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INTUITIONISTIC NEGATION

W. RUSSELL BELDING

Within Heyting's intuitionistic mathematics there are at least two dis-
tinct types of negation. The first is that which Heyting [1] (p. 18) has called
"de jure" falsity. If p is a proposition then the negation of p has been
proved, h~/>, if it has been shown that the supposition oίp leads to a con-
tradiction. That is, \-p -* F where F is any contradiction. Intuitionistically,
if p and q are propositions then \-p -* q if a construction has been effected
which together with a construction of p would constitute a construction of q.
While Heyting holds that only "de jure" negation should play a part in in-
tuitionistic mathematics [1] (p. 18), there has been a second type of negation
introduced into Heyting's work which I have called "in absentia" falsity.
That is \-~p if it is certain that/) can never be proved. This "in absentia"
negation is used explicitly by Heyting in [1] (p. 116, lines 16, 17) and men-
tioned in [2] (pp. 239-240). In this paper I wish to show that "de jure"
falsity and "in absentia" falsity lead to a contradiction in informal intui-
tionistic mathematics.

Consider the following definitions:

Definition 1 (vide [1], p. 115) A proposition/) has been tested if v-~pv~~p.

Definition 2 A proposition p has been decided if v-p v ~p.

It is well known that because of the intuitionistic interpretation of disjunc-
tion, \-pvq if and only if at least one of v-p or \-q. Consequently qv~q does
not possess universal intuitionistic validity so long as there are undecided
mathematical problems.

Proposition 1 A decided proposition has been tested.
Proof: v-p -*~~ρ.

In a chapter on "Controversial Subjects", Heyting [1] presents some
intuitionistic results of Brouwer which if interpreted classically mean that
classical mathematics is contradictory.

Proposition 2 (i.e., Theorem 2, [1], p. 118) It is contradictory, that for
every real number {generator) a, a ^ 0 would imply a ^ 0 va <t 0.
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The following definitions are necessary:

Definition 3 A real number generator (rng) ίbj is an infinitely proceeding
sequence (ips) of rational numbers subject to the condition, VkΊn : I bn+j - bn \
< 1/k, for all j.

For the intuitionistic interpretation of the universal and existential quanti-
fiers see Heyting, [1] (pp. 102-3) or Myhill, [3] (pp. 281-2). The letters
i, j, k, m, n are used for positive integers; a, b, c, d for rng's; and />, q, r
for propositions.

Definition 4 b = c, b coincides with c, if Vkln : \bn+j - cw+; | < l/k, for all j.
Definition 5 b jί c if ~(b = c).
Definition 6 b > c (c < b) if lk,n:bn+j - cw+; > l/k, for all j.
Definition 7 b ^ c if ~(δ > c).
Definitions b =c} b is identical with c, if δw = cw (rational equality), for

all w.

In order that a rng b = {bn} be well defined it is not necessary that each
term bn be known at a specified time. It is sufficient that given any positive
integer n an effective procedure is possessed to find bn. It is thus an effec-
tive procedure and not necessarily a (predetermined) law for the compo-
nents which guarantees the existence of a rng. Of course a law, (e.g.)
b = {l/n}, yields an effective procedure for computing bnίor anyn. Other
effective procedures are able to take into account further decisions or
further knowledge, (e.g.) b = {bn} where bι = 1/2 is chosen at some time t\
and bm for n ^ 2 is chosen at the (rc-l)th minute after tΣ such that bn = bn_j2
if it is raining in Wellington and bn - bn-λ if it is not raining in Wellington.
Others are absolutely lawless, (e.g.) c = {cn} where cx = jλ 10"1 and for
n ^2 cn - jn 10~w + Σ£=ί ck and each jk is chosen freely from S= {0, 1, 2, 3,
4, 5, 6, 7, 8, 9}.

The following discussion shows that an essential part of the proof of
Proposition 2 should be rejected because it employs an "in absentia"
falsity which leads to an intuitionistic contradiction.

For each i let ω, be a finite set of mathematical deductions. Let
σn = U?=! ωf and Ω = Uwσw. Let p be some mathematical proposition. Define
the rng b = ίbn] as follows: bn = Tn if σn does not contain a deduction of ~ p
or of ~ ~p. bn+j = 2"w, for all j, if σn contains a deduction of ~ p or of ~ ~ p.
For each n, ωn is finite so b is well defined.

Troelstra, [4] (p. 212) remarks that since 1945 Brouwer argued from a
solipsist situation in which he was concerned with the thoughts of an in-
dividual mathematician or a group of mathematicians having all information
in common. In the following proposition suppose σn contains all deductions
made, (a finite number) up until bn is chosen.

Proposition 3 (vide [l], p. 116) b(p, Ω) ^ 0 .
Proof: (i) Assume b = 0.

.*. Vmln: \bn\ <2'm .

.'. vm, bm = Tm , by induction and definition of b.
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(ii) Suppose Ίm:~ peσm.
.*. bm+j = 2~m, for all j, 2L contradiction.
.*. Vm~pkσm> by I—(lx)A(x) -> (y#)~A(X).

(iii) Similarly Vm, pkom.
(iv) Suppose ~ peΩ ,

then 3m :~ />eσm, a contradiction.
.'. ~/><iΩ .

(v) Similarly p^Ω.
(vi) (iv) and (v) show that p is never tested.

.*. ~ (~p v ~ ~ p) by "in absentia" falsity.

.". ~~£Λ~~~/>by h~ (q v r)-^ ~ q Λ~ r, a contradiction,
(vii) Λ δ^O.

Consider the following specialisation of the conditions of Proposition 3.
Construct the rng {cj as follows. cx = jx 10"1 and for n ^2, cn = jn 10~w +
Σf=ί Ck where each jn is chosen freely from S. Let P(c) be the proposition
"c is rational'\ Construct the rng d(c) ={dn} as follows. Ci is chosen first
and σn is the set of deductions made up until dn is chosen. cn+1 is chosen
after dn and before dn+1. dn - 2~n if P(c) has not been tested in σn. dn^ - 2~n,
for all j if P(c) is tested in σn.

Proposition 4 Vc(rf / 0) (vide [1], pp. 118, line 6).
Proof: as for Proposition 3.

Proposition 5 Vc(d = 0)
Proof: It is impossible, under the given construction for c, that either
~ P(c) or ~ ~ P(c) belongs to Ω. Suppose P(c) is tested in σm.

(i) Suppose ^ P(c)eσw . Now impose the first restriction on c, namely,
cm+j = 0, for all j. Thus P(c), which is a contradiction.
.*.~P(c)<lσw.

(ii) Suppose ~~ P(c)eσm. Now impose the first restriction on c,
namely, jm+j = (-J~2)j, for all j, where (y/~2)j is the j-th digit in the
decimal expansion of /2. Thus ~P(c), which is a contradiction.
.'. ~~P(c)lσm

(i) and (ii) show that~ Hm : P(c) is tested in σm.
.'. Vm P{c) is not tested in σm.
.'. Vm ̂  = 2'm

.*. rf = 0.

.'. Vc(rf = 0).

Proposition 5 could be proved without mentioning restrictions on c by
appealing to the intuitionistic fan theorem (vide [ l ]or [6]) or to the intui-
tionistic continuity postulate of Kreisel (vide [5]). Using one of these, the
supposition, for example, that ~ P(c) eσm would imply that all decimal num-
bers agreeing with c in their first m decimal places would also be irra-
tional, which is also contradictory.

Proposition 5 does not employ the " in absentia" falsity and also proves
that ~ P(c)v~~ P(c) is never proved in Ω; say it is certain that f-~ P(c)v~~
P(c) can never be proved. It seems that Heyting's use of the i fin absentia"
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negation amounts to the following rule of inference. If a is any well formed
formula of intuitionistic first order predicate calculus and it is certain that
\-a can never be proved then \-~ a. The previous discussion has shown that
this use of the " in absentia" negation leads to a contradiction.

Definition 5 has a stronger intuitionistic counterpart.

Definition 9 b lies apart from c, b # c, if lk,n :\bn+j - cn + ; I > l/k for all j.

Given that ~ (Vx) A($) -» (ix) ~A(?c) is not an intuitionistic thesis [1] (p.
103), it is clear that b#c is a stronger condition than b ί c. The "in
absentia" negation is also essential to the following:

Proposition 6 (i.e., Theorem 1, [1] p. 117) It is contradictory that for
every real number a, a ^0 would imply a# 0.

If this proposition is also rejected then, so far as I know, there is no
example of a rng b such that b ̂ 0 while b# 0 has not been proved.

Remark: In the semantic considerations of intuitionistic logic by Beth [7],
Grzegorczyk [8] and Kripke [9], only the " in absentia" negation can play a
part. Supposing familiarity with [9] and considering only intuitionistic
propositional calculus let <G, K, r) be an intuitionistic model structure and
φ a model on (G, K, r). Let p and q be propositional letters and Fbe q Λ ~q.
Then for H, H'eK, φ(~p, H) = 1 if for all Hf such that H r #', φ(p, Hr) = 0.
The case φ(p -> F, H) = 1 reduces to φ(~p,H) = 1 because φ(F,Hf) = 0
for all H' such that Hr Ήf.

A similar result can be extended for any well formed formula of in-
tuitionistic propositional or first order predicate calculus.
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