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LOCATING VERTICES OF TREES

MARTIN M. ZUCKERMAN

Let X be a nonempty set and let ft and S be binary relations on X. Let
x, y, xl9 x2, yl9 y2 be arbitrary elements of X, then, where R(ft) is the range
of R and ω is the set of nonnegative integers, (X, R,S) is called a (dyadic
ordered) tree if the following hold:

(1) If XiRy and x2Ry, then xι = x2.
(2) For each x e X, xRy for at most two y.
(3) X - R (ft) is a unit set, {x0}.
(4) yiSy2 iff (a) y1 * y2, (b) y2jίyι, and (c) for some x e X, both xRyλ and

xRy2.
(5) There exists a function I: X —* ω with the properties: (a) l(x0) - 0

and (b) if xRy, then l(y) = Z(#) + 1.

This definition, with minor modifications, is essentially the one given

i n [ l ]

If (X, ft, S) is a tree, then the elements of X are called points or
vertices. If #ft;y holds for a unique y € X, x is called a simple point; if #ft;y
holds for two distinct y, x is called a junction point. Whenever xRy then y
is said to be an immediate successor of x. The relation S, in effect, selects
one of the two immediate successors of a junction point. Thus if xRyiy xRy2

and yiSy2, we say that yι is the left successor and y2 the rzgftί successor of
x.

l(x) is called the level of x. ln will denote the set of vertices of level
n, n e ω. Each ln has at most 2n vertices; hence for any tree (X, ft, S),X
must be countable. Note that (X, ft, S) has no junction points iff / is
one-one iff 5 = 0.

A path of a tree (X, ft, S) is a finite sequence [α0> «i>. .,««] or a
denumerable sequence [<zo> «i,. ..,««,... ] with the properties:

(1) for each a^ appearing in the sequence, a^ e X and
(2) if ak+ι also appears in the sequence, then ah+\ is an immediate

successor of α .̂
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The path [a0, al9. .. ,θn] is called a path from a0 to an. For any distinct
Xi, Xj e X, we say x{ precedes Xj if there is a path from xι to #/.

Theorem 1. {Induction Principle for Trees) Let (X R, S) be a tree. Let A
be a subset of X which satisfies: (1) IQ^A and, (2) whenever lnc.A, then
ln+ c A, then A = X.

Theorem 2. Z#£ /* 6e the set of positive integers. Let {X, R, S) be a tree.
Then there is a unique function L : X —* P such that (1) L(x0) =1 and such
that (2) whenever y e R(R) and xRy, then (a) L(y) = 2L(x) if either x is a
simple point or y is the left successor of x, or (b) L(y) = 2L{y) + 1 if y is
the right successor of x.

Proof. For each x e X, let A(x) be the set of all a e x such that a is a right
successor (of some junction point) and either a = x or a precedes x. Let

L(x) = 2ίM + Σ 2ι(x)-ιM .
d€A(x)

We have

i ω = 2 l ( X o )

+ Σ 2 / W " W = l .

Let xRy and suppose that either x is a simple point or else y is the left
successor of x. Then A(y) = A(x), whereas,

(1) l(y) = l(x) + 1.

Hence,

L(y) = 2«y)

+ Σ 2 / ( y W ( β )

ΛeΛ(y)

acA(x)

= 2 f 2 / W + Σ 2/ ω"/ ( Λ ))
\ aeAix) '

= 2L(X).
Now suppose that y is the right successor of x. Then A( y) = A(x) u {3;};
again, (1) holds.
This time

L(y) = 2ι(y)+ Σ 2/(*)-/(*)

= 2 / ( x ) + 1 + Σ 2 / U ) + 1" / ( Λ ) + 2
aeA(x)

= 2L(AΓ) + 1.

If I * : X-> ω is any function satisfying conditions (1) and (2) of the
present theorem, then by the Principle of Induction for trees it follows that
Z* = L. For let B = {x e X: L*(x) = L(x)}. Then l0 c L because by (l),
L*(xo) =L(x0) = 1. Suppose ln c B. If Zw+ = 0 , then surely 4+ 9 5. Other-
wise, let y e ln+ and let x be the unique vertex satisfying xRy. We have
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x e Lnc. B; hence L*(ΛΓ) = L(x). If x is a simple point or if y is the left
successor of x, then

L*(y) = 2L*(x) = 2L(x) = L(y).

In case y is the right successor of x, then

LHy) = 2L*(x) + 1 = 2£(*) + 1 = L(y).

Thus ln+ c. B and by theorem 1, B = X.

Corollary. 2ι(x) < £(#) < 2Kx)+1for all x e X.

By means of L we can locate elements of the tree; thus we call L the
location function of the tree. L is especially useful in trees whose vertices
are (occurrences of) (1) subformulas of a given formula or (2) probability
events. In particular, in the case of an analytic tableau for a formula P
(see [1]), various subformulas of P are repeated again and again. It might
be convenient to index the subformulas of the tableau by their locations.
Thus if Q is a subformula of P which occurs in the tableau, we replace each
occurrence of Q by Qw— so that L(Qn) = n. Moreover, L can be used to
specify the relations R and S (in the definition of " t ree") in the following
sense.

Theorem 3. Let X be a countable set. Let L : X -»P be any one-one
function satisfying (a) 1 e R(Z) and (b) for any n ^ 1, whenever 2n +1 e R(£),
then 2n e R(L) and whenever 2n e R(Z,), then n e R(L). Then there is a
unique tree (X, R, S) for which

(i) xRy iff either L(y) = 2L(x) or L(y) =2L(pc) + 1, and
(ii) yιSy2 iff L(yλ) is even and L(y2) = L(yj) + 1.

Proof. Suppose R and S are binary relations on X defined by (i) and (ii) of
theorem 3. In order to show that (X, R, S) is a tree we must show that
clauses (l)-(5) of the definition of " t r e e " hold.

(1) Suppose xλRy and x2Ry. Then for i = 1, 2, L(y) = 2L(x{) or L(y) =
2L(xi) + 1. Parity considerations assure that either L(y) = 2L(xχ) = 2L(x2)
or else L(y) = 2L(x1) + 1 = 2£(#2) + 1. Thus xx = x2 because L is one-one.

(2) follows from (i).
(3) According to (a), 1 e R(Z); since L is one-one, there is a unique

element x0 in X such that L(x0) = 1. 1 £ R(R), by (i). Suppose x e X - {x0}'
Then L(x) > 1; hence for some n ^ 1, L(x) = 2rc or L(#) = 2rc+ 1. Thus
{n, L(x)} c R(L) by (b), and by (i), L'ι(n)Rx. Consequently, X- R(R) = {xΌ}.

(4) Suppose yxSy^ Then L(y2)= HyJ + 1. Since L is a function,
yi±y2- Were ^2^1 a s well as yLSy2 to hold, then L(yι) = i (^ 2 ) + 1 =
L{y^) + 2. Contradiction! Finally, let L(^i) = 2n. Then ne R(L) and
L" 1^) is unique. L(yλ) = 2L(L~ι(ή)) and £(3;2) = 2L(L"ι(n)) + 1; hence
L'\n)Ryx and L'ι{n)Ry2.

Now suppose that (a), (b), and (c) of (4) hold, and let # be as in (c).
Then for i = 1, 2, xRy^, hence by (i), £(3;/) = 2L{x) or £(^ί) = 2L(x) + 1.
Since L. is one-one and yλ * y2, we have either L(yx) = 2L(x) and L(y2) =
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2L(x) + 1, or else L{y2) = 2L(x) and LiyJ = 2L(x) + 1. In the latter case, by
(ii), we would have y2Syly contradicting (b) of (4). Thus the former case
holds and yxSy2.

(5) Define I : X-* ω by l(x) = m if 2m <= L(#) < 2W + 1. Then Z(#o) = 0
because L(x0) = 2 . Let #fry. First suppose L(y) = 2L(x). Then 2m < L(ΛΓ) <

2«+i i f f 2 ^ + i < L ( ; y ) < ^ N o w S U p p 0 S e 1(3;) = 2Z(AΓ) + 1. Then 2W < L(x) <
2«+i i f f 2 ^ 1 < £(3;) _ K 2W + 2 iff

(2) 2m+1< L(y)< 2m+2+ 1 .

Since L(y) is odd, (2) holds iff

2 W + 1 ^ L ( 3 ; ) < 2 w - h 2 .

Thus in either case for L(y), we have L(y) = Z(ΛΓ) + 1.
The uniqueness of the tree (X, R, S) follows from the fact that the

relations R and S are completely determined in terms of the given func-
tion L.
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