripke [9], only the ‘‘in absentia’’ negation can play a
part. Supposing familiarity with [9] and considering only intuitionistic
propositional calculus let {G, K, ) be an intuitionistic model structure and
¢ a model on (G, K, ». Let p and g be propositional letters and Fbe g A ~g.
Then for H, H'eK, ¢(~p, H) =1 if for all H' such that H» H', ¢(p, H') = 0.
The case ¢(p — F, H) =1 reduces to ¢(~p, H) =1 because ¢(F,H') =0
for all H’ such that H » H'.

A similar result can be extended for any well formed formula of in-
tuitionistic propositional or first order predicate calculus.
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