LOCATING VERTICES OF TREES

MARTIN M. ZUCKERMAN

Let X be a nonempty set and let R and S be binary relations on X. Let $x, y, x_{1}, x_{2}, y_{1}, y_{2}$ be arbitrary elements of X, then, where $R(R)$ is the range of R and ω is the set of nonnegative integers, $\langle X, R, S\rangle$ is called a (dyadic ordered) tree if the following hold:
(1) If $x_{1} R y$ and $x_{2} R y$, then $x_{1}=x_{2}$.
(2) For each $x \in X, x R y$ for at most two y.
(3) $X-\mathrm{R}(R)$ is a unit set, $\left\{x_{0}\right\}$.
(4) $y_{1} S y_{2}$ iff (a) $y_{1} \neq y_{2}$, (b) $y_{2} \phi y_{1}$, and (c) for some $x \in X$, both $x R y_{1}$ and $x R y_{2}$.
(5) There exists a function $l: X \rightarrow \omega$ with the properties: (a) $l\left(x_{0}\right)=0$ and (b) if $x R y$, then $l(y)=l(x)+1$.

This definition, with minor modifications, is essentially the one given in [1].

If $\langle X, R, S\rangle$ is a tree, then the elements of X are called points or vertices. If $x R y$ holds for a unique $y \in X, x$ is called a simple point; if $x R y$ holds for two distinct y, x is called a junction point. Whenever $x R y$ then y is said to be an immediate successor of x. The relation S, in effect, selects one of the two immediate successors of a junction point. Thus if $x R y_{1}, x R y_{2}$ and $y_{1} S y_{2}$, we say that y_{1} is the left successor and y_{2} the right successor of x.
$l(x)$ is called the level of $x . l_{n}$ will denote the set of vertices of level $n, n \in \omega$. Each l_{n} has at most 2^{n} vertices; hence for any tree $\langle X, R, S\rangle, X$ must be countable. Note that $\langle X, R, S\rangle$ has no junction points iff l is one-one iff $S=\varnothing$.

A path of a tree $\langle X, R, S\rangle$ is a finite sequence $\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ or a denumerable sequence $\left[a_{0}, a_{1}, \ldots, a_{n}, \ldots\right]$ with the properties:
(1) for each a_{k} appearing in the sequence, $a_{k} \in X$ and
(2) if a_{k+1} also appears in the sequence, then a_{k+1} is an immediate successor of a_{k}.

The path $\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ is called a path from a_{0} to a_{n}. For any distinct $x_{i}, x_{j} \in X$, we say x_{i} precedes x_{j} if there is a path from x_{i} to x_{j}.
Theorem 1. (Induction Principle for Trees) Let $\langle X R, S\rangle$ be a tree. Let A be a subset of X which satisfies: (1) $l_{0} \subseteq A$ and, (2) whenever $l_{n} \subseteq A$, then $l_{n+} \subseteq A$, then $A=X$.
Theorem 2. Let \mathcal{P} be the set of positive integers. Let $\langle X, R, S\rangle$ be a tree. Then there is a unique function $L: X \rightarrow \boldsymbol{\rho}$ such that (1) $L\left(x_{0}\right)=1$ and such that (2) whenever $y \in R(R)$ and $x R y$, then (a) $L(y)=2 L(x)$ if either x is a simple point or y is the left successor of x, or (b) $L(y)=2 L(y)+1$ if y is the right successor of x.

Proof. For each $x \in X$, let $A(x)$ be the set of all $a \in x$ such that a is a right successor (of some junction point) and either $a=x$ or a precedes x. Let

$$
L(x)=2^{l(x)}+\sum_{a \in A(x)} 2^{l(x)-l(a)} .
$$

We have

$$
L\left(x_{0}\right)=2^{l\left(x_{0}\right)}+\sum_{a \in \varnothing} 2^{l(x)-l(a)}=1 .
$$

Let $x R y$ and suppose that either x is a simple point or else y is the left successor of x. Then $A(y)=A(x)$, whereas,

$$
\begin{equation*}
l(y)=l(x)+1 \tag{1}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
L(y) & =2^{l(y)}+\sum_{a \in A(y)} 2^{l(y)-l(a)} \\
& =2^{l(x)+1}+\sum_{a \in A(x)} 2^{l(x)+1-l(a)} \\
& =2\left(2^{l(x)}+\sum_{a \in A(x)} 2^{l(x)-l(a)}\right) \\
& =2 L(x) .
\end{aligned}
$$

Now suppose that y is the right successor of x. Then $A(y)=A(x) \cup\{y\}$; again, (1) holds.
This time

$$
\begin{aligned}
L(y) & =2^{l(y)}+\sum_{a \epsilon A(y)} 2^{l(y)-l(a)} \\
& =2^{l(x)+1}+\sum_{a \epsilon A(x)} 2^{l(x)+1-l(a)}+2 \\
& =2 L(x)+1
\end{aligned}
$$

If $L^{*}: X \rightarrow \omega$ is any function satisfying conditions (1) and (2) of the present theorem, then by the Principle of Induction for trees it follows that $L^{*}=L$. For let $B=\left\{x \in X: L^{*}(x)=L(x)\right\}$. Then $l_{0} \subseteq L$ because by (1), $L^{*}\left(x_{0}\right)=L\left(x_{0}\right)=1$. Suppose $l_{n} \subseteq B$. If $l_{n+}=\varnothing$, then surely $l_{n+} \subseteq B$. Otherwise, let $y \in l_{n+}$ and let x be the unique vertex satisfying $x R y$. We have
$x \in L_{n} \subseteq B$; hence $L^{*}(x)=L(x)$. If x is a simple point or if y is the left successor of x, then

$$
L^{*}(y)=2 L^{*}(x)=2 L(x)=L(y)
$$

In case y is the right successor of x, then

$$
L^{*}(y)=2 L^{*}(x)+1=2 L(x)+1=L(y)
$$

Thus $l_{n+} \subseteq B$ and by theorem $1, B=X$.
Corollary. $2^{l(x)} \leq L(x)<2^{l(x)+1}$ for all $x \in X$.
By means of L we can locate elements of the tree; thus we call L the location function of the tree. L is especially useful in trees whose vertices are (occurrences of) (1) subformulas of a given formula or (2) probability events. In particular, in the case of an analytic tableau for a formula P (see [1]), various subformulas of P are repeated again and again. It might be convenient to index the subformulas of the tableau by their locations. Thus if Q is a subformula of P which occurs in the tableau, we replace each occurrence of Q by Q_{n}-so that $L\left(Q_{n}\right)=n$. Moreover, L can be used to specify the relations R and S (in the definition of "tree") in the following sense.
Theorem 3. Let X be a countable set. Let $L: X \rightarrow \boldsymbol{P}$ be any one-one function satisfying (a) $1 \in R(L)$ and (b) for any $n \geq 1$, whenever $2 n+1 \in R\left(L^{\prime}\right)$, then $2 n \in R(L)$ and whenever $2 n \in R(L)$, then $n \in R(L)$. Then there is a unique tree $\langle X, R, S\rangle$ for which
(i) $x R y$ iff either $L(y)=2 L(x)$ or $L(y)=2 L(x)+1$, and
(ii) $y_{1} S y_{2}$ iff $L\left(y_{1}\right)$ is even and $L\left(y_{2}\right)=L\left(y_{1}\right)+1$.

Proof. Suppose R and S are binary relations on X defined by (i) and (ii) of theorem 3. In order to show that $\langle X, R, S\rangle$ is a tree we must show that clauses (1)-(5) of the definition of "tree" hold.
(1) Suppose $x_{1} R y$ and $x_{2} R y$. Then for $i=1,2, L(y)=2 L\left(x_{i}\right)$ or $L(y)=$ $2 L\left(x_{i}\right)+1$. Parity considerations assure that either $L(y)=2 L\left(x_{1}\right)=2 L\left(x_{2}\right)$ or else $L(y)=2 L\left(x_{1}\right)+1=2 L\left(x_{2}\right)+1$. Thus $x_{1}=x_{2}$ because L is one-one.
(2) follows from (i).
(3) According to (a), $1 \in R(L)$; since L is one-one, there is a unique element x_{0} in X such that $L\left(x_{0}\right)=1$. $1 \notin \mathrm{R}(R)$, by (i). Suppose $x \in X-\left\{x_{0}\right\}$. Then $L(x)>1$; hence for some $n \geq 1, L(x)=2 n$ or $L(x)=2 n+1$. Thus $\{n, L(x)\} \subseteq R(L)$ by (b), and by (i), $L^{-1}(n) R x$. Consequently, $X-R(R)=\left\{x_{0}\right\}$.
(4) Suppose $y_{1} S y_{2}$. Then $L\left(y_{2}\right)=L\left(y_{1}\right)+1$. Since L is a function, $y_{1} \neq y_{2}$. Were $y_{2} S y_{1}$ as well as $y_{1} S y_{2}$ to hold, then $L\left(y_{1}\right)=L\left(y_{2}\right)+1=$ $L\left(y_{1}\right)+2$. Contradiction! Finally, let $L\left(y_{1}\right)=2 n$. Then $n \in R(L)$ and $L^{-1}(n)$ is unique. $L\left(y_{1}\right)=2 L\left(L^{-1}(n)\right)$ and $L\left(y_{2}\right)=2 L\left(L^{-1}(n)\right)+1$; hence $L^{-1}(n) R y_{1}$ and $L^{-1}(n) R y_{2}$.

Now suppose that (a), (b), and (c) of (4) hold, and let x be as in (c). Then for $i=1,2, x R y_{i}$; hence by (i), $L\left(y_{i}\right)=2 L(x)$ or $L\left(y_{i}\right)=2 L(x)+1$. Since L is one-one and $y_{1} \neq y_{2}$, we have either $L\left(y_{1}\right)=2 L(x)$ and $L\left(y_{2}\right)=$
$2 L(x)+1$, or else $L\left(y_{2}\right)=2 L(x)$ and $L\left(y_{1}\right)=2 L(x)+1$. In the latter case, by (ii), we would have $y_{2} S y_{1}$, contradicting (b) of (4). Thus the former case holds and $y_{1} S y_{2}$.
(5) Define $l: X \rightarrow \omega$ by $l(x)=m$ if $2^{m} \leq L(x)<2^{m+1}$. Then $l\left(x_{0}\right)=0$ because $L\left(x_{0}\right)=2$. Let $x R y$. First suppose $L(y)=2 L(x)$. Then $2^{m} \leq L(x)<$ 2^{m+1} iff $2^{m+1} \leq L(y)<2^{m+2}$. Now suppose $L(y)=2 L(x)+1$. Then $2^{m} \leq L(x)<$ 2^{m+1} iff $2^{m+1} \leq L(y)-1<2^{m+2}$ iff

$$
\begin{equation*}
2^{m+1}<L(y)<2^{m+2}+1 \tag{2}
\end{equation*}
$$

Since $L(y)$ is odd, (2) holds iff

$$
2^{m+1} \leq L(y)<2^{m+2}
$$

Thus in either case for $L(y)$, we have $L(y)=l(x)+1$.
The uniqueness of the tree $\langle X, R, S\rangle$ follows from the fact that the relations R and S are completely determined in terms of the given function L.

REFERENCE

[1] Smullyan, R. M., First order logic, Springer-Verlag, New York, 1968.

City College of the City University of New York
New York, New York

