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COMPLETENESS OF THE GENERALIZED
PROPOSITIONAL CALCULUS

ALEXANDER ABIAN

By a Generalized Propositίonal Calculus we mean the Classical
Propositional Calculus with any number (countable or uncountable) of
atomic formulas (propositions) p, q, r, s, . . . .

In this paper we prove that the Completeness theorem for the
Generalized Propositional Calculus, i.e., the statement: "A formula of the
Generalized Propositional Calculus is a theorem if and only if it is a
tautology", is equivalent to the Prime Ideal theorem for Boolean rings.

By a Boolean ring we mean a Boolean ring with more than one element
and by the Prime Ideal theorem for Boolean rings we mean any of the
following pairwise equivalent statements.

(1) Every Boolean ring has a proper prime ideal,
(2) For every element P* of a Boolean ring Γ such that P* is not the

multiplicative unit of Γ there exists a nontrivial homomorphism from Γ
onto the two-element Boolean ring {θ, l} which maps P* into 0.

(3) Every Boolean ring with a multiplicative unit has a proper prime
ideal.

For the Generalized Propositional Calculus we choose as the primitive
logical connectives the negation denoted by "~" and the disjunction denoted
by "v". These primitive connectives together with the grouping symbols
i.e., the parentheses "(" and " ) " are used in the usual manner for forming
formulas (propositions).

The logical connectives Λ, θ , —* and <H> are introduced as abbrevia-
tions given by:

P Λ Q for ~(~PV~Q)

P θ Q for (PΛ~Q) v (~PΛQ)

P -* Q for ~PvQ
p ^ Q for ( P — Q) Λ (Q — P)

where P and Q are metalinguistic symbols (formula schemes) standing for
formulas.
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The axiom schemes for the Generalized Propositional Calculus (as in
the case of the Classical Propositional Calculus) are given by:

Al. P->(Q->P)
A2. ( P - ( Q - Λ ) ) - ( ( P - > Q ) - ( P - Λ ) )
A3. ( ~ Q - . ~ P ) - * ( ( ~ Q - * P ) - Q )

where P, Q and R are formula schemes.
The only rule of inference is Modus Ponens (i.e., Q is deduced from

P andP — Q).
The usual definition of a formal proof'is assumed and a theorem is (as

usual) the last formula of a formal proof.
A tautology is a formula whose truth value is 1 for any assignment of

truth values (0 or 1) to the atomic formulas which form that formula, where
the truth values of ~P, Pv Q, PΛQ, P® Q, P -* Q and P <^ Q are defined
by the following table (in terms of the truth values of P and Q).

P \ Q I ~P \ PvQ | P Λ Q \ P®Q I P-+Q I P<-»Q

1 1 0 1 1 0 1 1
1 0 0 1 0 1 0 0

0 1 1 1 0 1 1 0
0 0 1 0 0 0 1 1

Let Σ be the set of all formulas. A function /from Σ into {0,1} is
called a truth function if and only if for every formula P and Q

(i) /(P)*/(~P)
(ii) /(Pv Q) = 1 if and only if f(P) = 1 or f{Q) = 1

In terms of truth functions Lemma 1 follows from the definition of a
tautology.

Lemma 1. A formula P is a tautology if and only if f(P) = I/or every truth
function /.

Lemma 2. Every theorem of the Generalized Propositional Calculus is a
tautology.

Proof. The axioms Al, A2, A3 are readily shown to be tautologies. On the
other hand, if P and P —> Q are tautologies then for every truth function /
we see that Lemma 1 asserts f(P) =/(P —> Q) = 1. Hence/(Q) = 1 for every
truth function / and thus Q is a tautology. Now since every theorem is an
axiom or is deduced from the axioms by Modus Ponens, we see that every
formula of a formal proof (and hence, every theorem) is a tautology.

For every formula P and Q we write P = Q if and only if P <-> Q is a
theorem. Then, clearly, = is an equivalence relation in the set Σ of all
formulas and = partitions Σ. Let Γ be the set of the resulting equivalence
classes. As usual, for every formula P, we let [P] denote the equivalence
class such that P e [P].
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We define addition " + " and multiplication " . " in Γ as follows:

[P] + [Q] = [PΦ Q] and [P] [Q] = [PΛQ]

The above operations are well defined since if P = P' and Q = Qf then
(PΦ Q) = (P' Θ QO and (P Q) = (P f . Q').

Lemma 3. (Γ, + , •) is a Boolean ring with unit.
Proof. Clearly, the properties of Φ and Λ imply that (Γ, +, •) is a ring.
Moreover since (PAP) = P for every formula P, it follows that (Γ, +, •) is a
Boolean ring.

It is easy to verify that for every formula P the equivalence classes
[Pv~P] and [PΛ~P] are respectively the multiplicative unit /* and the
additive zero 0* of (Γ, +, •). Then Γ is a Boolean ring with unit.

In what follows {0,1} will denote the two-element Boolean ring.

Lemma 4. If η is a nontrivial Boolean homomorphism from Γ onto {0,1}
then the function fη from Σ onto {θ, l} given by

fη(P) = η([P])

is a truth function.
Proof. Clearly, η(0*) = 0 and since η is a nontrivial homomorphism
η([R\) = 1 for some formula R. But then η([ϋ])= η([R] - /*)= η([R\) ?](/*) = 1
implying that ?](/*) = 1. But then since [p] + [~P] = /* we see that η([p]) +
η([~P]) = 1 and consequently, η([P]) * η([~ P]) for every formula P. Thus,
fη(P)±fη(~P), as required by (i). On the other hand, [PvQ]= [P] + [Q] +
[P Q] and thus, η([PvQ]) = η([p]) + η([Q]) + η([p]) - η([Q]). However,
clearly, η([P]) + η([Q]) + η[P]) η([Q]) = 1 if and only if η([P]) = 1 or
η([Q]) = 1. Thus, η([PvQ]) = 1 if and only if η([p]) = 1 or η([Q]) = 1. Con-
sequently, fη(PvQ) = 1 if and only if fη{P) = 1 or fη(Q) = 1, as required by
(ii). Hence, indeed/TJ is a truth function, as desired.

Proposition 1. The Prime Ideal theorem for Boolean rings implies that
every tautology is a theorem of the Generalized Propositional Calculus.
Proof. Let P be any formula of the Generalized Propositional Calculus Σ
such that P is not a theorem. Clearly, [P] * /*. Hence, by (2) there exists
a nontrivial Boolean homomorphism?] from Γ onto {0,1} such that ??([P]) = 0.
But then by Lemma 4 there exists a truth function/^ such that fη(P) = 0.
Thus, P i s not a tautology.

From Lemma 2 and Proposition 1 it follows:

Proposition 2. The Prime Ideal theorem for Boolean rings implies that a
formula of the Generalized Propositional Calculus is a theorem if and only
if it is a tautology.

Next, let us observe that every Boolean ring (Γ, +, •) with a multiplica-
tive unit /* and additive zero 0* gives rise to a Propositional Calculus
where for every element P and Q of Γ the disjunction P v Q and the negation
~P are defined respectively by:

P + Q + P Q and /* + P
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But then the Completeness theorem for Generalized Propositional Calculus
implies that there exists always a homomorphism / from Γ onto {0,1} such
that /(/*) = 1 and /(0*) = 0. Thus,/ is a nontrivial homomorphism and the
kernel of / is a proper prime ideal of Γ.

In view of the above, Proposition 2 and (3) we have:

Proposition 3. The Completeness theorem for the Generalized Proposi-
tional Calculus is equivalent to the Prime Ideal theorem for Boolean rings.
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