CERTAIN EXTENSIONS OF MODAL SYSTEM S4

BOLES£AW SOBOCIŃSKI

In this paper I present some investigations concerning certain new proper, or probably proper, extensions of Lewis modal system S4. These researches are mostly based on the results in the field of modal logic recently obtained by Schumm, Thomas, Zeman and, indirectly, by Grzegorczyk. There are several open problems connected with the deductions given below, which I was unable to solve. On the other hand, several other of my results related to the topic of this article will not be published here, but will be discussed in a subsequent paper. An acquaintance with modal logic, Łukasiewicz's notation, my method of writing proofs and, especially, with papers [15] and [14] is presupposed.

1 INTRODUCTION

1.1 In [16], [15] and [14] I introduced an enumeration of proper axioms of systems which are the extensions of S 4 . Subsequently, this enumeration was used by some other authors, but a development of this subject created an inconvenient chaos. For instance, formula © $L M p M L p$ which serves as a base for a definition of family K of the non-Lewis modal systems has number K2 instead of the much more convenient number K1. For this reason I decided to change this enumeration, as follows. The letter prefixed to the proper axioms of the given system will remain the same, as in my previous papers, but they will be bold. And, the bold numbers attached to such letters will indicate the different formulas each of which can be adopted as the proper axioms of the discussed system. The proper axiom of the fixed system which for this or that reason I consider, as its principal proper axiom, will always have number 1. Thus,e.g., the formula $K 2$ mentioned above will have number K1, and McKinsey's formula, $c f$, [5], and [16], p. 77, which previously had number K1 will be K2. A list of this new enumeration is given below:

1) Zeman's system S4.04 (= \{S4;L1\}), cf. [18], p. 250:

L1 ©LMLpCpLp
2) Systems S4.1 (= $\{\mathrm{S} 4 ; \mathrm{N} 1\})$ and S4.1.1 (= $\{\mathrm{S} 4 ; \mathrm{M} 1\}), c f .[15]$, p. 306.

N1 『ऽऽ $p L p p C M L p p$
M1 sce $p L p L p C M L p L p$
3）System S 4.2 （＝$\{\mathrm{S} 4 ; \mathrm{G} 1\}$ ）：
G1 © $M L p L M p$
G2 厄 $M L p L M L p$
［In［16］，pp．73－74，formula $L 1$ ］
It is observed by P．T．Geach，cf．［1］，p．252，that in the field of S4 these formulas G1 and G2 are equivalent．

4）System S4．3（＝\｛S4；D1\});
D1 $A \Subset L p q$ ® Lqp
［Previously D2］
D2 A © $L p L q$ © $L q L p$
［Previously D1］
D3 $L A \Subset L p q \Subset L q p$
D4 $L A \Subset L p L q$ © $L q L p$
D5 §KMpMqAMKpMqMKqMp
［D5 is Hintikka＇s axiom of S．4．3，cf．［10］，p．176］
The inferential equivalence of D1－D4 in the field of S4 is shown in［15］， p． 75.

5）System S4．3．2（＝$\{\mathrm{S} 4 ; \mathrm{F} 1\}$ ）of Zeman，cf．［18］，pp．296－298：
F1 A © $L p q C M L q p$
［In［18］，formula（34）］
F2 A © $L p L q C L M L q L p$
［In［18］，formula（35）］
Equivalence of F1 and F2 is proved in［18］．
6）System S 4.4 （ $=\{\mathrm{S} 4 ; \mathrm{R} 1\}$ ），cf．［15］，p．305：
R1 © $M L p C p L p$
R2 © NpCMpLMp［Previously，R1＊］
In［15］and［14］instead of $R 1$ I used its less convenient form $⿶ p C M L p L p$ ． An equivalence of this form，R1 and R2 is self evident．

7）System $S 5$（ $=\{S 4 ; C 1\}$ ）of Lewis：
C1 s $M p L M p$
［In［7］，p．497，axiom C11］
C2 『MLpLp
C3 厄LMLpLp
［Previously P1］
Obviously，C1 is axiom C11 of Lewis system S5，and C2 is only another form of C1．In［1］，Dummett and Lemmon have proved metalogically，and in［16］，p．74，it was shown logically，that in the field of S4 C3 is equivalent to C 1 ．

8）Brouwerian axiom：
B1 厄 $p L M p$
［In［7］，p，497，axiom C12］
B2 厄MLpp
［ $\mathbf{B 2}$ is only another form of $\mathbf{B 1}$ ］
Although in the field of S 4 B 1 and C 1 are inferentially equivalent and， therefore，B1 can be considered as the proper axiom of S5，I prefer to give a special enumeration to it，because of the different properties which C1 and B1 have in the field of systems weaker than S4．

9）System VI（＝\｛S4；V1 $\}$ ），cf．［15］，pp．306－307 and p．309：
V1 $A L p A$ 『 $p q$ 『 $p N q$
10） System K1（＝$\{\mathrm{S} 4 ; \mathrm{K} 1\})$ ：
K1 厄 $L M p M L p$
［Previously K2］
K2 厄KLMpLMqMKpq
［Previously K1］
K3 LMCMpLp
K4 $L M L C p L p$
K5 LMLCMpp
Concerning the systems K1－K4，cf．［5］，［16］，［14］，［9］and［3］，pp． 265－267．In［16］，pp．77－78，it was proved that in the field of S 4 formulas K1－K5 are inferentially equivalent．

10）System K1．1（ $=\{\mathrm{S} 4 ; \mathrm{J} 1\}$ ）：

```
J1 cespLppp
J2 『『® 
```

In［14］，p． 316 and p．314，system K1．1 is defined，and the equivalence of J 1 and J 2 is proved．

11）System K1．2（＝$\{\mathrm{S} 4 ; \mathrm{H} 1\})$ ：

H1 厄 $p 厄 \subseteq p p$
 H2 厄 $L M p C p L p$

In［14］，p．316，system K1．2 is defined．The equivalence of H 1 and H 2 in the field of S 4 will be established in Section 2 of this paper．

12）System $\mathrm{K} 4(=\{\mathrm{S} 4 ; \mathrm{P} 1\} \rightleftarrows\{\mathrm{S} 4.4 ; \mathrm{K} 1\})$ ：

P1 $\mathbb{C} M L M p C p L p$

In section 2 it will be shown that P1 is a proper axiom of K4．
13）Modal formula of Grzegorczyk：

T1 ©espqqCe『®Npqqq

While doing some researches unconnected with modal logic， Grzegorczyk found formula T 1 and recognized that it is a modal formula unprovable in the field of Lewis modal systems．Clearly，T1 belongs to family K of the non－Lewis modal systems．The investigations concerning T1 will be given in Section 2.

14）Schumm＇s system S4．7，cf．［12］：
Q1 $A ® M L p L p \Subset M L M q C q L q$
15）System $S 4.6$
S1 A 『MLpLpALqA『qr『qNr
16）System $S 4.5$

E1 A®MLpLpALqA®qp『qNp
 E2 A 『MLpLpALpA『pq® $p N q$

The systems S4．5，S4．6 and S4．7 which are between S4．4 and S5 and the formulas Q1，S1，E1 and E2 will be discussed in Section 3 of this paper．

1．2 An enumeration of the systems which are extensions of $S 4$ is estab－ lished in［16］，［15］，［14］，［18］，［19］and［12］．And，although in the future some modifications will be necessary，it remains unaltered in this paper． Only，the numbers for the new systems will be added，and，since in［17］ Thomas has proved that systems K 4 and $\mathrm{K} 5, c f$ ．［14］，p．316，are equivalent， K5 will not be used any more in the old sense．A system which in［15］， $\mathrm{pp} .306-307$ ，is defined as $\{\mathrm{S} 5 ; \mathrm{V} 1\}$ will be designated here，as system V2．

1．3 An acquaintance with 4,8 and 16 valued ordinary logical Boolean matrices for functors C and N is presupposed．These matrices are given explicitly in［15］．In this paper I shall use the following matrices which are presented here only for functors M and L ：

A1

p	1	2	3	4
$M p$	1	2	1	4
$L p$	1	4	3	4

\＆⿴囗十心 \quad| p | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| $M p$ | 1 | 1 | 1 | 4 |
| $L p$ | 1 | 4 | 4 | 4 |

A13

p	1	2	3	4	5	6	7	8
$M p$	1	1	1	1	1	1	1	8
$L p$	1	8	8	8	8	8	8	8

p	1	2	3	4	5	6	7	8
$M p$	1	1	3	4	1	1	3	8
$L p$	1	6	8	8	5	6	8	8

A月5

p	1	2	3	4	5	6	7	8
$M p$	1	2	3	4	1	2	3	8
$L p$	1	6	7	8	5	6	7	8

8月的

p	1	2	3	4	5	6	7	8
$M p$	1	2	1	2	1	2	1	8
$L p$	1	8	7	8	7	8	7	8

\＆ 7

p	1	2	3	4	5	6	7	8
$M p$	1	1	1	1	5	5	5	8
$L p$	1	4	4	4	8	8	8	8

$\mathfrak{A R 8}$

p	1	2	3	4	5	6	7	8
$M p$	1	1	1	4	1	1	1	8
$L p$	1	8	8	8	5	8	8	8

819

p	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$M p$	1	1	1	1	5	6	7	8	1	1	1	1	5	6	7	16
$L p$	1	10	11	12	16	16	16	16	9	10	11	12	16	16	16	16

朋10

p	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$M p$	1	1	1	4	5	5	5	8	1	1	1	1	13	13	13	16
$L p$	1	4	4	4	13	16	16	16	9	12	12	12	13	16	16	16

䚡 11

p	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$M p$	1	1	1	4	5	5	5	8	1	1	1	4	5	5	5	16
$L p$	1	12	12	12	13	16	16	16	9	12	12	12	13	16	16	16

明12

p	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$M p$	1	2	3	4	5	6	7	8	1	10	3	12	5	14	7	16
$L p$	1	10	3	12	5	14	7	16	9	10	11	12	13	14	15	16

In all these matrices 1 is the designated value．And，each of these matrices verifies S4．

 and ($\mathbb{H l}^{\prime \prime}$) were found by Schumm. 解 is defined by Prior in [9], but is pub-
 translation of a set-theoretical construction used by McKinsey and Tarski in [6], p. 7, into a matrix form. I found an important matrix 1 田 12 checking some matrices among several thousand 16 valued modal matrices which for my researches Professor T. W. Scharle of West Virginia University (Morgantown) kindly computed using Computer IBM System $360 / 75$ of that University.

2 FAMILY K

In this Section I shall give several proofs related to the structure of family K. On the other hand, several open problems connected with formula T1 of Grzegorczyk will be presented. A familiarity with the definition of family K of the non-Lewis modal systems, $c f$. [14], is presupposed.
2.1 System K4. In [14] K4 is defined as a non-Lewis modal theory generated by an addition of K1 to S4.4. It will be shown that the following formula

```
P1 © MLMpCpLp
```

is a proper axiom of K4.
2.1.1 Assume system K4. Hence we have S4, R1 and K1. Then:

2.1.2 Now, let us assume S4 and P1. Then:

$Z 1$	§ $p M p$	$[\mathrm{~S} 1]$
$Z 2$	§ $M L p M L M p$	$\left[Z 1 ; \mathrm{S} 2^{\circ}\right]$
R 1	§ $M L p C p L p$	$\left[Z Z ; \mathrm{P} 1 ; \mathrm{S} 1^{\circ}\right]$
H 2	§ $L M p C p L p$	$\left[Z 1, p / L M p ; \mathrm{P} 1 ; \mathrm{S} 1^{\circ}\right]$
$Z 3$	§ $L M p$ © $p L p$	$\left[\mathrm{H} 2 ; \mathrm{S} 2^{\circ} ; \mathrm{S} 4\right]$
$Z 4$	§ $L M p C L M p L M L p$	$\left[Z 3 ; \mathrm{S} 3^{\circ}\right]$
K 1	§ $L M p M L p$	$[Z 4 ; \mathrm{S} 1]$

Thus, S4 together with P1 implies R1 and K1. Therefore, it has been proved that $\{\mathrm{K} 4\} \rightleftarrows\{\mathrm{S} 4.4 ; \mathrm{K} 1\} \rightleftarrows\{\mathrm{S} 4 ; \mathrm{R} 1 ; \mathrm{K} 1\} \rightleftarrows\{\mathrm{S} 4 ; \mathrm{P} 1\}$. Hence P1 is a proper axiom of K4. By the way H 2 is proved, $c f$. system K1.2.
$2.2\{\mathrm{~K} 4\} \rightleftarrows\{\mathrm{S} 3 ; \mathrm{P} 1\}$. Obviously, $\{\mathrm{K} 4\} \rightarrow\{\mathrm{S} 3 ; \mathrm{P} 1\}$. Now, assume S3 and P1. Then:
$Z 1$ § $p C M L M p L p$
$Z 2$ 『 $C M p L q$ 『 $p q$
$Z 3$ 『p®LMpp
$Z 4$ 厄ऽMpLqLLCpq
Z5 LLCpCLMMpMp
$\left[\mathrm{P} 1 ; \mathrm{S} 1^{\circ}\right]$
$[\mathrm{S} 1 ; c f .[13], \mathrm{p} .156]$
$\left[Z 1 ; Z 2, p / L M p, q / p ; \mathrm{S} 1^{\circ}\right]$
$\left[Z 2 ; \mathrm{S} 2^{\circ}\right]$
$[Z 4, q / C L M M p M p ; Z 3, p / M p]$

Since in［8］，p．148，Parry has proved that an addition of any formula of the form $L L \alpha$ to $S 3$ yields $S 4$ ，the proof is completed．

2．3 System VI．In［17］Thomas has proved that system K5 which in［14］ was defined as $\{\mathrm{V} 1 ; \mathrm{K} 1\}$ is inferentially equivalent to K 4 ，i．e．，he has shown that formula

V1 $A L p A C p q C p N q$

is a consequence of K 4 ．From this important result of Thomas it follows that system V1 which in［15］，p．306，was defined as $\{\mathrm{S} 4 ; \mathrm{V} 1\}$ is a subsystem of K4．Below，I shall make some remarks which will be used in Section 3.

2．3．1 The deductions given below are a formalized version of Thomas＇ proof that $\{\mathrm{K} 4\} \rightarrow\{\mathrm{V} 1\}$ ．In Section 3，3．4．1，a modification of this version， but much more complicated and longer will be used for some purposes．Let us assume system K4．Hence，we have S4，R1，K1 and，cf．［15］，p．307，G1． Then：

21	¢．KpMLpLp	［R1；S1 ${ }^{\circ}$ ］
Z2	¢MLpLM p	［G1；K1；S1 ${ }^{\circ}$ ］
Z3	¢MCpqCLpMq	［ 2° ；cf．［16］，p．71］
	$\mathfrak{C} M L C p q C M L p M L q$	［S3${ }^{\circ} \mathrm{Z3} ; \mathrm{Z2}$ ； $\mathrm{S4}^{\circ}$ ］
25	$¢^{¢} M L q M L C p q$	［ 22° ］
26	厄MLNpMLCpq	［ $\mathrm{S2}^{\circ}$ ］
	¢ $N M L p M L C p q$	［Z6； $\mathrm{S1}^{\circ}$ ；$\left.Z 3\right]$
Z8	§CMLpMLqM	［ $Z 7 ; Z 5 ; \mathrm{S1}^{\circ}$ ］
	¢CMLpMLqM $L C p q$	［ $24 ; Z 8 ; \mathrm{S1}^{\circ}$ ］
210	AKprAKCpqCrsKCpNqCrNs	［S1 $\left.{ }^{\circ} ; c f .[17]\right]$
$Z 11$ A LpAKCpqMLCpqKCpNqCMLpNMLq［Z10，r／MLp，s／MLq；Z1；Z9； $\mathrm{S1}^{\circ}$ ］		
		［Z12； $29, q / N q ; \mathrm{S1}^{\circ}$ ］
V1 $A L p A \Subset p q$ 『 $p N q$		［Z13； $21, p / C p N q ; \mathrm{S1}^{\circ}$ ］
Thus，$\{\mathrm{K} 4\} \rightarrow$ V1 ${ }^{\text {c }}$		

2．3．2 In［15］，p．309，it was proved that in the field of S2 V1 yields R1 and， therefore， S 4.4 is a subsystem of V1．Schumm＇s matrix $\notin \mathbb{A}$ which verifies S4．4 falsifies V1 for $p / 2$ and $q / 3$ ：AL2A® 23 『 $2 N 3=A 8 A L 3$ 『 $26=C N 8 C N 8 L 5$ $=C 1 C 15=C 15=5$ ．Hence，system V1 is a proper extension of S4．4．Matrix用3 verifies S 5 ，but falsifies V 1 for $p / 2$ and $q / 3: A L 2 A \Subset 23 ® 2 N 3=$ $C N 8 C N L 3 L 5=C 1 C N 85=C 1 C 15=C 15=5$ ．Hence，system V1 is not con－ tained in S5．Matrix 䏹 verifies S5 and V1 which shows that V1 is a sub－ system of $\{\mathrm{V} 2\}=\{S 5 ; \mathrm{V} 1\}$ ．On the other hand，matrix $\neq \mathfrak{l l}$ verifies V 1 ，but it falsifies the proper axioms of S5 and K4．Namely，C1 is rejected for
p／8：§M8LM8＝§ $8 L 8=$ ¢ $816=L 9=9$ ，and P 1 for $p / 2$ ： $\mathbb{S} M L M 2 C 2 L 2=$ § $M L 1 C 24=L C M 13=L C 13=L 3=4$ ．Therefore，system V1 includes neither S5 nor K4．

Thus，system V1 is a proper subsystem of K4 and V2 and a proper ex－ tension of S4．4．And，moreover，it is entirely independent from S5．From this it follows clearly that，although K4 contains V1，the latter system does not belong to family K ．In fact，it belongs to another family of the non－ Lewis modal systems which are extensions of $S 4$ ．However，this family， which I call family \mathcal{V} ，will not be discussed in this paper．

The following diagram explains the position of V1 in regard to V2，S5， K4 and S4．4：

S5

However，it will be proved in Section 3 that this diagram should be sub－ stituted by a much more complicated one．

2．4 System K3．2．In［18］，pp．296－298，Zeman has shown that there is an extension of $S 4$ ，which he called $S 4.3 .2$ ，such that it is a proper extension of S4．3，and it is properly contained in S4．4．Moreover，it is neither contained in nor does it contain S4．3．1．This new system which was unknown at the time when［15］was published is generated by the addition of the following formula

F1 A 『LpqCMLqp

as a new axiom，to S 4 ．Zeman has also remarked that an addition of the proper axiom of S4．1．1：

M1 『® 『 $p L p L p C M L p L p$

to S 4.3 .2 yields S 4.4 ．This means，since S 4.3 .2 contains S 4.2 ，cf．［15］， p． 305 ，that an addition of the proper axiom of S4．1：

N1 © © ep $L p p C M L p p$

to this system gives the same result．On the other hand，Zeman＇s matrix脽 \mathfrak{b} which verifies S 4.3 .2 and rejects systems S 4.4 and S 4.3 .1 ，and which falsifies J 1 for $p / 5$ ：© § § $5 L 555=$ © § $L C 5755=$ © $L C L 355=L C L 15=L C 15=$ $L 5=7$ verifies K1．Hence，an addition of K1 to S 4.3 .2 generates a new system which belongs to family K and which I call system K3．2．Matrix $\mathrm{A}_{4} 4$ which verifies system K3．1 and，therefore，also K3，falsifies formula F1 for $p / 5$ and $q / 2: A \S L 52 C M L 25=A \S 52 C M 65=A L C 52 C 15=C N L 25=C N 65=$ $C 35=5$ ．Hence，system K3．2 is a proper extension of K3 and，since 朋 rejects R 1 for $\mathrm{p} / 3$ ：§ $M L 3 C 3 L 3=\mathbb{C} M 7 C 37=L C 15=L 5=7$ ，it is a proper subsystem of K 4 ．On the other hand，K3．2 neither contains nor is contained in K3．1．Thus，system K3．2 is a fullfledged member of family K ．

2．5 Systems K1．2 and S4．04．In［19］，pp．249－251，Zeman constructed
another proper system, called S4.04, between S 4 and S 4.4 by adding to S 4 the following formula:

L1 ©LMLpCpLp

as a new axiom. It is obvious that L1 is a simple consequence of R1 and S2. Therefore, S4.4 contains S4.04. As Zeman points out, S4.04 is a proper subsystem of S4.4, because matrix 䏣 5 which, $c f$. [9], falsifies formula G1,
 $\Subset L M L 2 C 2 L 2=\Subset L M 10 C 210=\Subset L 19=L C 19=L 9=9$ shows that S4.04 is a proper extension of S 4 .

It is self evident that an addition of L1, as a new axiom to any extension of S4 which contains the proper axiom of S4.2, viz.:

G1 © $\mathrm{E}_{\mathrm{M}} \mathrm{LpLM} \mathrm{p}$

yields S4.4. Hence, in the field of family K an addition of L1, as a new axiom could be interesting only in regard to the systems K1, K1.1 and K1.2. I shall prove that an addition of L1 to K1 or K1.1 gives K1.2, and that system K1.2 contains L1. This last result is very important for some deductions which will be given in the next part 2.6. By the way, it will be proved here, as mentioned in Section 1, that in the field of S4 the formulas H1 and H 2 are inferentially equivalent.
2.5.1 Obviously, S 4.04 does not contain the proper axiom of K 1 , i.e. axiom K1. And it is confirmed by $\not \mathbb{A l l}$ which verifies S4.04, but falsifies K1 for
 which verifies systems K1 and K1.1 falsifies L1 for $p / 2$: § $L M L 2 C 2 L 2=$ © $L M 6 C 26=C L 15=L C 15=L 5=5$. Thus, in the field of S4, L1 is not a consequence of K1 and even of K1.1, Hence, S4.04 neither contains K1 or K 1.1 , nor is contained in K 1 or K 1.1 .
2.5.2 Assume K1.2. Hence, we have S4 and H1. Then:

$Z 1$	§ $p C L M p L p$	$\left[\mathrm{H} 1 ; \mathrm{S1}^{\circ}\right]$
H 2	§ $L M p C p L p$	$\left[Z 1 ; \mathrm{S} 1^{\circ}\right]$

2.5.3 Now, let us assume $S 4$ and H 2 . Then:

Z1	§ LMp®pLp	[H2; S2 ${ }^{\circ}$; S4]
Z2	® $L M p$ ¢ $L M p L M L p$	[$21 ; \mathrm{S3}^{\circ}$]
K1	$\mathbb{¢}^{\text {L }}$ M $p M L p$	[$22 ; \mathrm{S1}$]
Z3	§CLpMqLMCpq	[S2; cf. [16], pp. 71-72]
Z4	LMCMpLLp	[$Z 3, p / M p, q / L p ; \mathrm{K} 1 ; \mathrm{S4}]$
Z5	® $L M C M p L q L M L C p q$	[S1, cf. [13], p. 156; S2 ${ }^{\circ}$]
K4	LMLCpLp	[$Z 5, q / L p ; Z 4$]
Z6	『 $L M L p L M p$	[S2]
L1	© LMLpCpLp	[$Z 6 ; \mathrm{H} 2 ; \mathrm{S} 1^{\circ}$]

Thus, L1 follows from S 4 and H 2 . Since, $c f .2 .5 .2, \mathrm{H} 2$ is a consequence of K1.2, it proves that K1.2 contains L1.
$Z 9$ § N ¢® $p L p \quad\left[Z 8, q / L p ; Z 7 ; \mathrm{S1}^{\circ}\right]$

H1 『 p ®Mpp
$\left[Z 9, p / N p ; \mathrm{S1}^{\circ}\right]$
Hence，it is shown that $\{\mathrm{K} 1.2\} \rightleftarrows\{\mathrm{S} 4 ; \mathrm{H} 1\} \rightleftarrows\{\mathrm{S} 4 ; \mathrm{H} 2\}$ ，and that $\{\mathrm{K} 1.2\} \rightarrow$ \｛S4．04\}.
2．5．3．Now，assume K1 and L1．Then，we have axiom K1 and，therefore：
Z1 © LM 1 LMLp
［K1；S4 ${ }^{\circ}$ ］
H2 『 $L M p C p L p$
［ $21 ; \mathrm{L} 1 ; \mathrm{S}^{\circ}$ ］

Since K1．1 does not imply L1 it follows from 2．5．2 and 2．5．3 that $\{\mathrm{K} 1.2\} \rightleftarrows\{\mathrm{S} 4 ; \mathrm{H} 1\} \rightleftarrows\{\mathrm{S} 4 ; \mathrm{H} 2\} \rightleftarrows\{\mathrm{K} 1 ; \mathrm{L} 1\} \rightleftarrows\{\mathrm{K} 1.1 ; \mathrm{L} 1\}$ ．

2．6 Formula of Grzegorczyk．In［2］，using reasonings analogous to Cohen＇s method of forcing，Grzegorczyk tried to construct models for such propositional calculi which would correspond to methodological patterns of scientific investigation．As far as I know，calculi obtained in this way are not yet systematically investigated．One of the models constructed by Grzegorczyk verifies a peculiar propositional calculus in which not all classical propositional theorems are valid，but all modal theses of S4 are． Moreover，this theory contains the following formula

$$
\{[(Z \rightarrow \square Y) \rightarrow \square Y] \wedge[(\sim Z \rightarrow \square Y) \rightarrow \square Y]\} \rightarrow \square Y
$$

which，if we accept the symbols＂\rightarrow＂，＂\square＂＂\sim＂and＂\wedge＂as the symbols of strict implication，necessity，negation and conjunction respectively，in Łukasiewicz＇s notation would have the following form：

『K『『pLqLq『®NpLqLqLq

And，it is self evident that in the field of S4 the latter form is inferentially equivalent to：

T1 厄くくpqqCe厄Npqqq

As Grzegorczyk points out in his paper，T1 is a formula which does not belong to S4．Here I shall not analyze the Grzegorczyk propositional calculus，but only T 1 and its connections with family K ．

 $=L C 14=L 4=4$ ．On the other hand，T1 is verified by $⿴ 囗 十$ R 1 ．Hence T1 is not contained in the systems V2，V1 and S5，but its addition，as a new axiom，to S4 does not reduce the latter system to the classical propositional calculus． In fact，it can be proved at once that in the field of S 4 T 1 implies J 1 which is a proper axiom of K1．1 and，therefore，cf．［15］，pp．314－314，also K1． Namely：

Z1	¢ ¢ $N p L p L p$	［ $\left.2^{\circ}{ }^{\circ}\right]$
J2	くく『pLpLpLp	［ $\left.\mathrm{T} 1, q / L p ; Z 1 ; \mathrm{S1}^{\circ}\right]$
J1	『『『pLppp	［J2；S4；cf．［14］，p．314］
K1		［J1；S4；cf．［14］，pp．314－315］

Since K1 follows from S4 and T1，system \｛S4；T1\} clearly belongs to family K ．

2．6．2 Let us assume K1．2，whence we have at our disposal S4，H1，K1 and L1．Then：

［Z25，p／® $\left.L p q, r / ® L N p q, s / N \Subset N p q ; Z 29 ; ~ S 1^{\circ}\right]$
227 © $p \mathrm{CrCqCsq}$
［ S° ］
$Z 28$ ©® $L p q C$ 『 $L N p q C C$ © NpqqCC® $p q q q$
$\left[Z 27, p / \Subset L p q, r / \Subset L N p q, s / C 厄 p q q ; Z 26 ;\right.$ S $\left.^{\circ}\right]$
$Z 29$ 厄 $L N p$ 『 $p q$
$Z 30$ ©く『 $p q r$ © L Npr
$Z 31$ © 厄® $N p q$ 『 $L p r$
T1 〔くくpqqC厄®Npqqq
$\left[\mathrm{S2}^{\circ}\right]$
［ $Z 29$ ； $\mathrm{S2}^{\circ}$ ］
［ $\left.Z 30 ; p / N p ; 2^{\circ}{ }^{\circ}\right]$

Thus，it is proved that T 1 is a consequence of K1．2．It should be noticed that the given proof is based upon the availability of L1 in the field of K1．2．

Matrix $\mathrm{H}_{4} 4$ verifies T 1 ，and，$c f$ ．［14］，p．316，falsifies H1．Hence， $\{\mathrm{S} 4 ; \mathrm{T} 1\}$ is a proper subsystem of K1．2．Matrix $\mathrm{A}^{2} 5$ which verifies $\{\mathrm{S} 4 ; \mathrm{T} 1\}$
falsifies，as it is well known，cf．［9］and［14］，p．316，formula G1．Hence， $\{\mathrm{S} 4 ; \mathrm{T} 1\}$ does not contain S 4.2 ．On the other hand，as Schumm has proved in［12］， 77 verifies $K 2$ and $K 3$ ，but rejects $K 2.1$ and K3．1．This matrix also
〔くL $34 C$ © $L 244=$ © $L C 44 C L C 444=$ © $L 1 C L 14=$ © $1 C 14=L C 14=L 4=4$ ．This proves that neither K1，nor K2，nor even K3 imply T1．Moreover，matrix触 \mathfrak{g} which verifies K 2.1 ，but rejects K 3 ，cf．［9］，and［14］，pp．316－317，also verifies T1．

These matrix calculations suggest that between K1．1 and K1．2 there is a proper system $\{S 4 ; \mathrm{T} 1\}$ which I call K 1.1 .1 ，and that between K 2.1 and K3．1 there is another proper system，called K2．2，namely \｛S4．2；T1\}. Unfortunately，although it is very probable，I do not have yet the proofs that K1．1 does not imply T1，and that T1 is not a consequence of K2．1

2．6．3 In［11］Schumm has proved that system D^{*} established by Makinson in［4］by the way of defining its characteristic matrix is inferentially equivalent to my system K3．1．Therefore，Makinson＇s matrix is also a characteristic matrix of the latter system，and $\{\mathrm{D} *\} \rightleftarrows\{\mathrm{K} 3.1\} \rightleftarrows\{\mathrm{S} 4.3 ; \mathrm{J} 1\}$ ． Below，in 2．7 I shall prove that Makinson＇s matrix R * verifies T1，and， therefore，there is a metalogical proof that T 1 is a consequence of K3．1， i．e．，that $\{\mathrm{K} 3.1\} \rightleftarrows\{\mathrm{S} 4.3 ; \mathrm{T} 1\}$ ．But，as yet I was unable to find a logical proof of this fact，i．e．，to deduce T 1 from the axioms of K3．1．Maybe，a very tedious proof could be obtained by an application of an idea which is in－ cluded in Schumm＇s Lemma 1，cf．［11］，p． 263.

2．7 Makinson defines system D^{*} as the non－Lewis modal system whose characteristic matrix：

$$
\text { 昌* }=\left\langle V, d,-, \cap, \mathrm{P}^{*}\right\rangle
$$

satisfies the following four conditions：
i）V is a set of all ω sequences $\left\{x_{n}\right\}_{n<\omega}$ of $0^{\prime} s$ and $1^{\prime \prime} s$ ．
ii）d is the designated element：$\left\{1_{n}\right\}_{n<\omega}$ ．
iii）－and \cap are the operations in V defined in pointwise fashion from the familiar Boolean operations－and \cap in $\{0,1\}$ ．
iv）P^{*} is the operation in V such that if $\left\{x_{0}, x_{1}, \ldots\right\} \in V$ ，then $\mathrm{p} *\left\{x_{0}, x_{1}, \ldots\right\}=\left\{y_{0}, y_{1}, \ldots\right\}$ where，for each $i, y_{i}=1$ iff $x_{j}=1$ for some $j \leqslant i$ ．

It should be noticed that Makinson＇s matrix 遈＊is a modification of a characteristic matrix 嗗 introduced by Prior in order to define his Diodorian system D．In both matrices the first three conditions are the same，but in Prior＇s matrix the last condition is formulated as follows：
iv） P is the operation in V such that if $\left\{x_{0}, x_{1}, \ldots\right\} \in V$ ，then $\mathrm{P}\left\{x_{0}, x_{1}, \ldots\right\}=\left\{y_{0}, y_{1}, \ldots\right\}$ where，for some $i, y_{i}=1$ iff $x_{j}=1$ for some $j \leqslant i$ ． $C f .[4]$, pp．406－407，and［11］，p． 263.

A Diodorian system of Prior is identical with my system S4．3．1， $c f .[10]$, p．176，［3］，pp．262－264，and［14］，p． 316.

It follows from the definition of R * that if for arbitrary well formed propositional formula p we shall assign a sequence $\phi(p) \in V$ such that $\phi(p)=$ $\left\{x_{n}\right\}_{n<\omega}$ in which for some $j, 0 \leqslant j<\omega, x=1$ ，then for the formula $N p$ there is one and only one sequence corresponding to $\phi(p), \psi(N p) \in V$ such that $\psi(N p)=\left\{y_{n}\right\}_{n<\omega}$ in which term $y_{j}=0$ ．And，vice versa，if for some $i, 0 \leqslant i<\omega$ ，in $\phi(p)$ term $x_{i}=0$ ，then in $\psi(N p)$ term $y_{i}=1$ ．

Moreover，since in $\beta^{\circ} *$ for an arbitrary element $\alpha \in V$ we have：

$$
\begin{equation*}
\alpha \cap\left\{0_{n}\right\}_{n<\omega}=\left\{0_{n}\right\}_{n<\omega} \cap \alpha=\left\{0_{n}\right\}_{n<\omega}, \tag{1}
\end{equation*}
$$

an assignment of $\left\{0_{n}\right\}_{n<\omega}$ for p which occurs in the formulas $K q p$ or $K p q$ gives for both these formulas the corresponding assignment $\left\{0_{n}\right\}_{n<\omega}$ regard－ less of the assignment given for q ．

2．7．1 Written in the primitive functors of modal logic formula T1 has the following form：

T1＊NMKNMKNMKpNqNqKNMKNMKNpNqNqNq

which，obviously，in the field of S4 is inferentially equivalent to：
T NMKNMKNMKpqqKNMKNMKNpqqq［ $\left.\mathbf{T}^{*}, q / N q ; \mathrm{S1}^{\circ}\right]$
Whence，instead of T 1 or T^{*} it is sufficient to investigate formula T ．
2．7．2 Let us assume that formula T is falsified by matrix 且＊．Then，there must exist sequences α and β belonging to V such that for $\alpha=\alpha(p)$ and $\beta=\beta(q)$ the corresponding sequence $\rho(\mathbf{T}) \neq\left\{1_{n}\right\}_{n<\omega}$ ．

From the properties of ga＊* observed above it clearly follows that it cannot be $\beta=\left\{0_{n}\right\}_{n<\omega}$ ，because in such a case $\rho(T)$ would be $\left\{1_{n}\right\}_{n<\omega}$ ．Hence， $\beta=\beta(p)$ should be a sequence belonging to V in which，for certain $j, 0 \leqslant j<\omega$ ，term $x_{j}=1$ ．Let us assume that in βx_{j} is the first term which is equal to 1 ．Since in the assignment for $p: \alpha=\alpha(p)=\left\{y_{n}\right\}_{n<\omega}$ term y_{j} is either 1 or 0 ，we have two and only two possible cases：

Case I The assignments α and β for p and q determine for formula $K p q$ a sequence in $V \gamma=\gamma(K p q)=\alpha \cap \beta=\left\{z_{n}\right\}_{n<\omega}$ such $z_{j}=1$ and，for $0 \leqslant i<j$ ， $z_{i}=0$ ．And，therefore，due to the properties of 道＊，mentioned above，for formula $K N p q$ there is，determined by α and β ，a sequence $\delta=\delta(K N p q)=$ $-\alpha \cap \beta=\left\{v_{n}\right\}_{n<\omega}$ such that its term $v_{j}=0$ ，and，for $0 \leqslant i<j, v_{i}=0$ ．

Case II The assignments α and β for p and q determine for formula $K p q$ a sequence in $V \gamma^{\prime}=\gamma^{\prime}(K p q)=\alpha \cap \beta=\left\{z_{n}\right\}_{n<\omega}$ such that that $z_{j}=0$ and for $0 \leqslant i$ $<j, z_{i}=0$ ．And，therefore，due to the properties of 脒 * mentioned above，for formula $K N p q$ there is，determined α and β ，a sequence $\delta^{\prime}=\delta^{\prime}(K N p q)=$ $-\alpha \cap \beta=\left\{v_{n}\right\}_{n<\omega}$ such that its term $v_{j}=0$ ，and，for $0 \leqslant i<j, v_{i}=0$ ．
 procedure and thesis $\Subset p N N p$ of S4．From this remark and an inspection of the structure of \mathbf{T}（and even better of $\mathbf{T} 1$ ）it follows at once that cases I and II are entirely analogous．Namely，if in the first case the assignments α and β for p and q induce assignments，say，μ and ν ，for the formulas $N M K p q$
and $N M K N p q$ respectively and if $\mu(N M K p q)$ and $\nu(N M K N p q)$ possess certain properties, say, a and b respectively, then in the second case the assignments μ^{\prime} and ν^{\prime} for the formulas $N M K p q$ and $N M K N p q$ are such that $\nu^{\prime}(N M K N p q)$ has property a and $\mu^{\prime}(N M K p q)$ has property b. And, it is self evident that an inverse of the cases in this reasoning gives the same result. Hence, it is quite sufficient for our end to investigate only one of these case.
2.7.4 Let us analyze Case I. Then, according to the definition of this case, for formula $K N p q$ there is, determined by α and β, a sequence:
(2) $\delta=\delta(K N p q)=\left\{v_{n}\right\}_{n<\omega}$
such that its term $v_{j}=0$, and, for $0 \leqslant i<j, v_{i}=0$. Hence, for formula $N M K N p q$ there is a sequence:

$$
\begin{equation*}
\xi=\xi(N M K N p q)=-P(-\alpha \cap \beta)=-P(\delta)=\left\{r_{n}\right\}_{n<\omega} \tag{3}
\end{equation*}
$$

such that, for $0 \leqslant i \leqslant j$, its term $r_{i}=1$. Therefore, since in β the first term which is equal to 1 is y_{j}, for formula $K N M K N p q q$ we have a sequence:
(4) $\quad \eta=\eta(K N M K N p q q)=\xi \cap \beta=\left\{s_{n}\right\}_{n<\omega}$
such that its term $s_{j}=1$ and, for $0 \leqslant i<j, s_{i}=0$, whence, for formula NMKNMKNpqq there is a sequence:

$$
\begin{equation*}
\kappa=\kappa(N M K N M K N p q q)=-P(\eta)=\left\{t_{n}\right\}_{n<\omega} \tag{5}
\end{equation*}
$$

such that, for $0 \leqslant i<j$, its terms $t_{i}=1$, and, for $j \leqslant k<\omega, t_{k}=0$. Therefore since in β the first term which is equal to 1 is y_{j}, and in κ, for $j \leqslant k<\omega$, $t_{k}=0$, a sequence λ which is an assignment for formula $K N M K N M K N p q q q$ is such that:
(6) $\lambda=\lambda(K N M K N M K N p q q q)=\kappa \cap \beta=\left\{0_{n}\right\}_{n<\omega}$
which gives at once $\rho(T)=\left\{1_{n}\right\}_{n<\omega}$
Therefore, there are no assignments for p and q in \mathbf{T} such that for them formula T would be falsified by matrix $\boldsymbol{\beta}^{*}$. This completes the proof that T1 is a consequence of K3.1. Since in the field of S4 T1 implies J1, we have: $\{\mathrm{K} 3.1\} \rightleftarrows\{\mathrm{S} 4.3 ; \mathrm{J} 1\} \rightleftarrows\{\mathrm{S} 4.3 ; \mathrm{T} 1\}$. But this result is proved metalogically.
2.8 Two new proper axioms of system K1. It will be shown that the following two formulas:

K6 厄espqpMLp
and
K7 ©csp p ppMLp
whose structure is very akin to the structures of J 1 and J 2 , are such that each of them can serve as a proper axiom of K1.
2.8.1 Assume K1. Hence, we have S4 and

K1 §LMpMLp
and，therefore，McKinsey＇s theorem
K2 §KLMpLMqMKpq
［S4；K1；cf．［16］，p．76，point γ ］

Then：

Z1	§ $M L N p M ® p q$	［S2 ${ }^{\circ}$ ］
Z2	¢ LMNpM®pq	［K1，$\left.p / N p ; Z 1 ; \mathrm{S1}^{\circ}{ }^{\circ}\right]$
Z3	『 $L M N p L M$ § $p q$	［ $23 ; 54^{\circ}$ ］
Z4	¢pp	［S1 ${ }^{\circ}$ ］
Z5	§CpqCCprCCKqrsCps	［ $\mathrm{S} 1^{\circ}$ ］
Z6	§LMNpMK®pqNp	［Z5，p／LMNp，$q / L M$ § $p q, r / L M N p, s / M K$ § $p q N q$ ； $Z 3 ; Z 4, p / L M N p ;$ K2，$\left.p / \mathbb{C} p q, q / N p ; \mathrm{S}^{\circ}{ }^{\circ}\right]$
K6	『cespqpMLp	$\left[Z 6 ; \mathrm{S1}^{\circ}\right]$

2．8．2 Obviously，K6 implies：
K7 ©®® $p L p p M L p$
$[\mathrm{K} 6, p / L p]$
Now，let us assume S4 and K7．Then：
$Z 1$ 『espqr『LNpr
［S2 ${ }^{\circ}$ ］
$Z 2$ 厄LN® $p L p M L p \quad[Z 1, p / 厄 p L p, q / p, r / M L p ; \mathrm{K} 7]$
Z3 ©LMNpM®pLp ［Z2；S1］
$Z 4$ 厄LMNpMCMpMLp
［ 23 ； S° ］
Z5 §LMNpCLMpMMLp［Z4；s3；cf．［16］，pp．71－72］
K 1 厄 $L M p M L p$
$\left[Z 5 ; \mathrm{S} 4^{\circ}\right]$
Thus，$\{\mathrm{K} 1\} \rightleftarrows\{\mathrm{S} 4 ; \mathrm{K} 1\} \rightleftarrows\{\mathrm{S} 4 ; \mathrm{K} 6\} \rightleftarrows\{\mathrm{S} 4 ; \mathrm{K} 7\}$
2．9 The known members of family K of the non－Lewis modal systems can be arranged in the following diagram：

in which the bold horizontal line indicates that，although system V1 is a proper subsystem of K4，and only of K4 among the known members of family K ，it really does not belong to this family．Comparing this diagram with that which was published in［16］，p．317，we see that：

1．In the present diagram there is no K 5 ，since Thomas reduced this sys－ tem to K4，cf．［17］and 2．3．Instead，V1 is added，as a proper subsystem of K4．
2．On the other hand，three new systems which are not occurring in the former diagram are added，namely，K3．2，K2．2 and K1．1．

There is no problem concerning K3.2, since in 2.4 it has been proved that K3.2 is a proper extension of K3 and a proper subsystem of K4. But, in connection with K2.2 and K1.1.1 there are two open problems, viz.:
a) Whether K2.2 is a proper subsystem of K3.1?
b) Whether K1.1.1 is a proper extension of K1.1?

To these problems, obviously, a third one has to be added, viz.:
c) To obtain a logical proof that K3.1 implies T1.

3 SYSTEMS BETWEEN S4 AND S5

In [16] p. 311, I put, as an open problem, a question whether there exists or does not exist a system being a proper extension of S4.4 and in the same time being a proper subsystem of S5. In [12] Schumm has solved this problem positively proving that the addition of the following formula:

A1 A © $M p L M p ® L M q M L q$

as a new axiom, to S 4.4 generates a new system, called by him S4.7, which satisfies the properties which I required: namely, S 4.7 properly contains S4.4 and is a proper subsystem of S5. In this Section I shall show that there is a proper axiom of S4.7, and, moreover, it will be proved that besides S4.7 there are other systems which are probably weaker than S 4.7 and at the same time are intermediate systems between S4.4 and S5.
3.1 It is easy to prove that in the field of S4.4 Schumm's axiom $A 1$ is inferentially equivalent to:

Q1 A®MLpLp®MLMqCqLq

and, moreover, that the addition of Q1 to S 4 gives S 4.7 so that Q1 is a proper axiom of the latter system.
3.1.1 Let us assume S4.7. Hence, we have $A 1$ and S4.4, and, therefore, also S4 and

R1 © $M L p C p L p$
i.e., the proper axiom of S4.4. Then:

Z1	¢く $p q C M p M q$	[$\mathrm{S} 1^{\circ}$]
Z2	๔¢ LMpMLqCMLMpMLq	$\left[Z 1, p / L M p, q / M L q ; S 4^{\circ}\right]$
Z3	${ }_{\text {s }}$ ¢pqCCrCspCrCsq	[$\mathrm{S} 1^{\circ}$]
Z4	¢® LMqMLqCMLMqCqLq	
	$\left[Z 3, p / M L q, q / C q L q, r / \subseteq 1 M q M L q, s / M L M q ; \mathrm{R} 1, p / q ; Z 2, p / q ; \mathrm{S1}^{\circ}\right]$	
Z5	¢¢ LMqMLq®MLMqCqLq	[$Z 4 ; \mathrm{S4}{ }^{\circ}$]
Z6	¢¢ MNpLMNp®MLpLp	$\left[\mathrm{S}^{\circ}{ }^{\text {] }}\right.$
Q1	$A ® M L p L p \Subset M L M q C q L q$	[$111, p / N p ; Z 6 ; Z 5 ; ~ S 1]$

Thus, 54.7 implies Q1
3.1.2 Assume now S4 and Q1. Then:

Z1	§pMp
22	§MLpMLMp
Z3	¢¢MLMpq®MLpq
24	¢๔MLpLp®MLpCpLp
R1	¢ $M L p C p L p$

Thus，$\{\mathrm{S} 4 ;$ Q1 \} implies R1
$Z 5$ 厄® $M p q$ § $p q$
$Z 6$ 厄く $p q$ 厄 $L p L q$
$Z 7$ 厄く $L M q C q L q$ 厄 $L M q C q L q$
$Z 8$ 厄® $L M q C q L q$ 『 $L M q C L M q L M L q$
$Z 9$ 厄く $L M q C q L q$ © $L M q M L q$
$Z 10$ 厄® $M L M q C q L q$ © $L M q M L q$
$Z 11$ §
A1 $A \Subset M p L M p ® L M q M L q$
［S1］
$\left[Z 1 ; \mathrm{S} 2^{\circ}\right]$
$\left[Z 2 ; \mathrm{S}^{\circ}\right]$
$\left[\mathrm{S} 2^{\circ}\right]$
$\left[\mathrm{Q} 1, q / p ; Z 4 ; Z 3, q / C p L p ; \mathrm{S}^{\circ}\right]$
［Z1； $\left.\mathrm{S}^{\circ}{ }^{\circ}\right]$
$\left[\mathrm{S} 3^{\circ}\right]$
$[Z 6, p / L M q, q / C q L q ; S 4]$
［Z7；S4］
［Z8；S2］
$\left[Z 5, p / L M q, q / C q L q ; Z 9 ; \mathrm{S1}^{\circ}\right]$
$\left[\mathrm{S}^{\circ}{ }^{\circ}\right]$

Hence，$\{S 4 ;$ Q1\} yields Schumm's axiom $A 1$ ．Therefore，it follows from
3．1．1 and 3．1．2 that $\{\mathrm{S} 4.7\} \rightleftarrows\{\mathrm{S} 4.4 ; A 1\} \rightleftarrows\{\mathrm{S} 4 ; \mathrm{Q} 1\}$ ．Hence，Q1 is a proper axiom of S 4.7

3．2 As Schumm has remarked in［12］，his matrix 䏎8 verifies S 4.4 ，but falsifies his axiom $A 1$ ．Hence， S 4.7 is a proper extension of S4．4．This matrix，obviously，falsifies Q1 for $p / 5$ and $q / 6$ ：$A \S M L 5 L 5$ § $M L M 6 C 6 L 6=$ A §M55 ©ML1C68＝ALC15®M13＝CNL5LC13＝CN5L3＝C48＝5．It is self evident that $S 4.7$ is a subsystem of $S 5$ and at the same time a subsystem of K4，since C2 and P1 are proper axioms of S 5 and K4 respectively．Matrix朋10 which verifies S 4.7 falsifies C 2 for $p / 9$ ：§ $M L 9 L 9=$ § $M 99=L C 19=L 9$ $=9$ ，and，㱜10 falsifies P1 for $p / 2$ ：© $M L M 2 C 2 L 2=\Subset M L 1 C 24=L C M 13=$ $L C 13=L 3=4$ ．This proves that S 4.7 is a proper subsystem of S 5 and at the same time a proper subsystem of K4．
3．3 As an immediate consequence of Q1 we have：
R4 $A \Subset M L p L p \Subset M L M p C p L p$
［Q1，$q / p]$
It is clear that in the field of $S 4$ applying deductions entirely analogous to those which were given in 3．1．2 we can obtain R1 from R4，but，the addition of R4 as a new axiom to S 4 does not generate a new system，since R4 and， even，a little stronger formula are provable in S 4.4 ．

3．3．1 Let us assume S4．4．Hence we have S4 and R1．Then：
G1 厄 $M L p L M p$
［S4．4；cf．［16］，p．307］
G2 $\leqslant M L p L M L p$
$[\mathrm{G} 1, p / L p ; \mathrm{S} 4]$
Z1 $\ll M L p L C p L p$
Z2 © $M L p L C p L p$
Z3 厄 $M L p C r L C p L p$
$\left[Z 1 ; \mathrm{G} 2 ; \mathrm{S1}^{\circ}\right]$
$Z 4$ § $C M p L q$ § $p q$
Z6
$Z 6$ ๔ $N C p q p$
$Z 7$ NCMLpq®MLMpCpLp $\left[Z 6, p / M L p ; Z 5 ; \mathrm{S} 1^{\circ}\right]$

Z8 §NCMMLpq®MLMpCpLp
［27；S4］
$Z 9$ 『N® $p q N C M p L q$［Z4；S1 $\left.{ }^{\circ}\right]$
$Z 10$ §N®MLpq®MLMpCpLp
$\left[Z 9, p / M L p ; Z 8, q / L q ; \mathrm{S1}^{\circ}\right]$
［210；S1］
R3 A ®MLpq® $M L M p C p L p$
［R3，$q / L p]$
Thus，it is proved that $\{S 4.4\} \rightleftarrows\{S 4 ; R 1\} \rightleftarrows\{S 4 ; R 3\} \rightleftarrows\{S 4 ; R 4\}$ ．There－ fore，formulas R3 and R4 can serve as proper axioms of S4．4，and their addition to S 4 does not generate a new system．

3．4 The following formula：

which，evidently，is a consequence of S 5 and of V1 follows from S4．7．
3．4．1 Let us assume S4．7．Hence，we have at our disposal S4 and Q1 and， therefore，also，R1．Then：
$Z 1$ §KpMLpLp［R1；S1 $\left.{ }^{\circ}\right]$
$Z 2$ © \quad［ $\mathrm{S} 4 ; c f$. in 3.1 .2 proof of $Z 10$ ］
$Z 3$ 厄๔MLMpCpLp®NMLpNLMp［Z2；S2 ${ }^{\circ}$ ］
$Z 4$ ©MLNpMLCpq［S2 $\left.{ }^{\circ}\right]$
$Z 5$ s $N L M p M L C p q$［Z4； $\left.\mathrm{S1}^{\circ}\right]$
Z6 厄MLqMLCpq［S2 $\left.{ }^{\circ}\right]$
$Z 7$ §Cp§qrCCrsCpCqs
$Z 8$ 厄eMLMpCpLpCNMLpMLCpr
$\left[Z 7, p / \Subset M L M p C p L p, q / N M L p, r / N L M p, s / M L C p r ; Z 3 ; Z 5 ; q / r ; \mathrm{S1}^{\circ}\right]$
Z9 ⒸqrCCsCNprCsCCpqr
$\left[\mathrm{S} 1^{\circ}\right.$ ］
$Z 10$ 『巨MLMpCpLpCCMLpMLqMLCpq
$\left[Z 9, p / M L p, q / M L q, r / M L C p q, s /\right.$ © $\left.M L M p C p L p ; Z 6 ; Z 8, r / q ; \mathrm{S1}^{\circ}\right]$
211 AKprAKCpqCrsKCpNqCrNs
Z12 ©NMLpLMNp
Z13 ALpAKCpqCMLpMLrKCpNqCMLpLMNr $\left[Z 11, r / M L p, s / M L r ; Z 1 ; Z 12, p / r ; S^{\circ}\right]$
Z14 ©CpCqrCAsAKvqtCpAsAKvrt
$Z 15$ ¢巨MLMpCpLpA LpAKCpqMLCprKCpNqCMLpLMNr
$[214, p / ङ M L M p C p L p, q / C M L p M L r, r / M L C p r, s / L p, v / C p q$,
$\left.t / K C p N q C M L p L M N r ; Z 10, q / r ; Z 13 ; \mathrm{S}^{\circ}\right]$
$Z 16$ 〔®MLMpCpLpCLMpMLp
［Z2；S1］
$Z 17$ §CpCqrCCsAtAuKvCwqCKpsAtAuKvCwr
［ S° ］
$Z 18$ 『K®MLMNrCNrLNr『MLMpCpLpA LpAKCpqMLCprKCpNqCMLpMLNr
［ $Z 17, p /$ © MLMNrCNrLNr，$q / L M N r, r / M L N r, s /$ © $M L M p C p L p$,

$$
\left.t / L p, u / K C p q M L C p r, v / C p N q, w / M L p ; Z 16, p / N r ; Z 15 ; \mathrm{S1}^{\circ}\right]
$$

Z19 『CpCqrCCKspAtAvKwqCKspAtAvKwr
 $\left.t / L p, v / K C p q M L C p r, w / C p N q ; Z 10, q / N r ; Z 18 ; \mathrm{S}^{\circ}\right]$
Z21 『CpqCCrsCCtAvAprCtAvAqs las：
E1 $A \S M L p L p A L q A 『 q p ® q N p \quad[\mathrm{~s} 1, r / p]$
and

$$
\text { E2 } A \S M L p L p A L p A \Subset p q \Subset p N q \quad[s 1, q / p, r / q]
$$

I shall show here that each of the systems \｛S4；E1\} and \{S4; E2\} contains S4．4 and，moreover，that in the field of S4 formulas E1 and E2 are inferen－ tially equivalent．

3．5．1 Let us assume S4 and E2．Then：

Z1 厄ALpALqLr『NLrCNLqLp ［S2 ${ }^{\circ}$ ］
$Z 2$ \＆NLCpNqMKpq ［S2 ${ }^{\circ}$ ］
$Z 3 \mathbb{E} N L C p q M K p N q$ ［ $\mathrm{S}^{\circ}{ }^{\circ}$ ］
$Z 4$ 〔ALpA 厄pq®pNqCMKpqCMKpNqLp［Z1，q／Cpq，r／CpNq；Z2；Z3；S1］
$Z 5$ A® MLpLp® MKpqCMKpNqLp ［E2；Z4；S1$]$
Z6 ©MLpMKpLp ［S2］
$Z 7$ § $p C q M K p q$ ［S1］
$Z 8$ ๔CNppp ［ $\mathrm{S1}^{\circ}$ ］
Z9 § CpqCCrCtsCCCtmuCCqCsuCpCru ［S1 ${ }^{\circ}$ ］
$Z 10$ §CMKpLpCMKpNLpLpCMLpCpLp［Z9，p／MLp，q／MKpLp，r／p，t／NLp， $m / L p, u / L p, s / M K p N L p ; Z 6 ; Z 7, q / N L p ; Z 8, p / L p ;$ S1 $\left.^{\circ}\right]$
$Z 11$ 厄⿶ $M K p L p C M K p N L p L p$ © $M L p C p L p$ ［Z10； $\mathrm{S}^{\circ}{ }^{\circ}$ ］
$Z 12$ ๔® $p q$ 厄 p Crq$\left[\mathrm{S} 2^{\circ}\right]$
R1 © $M L p C p L p$ $\left[Z 5, q / L p ; Z 12, p / M L p, q / L p, r / p ; Z 11 ; \mathrm{S1}^{\circ}\right]$
Thus，R1 follows from \｛S4；E2\} and, therefore, $\{\mathbf{S 4} ; \mathrm{E} 2\} \rightarrow\{\mathrm{S} 4.4\}$.
3．5．2 Let us assume S3 and E1．Then：
$Z 1$ 『Lp®qp ［ $\mathrm{S}^{\circ}{ }^{\circ}$ ］
Z2 『CpqCKpsArAqt $\left[\mathrm{S} 1^{\circ}\right.$ ］
$Z 3$ §KLpsArA『qpt $\left[Z 2, p / L p, q / \subseteq q p ; Z 1 ; S 1^{\circ}\right]$
Z4 厄CpArAsqCCqtCpArAst ［ $\mathrm{S} 1^{\circ}$ ］
Z5 厄KpqArAsq $\left[\mathrm{S1}^{\circ}\right.$ ］
Z6 厄KtLNpArAs『qNp
$\left[Z 4, p / K t L N p, q / L N p, t / \varsigma q N p ; Z 5, p / t, q / L N p ; Z 1, p / N p ; S 1^{\circ}\right]$
$Z 7$ ©® $p q C$ © $N p q L q$ ［ $\mathrm{S} 3^{\circ}$ ］
$Z 8$ 厄くpCqrCKpqArs
［ $\mathrm{S} 1^{\circ}$ ］
$Z 9$ § K 『 $p q$ 『 $N p q A L q s$
$\left[Z 8, p /\right.$ § $p q, q /$ § $\left.N p q, r / L q ; Z 7 ; \mathrm{S1}^{\circ}\right]$
$Z 10$ ©く $N p N q$ 『 $q p$
$\left[\mathrm{S}^{\circ}\right]$
$Z 11$ 『CpqCKspArAqt
［ $\mathrm{S} 1^{\circ}$ ］
$Z 12$ ©Ks®NpNqArA® $q p t$
$\left[Z 11, p / 厄 N p N q, q / \S q p ; Z 10 ; \mathrm{S1}^{\circ}\right]$
$Z 13$ 『厄 $p N q$ 『 $q N p$
$\left[\mathrm{S} 2^{\circ}\right]$
Z14 ©く $p q$ CKpsArAtq
［ $\mathrm{S1}^{\circ}$ ］
Z15 ®K®pNqsArAt『qNp
$\left[Z 14, p / ® p N q, q / \mathbb{®} q N p ; Z 13 ; \mathrm{S} 1^{\circ}\right]$
Z16 厄CKsptCCKsqtCCKsrtCKsApAqrt
［ $\mathrm{S} 1^{\circ}$ ］
$Z 17$ § K § $p q A L N p A$ 『 $N p q$ 『 NpNqA LqA『 $q p$ 『 $q N p$
$[Z 16, s / ® p q, p / L N p, t / A L q A \S q p \Subset q N p, q /$ §Npq, r/®NpNq;
$Z 6, t / \mathbb{\circledR} p q, r / L q, s / \S q p ; Z 9, s / A \S q p \S q N p ;$
$\left.Z 12, s / ® p q, r / L q, t / ® q N p ; \mathrm{S1}^{\circ}\right]$

Z18 © CKpstCCKqstCCKrstCKApAqrst
$\left[\mathrm{S} 1^{\circ}\right]$
Z19 『KA LpA®pq® $p N q A L N p A$ 『Npq®NpNqA LqA®qp®qNp
［Z18，$p / L p, s / A L N p A \Subset N p q \Subset N p N q, t / A L q A \S q p \Subset q N p, q / ® p q, r / ® p N q ;$ $Z 3, s / A L N p A$ 厄 $N p q$ 『 $N p N q, r / L q, t / \S q N p ; Z 17 ;$ $Z 15, s / A L N p A$ ® $N p q$ ® $N p N q, r / L q, t /$ § $\left.q p ; S 1^{\circ}\right]$
［S1 ${ }^{\circ}$ ］
$Z 20$ § CKpqrCAspCAsqAsr
E2 $A \Subset M L p L p A L p A \S p q \Subset p N q[Z 20, p / A L q A \Subset q p 『 q N p, q / A L N q A$ §Nqp®NqNp， $r / A L p A \Subset p q$ § $\left.p N q, s / ® M L p L p ; Z 19, p / q, q / p ; E 1 ; E 1, q / N q ; \mathbf{S 1}^{\circ}\right]$
Thus，\｛S3；E1\} implies E2. Therefore, it follows from 3.5.1 that \｛S4；E1\} contains S4.4.
3．5．3 Let us assume S4 and E2．Hence，we have R1，cf．3．5．1．Then：
$Z 1$ § $p C q p$
$Z 2$ 〔MLpMLCqp［Z1； $\left.\mathrm{S2}^{\circ}\right]$
$Z 3$ 『 p p
$Z 4$ ๔．CpqCCsrCCqCrvCpCsv［ $\mathrm{S1}^{\circ}$ ］
$Z 5$ 厄 $M L p C p$ 『 $q p \quad[Z 4, p / M L p, q / M L C q p, s / p, r / C q p, v /$ § $q p$ ； $\left.Z 2 ; Z 1 ; \mathrm{R} 1, p / C q p ; \mathrm{S1}^{\circ}\right]$
 $\left.Z 2 ; Z 3 ; p / C q p ; \mathrm{R} 1, p / C q p ; \mathrm{S1}^{\circ}\right]$
Z7 『epqCMLpMLq
［ $\mathrm{S} 3^{\circ}$ ］
$Z 8$ §CpCqrCCrCstCKpqCNtCsv
$\left[\mathrm{S} 1^{\circ}\right.$ ］
$Z 9$ §K®pqM LpCNLqCqv
$\left[Z 8, p / \S p q, q / M L p, r / M L q, s / q, t / L q ; Z 7 ; \mathrm{R} 1, p / q ; \mathrm{S}^{\circ}{ }^{\circ}\right]$
$Z 10$ ®CpCqCrvCCvCNstCpCqCNtCrs［S1］
$Z 11$ 『 K 厄 $p q M L p C N L q C N ® q N p C q p[Z 10, p / K ® p q M L p, q / N L q, r / q, v / M L N p$ ， $\left.s / p, t / \varsigma q N p ; Z 9, v / M L N p ; Z 5, p / N p ; \mathrm{S}^{\circ}\right]$
Z12 厄CKpqCrCNstCCqCtvCKpqCrCNvs
$\left[\mathrm{S} 1^{\circ}\right.$ ］
$Z 13$ 『 K 『 $p q M L p C N L q C N ® q p$ 『 $q N p$
$\left[Z 12, p / \S p q, q / M L p, r / N L q, s / \S q N p, t / C q p, v / \S q p ; Z 11 ; Z 6 ; S 1^{\circ}\right]$
$Z 14$ § $K p q p$
$Z 15$ 『epNq®qNp
Z16 厄 CpqCCqrCpCsCtr
$Z 17$ 『 K 『 $p N q r C s C t 厄 q N p$
［Z16，$\left.p / K ® p N q r, q / \mathbb{S} p N q, r / ® q N p ; Z 14, p / ® p N q, q / r ; Z 15 ; S 1^{\circ}\right]$

> Z18 『 Lp®qp
> Z19 〔CpqCCqrCpCsCNrt
> $Z 20$ 『KLprCsCN® $q p t$ [$\left.Z 19, p / K L p r, q / L p, r / \longleftarrow q p ; Z 14, p / L p, q / r ; Z 18 ; S 1^{\circ}\right]$
> $Z 21$ ๔CKpsvCCKqsvCCKrsvCKApAqrsv [S°]
> $Z 22$ §KALpA®pq®pNqMLpALqA®qp®qNp
$\left.Z 20, r / M L p, s / N L q, t / 厄 q N p ; Z 13 ; Z 17, r / M L p, s / N L q, t / N ® q p ; \operatorname{S1}^{\circ}\right]$
Z23 『 Lpp
[S1]
Z24 ACMLpLpALpA『pq® $p N q \quad\left[\mathrm{E} 2 ; Z 23, p / C M L p L p ; \mathrm{S}^{\circ}{ }^{\circ}\right]$
Z25 ACpqp
Z26 『ArpCArqArKpq
$\left[\mathrm{S} 1^{\circ}\right.$]
Z27 ACMLpLpKALpA『pq『pNqMLp [Z26,r/CMLpLp, $p / A L p A 『 p q$ 『 $p N q$;
$\left.q / M L p ; Z 24 ; Z 25, p / M L p, q / L p ; \mathrm{S1}^{\circ}\right]$
$Z 28$ ACMMLpLLpKALpA§pq®pNqMLp
[Z27; S4]
Z29 『CMpLq® $p q$
[S1; cf. [13], p. 156]
$Z 30 A$ §MLpLpKALpA®pq®pNqMLp
[$\left.Z 228 ; Z 29, p / M L p, q / L p ; S 1^{\circ}\right]$
E1 $A \Subset M L p L p A L q A \Subset q p \Subset q N p$
[Z30; Z22; S1 ${ }^{\circ}$]
Thus, $\{\mathbf{S} 4 ; \mathrm{E} 2\}$ implies E1. Therefore, it is proved that system $\{\mathrm{S} 4 ; \mathrm{E} 1\}$
(and \{S4; E2\}) contains S4.4 and that in the field of S4 E1 and E2 are in-
ferentially equivalent.
3.6 I call system \{S4; E1\} (and \{S4; E2\}) which is an extension of $\mathbf{S 4 . 4}$ sys-
tem S4.5. And, system $\{\mathrm{S} 4 ; \mathrm{S} 1\}$ which is an extension of S 4.5 system $\mathrm{S4.6}$.
Matrix $\notin \mathbb{A}$ which verifies $S 4.4$, falsifies the proper axiom of S4.5 E1
(and, naturally, also E2) for $p / 5$ and $q / 2$: $A ® M L 5 L 5 A L 2 A ® 25 ® 2 N 5=$
$A L C M 55 C N 8 A L C 25 L C 24=A L C 15 C 1 A L 5 L 3=C N L 5 C 1 C N 58=C N 5 C 1 C 48=$
$C 4 C 15=C 45=5$. This proves that S 4.5 is a proper extension of S4.4.
I have no proof that S 4.5 is a proper subsystem of S 4.6 , but it is very
probable. Since it is self evident that S 4.6 is not only a subsystem of S 4.7 ,
but also a subsystem of V1, it should be proved that both these systems,
S4.7 and V1, are proper extension of S4.6. Matrix $\mathrm{Ml}^{2} 3$ verifies S4.6, but
falsifies a proper axiom of V1. Namely, V1 is valsified for $p / 2$ and $q / 3, c f$.
[15], p. 306. Thus, $S 4.6$ is a proper subsystem of V1. It is an open problem
whether S 4.7 is a proper extension of S4.6.

3．7 The following diagram：

visualizes the relations among the systems which were discussed in this Section．There are many，open problems connected with this diagram．I mention here only two，namely：
a) Whether S 4.5 is a proper subsystem of S 4.6 , and whether S 4.7 is a proper extension of S 4.6 ?
b) To prove that there exist or does not exist an intermediate system between S4.4 and S5 which at the same time is not a subsystem of K4.

Added in proof: 1. Concerning Grzegorczyk's formula which was discussed in Section 2, cf. [20] and [21]. 2. In a letter of 4/14/70, Professor J. Jay Zeman informed the author that the systems $\mathrm{S} 4.5, \mathrm{~S} 4.6$ and S 4.7 are inferentially equivalent.

BIBLIOGRAPHY

[1] Dummet, M. A., and E. J. Lemmon, "Modal logics between S4 and S5," Zeitschrift fir mathematische Logik und Grundlagen der Mathematik, vol. 5 (1959), pp. 250-264.
[2] Grzegorczyk, A., "Nieklasyczne rachunki zdan a metogologiczne schematy badania naukowego i definicje peję̧ asertycznych," (In Polish). "Non-classical propositional calculi in relation to metodological patterns of scientific investigation,' Studia Logica, vol. XX (1967), pp. 117-132.
[3] Hughes, G. E., and M. J. Creswell, An introduction to modal logic, Methuen and Co., Ltd., London (1968).
[4] Makinson, D. C., "There are infinitely many Diodorean Modal functions," The Journal of Symbolic Logic, vol. 31 (1966), pp. 406-408.
[5] McKinsey, J. C. C., "On the syntactical construction of systems of modal logic,'" The Journal of Symbolic Logic, vol. 10 (1945), pp. 83-94.
[6] McKinsey, J. C. C., and A. Tarski, "Some theorems about the sentential calculi of Lewis and Langford," The Journal of Symbolic Logic, vol. 13 (1948), pp. 1-15.
[7] Lewis, C. L., and C. M. Langford, Symbolic Logic, Second Edition, 1959, New York, Devon Publication.
[8] Parry, W. T., "Modalities in the Survey system of strict implication," The Journal of Symbolic Logic, vol. 4 (1939), pp. 137-154.
[9] Prior, A. N., "K1, K2 and related modal systems," Notre Dame Journal of Formal Logic, vol. V (1964), pp. 299-304.
[10] Prior, A. N., Past, Present and Future, Clarendon Press, Oxford (1967).
[11] Schumm, G. F., "On a modal system of D. C. Makinson and B. Sobociński," Notre Dame Journal of Formal Logic, vol. X (1969), pp. 263-265.
[12] Schumm, G. F., "On some open questions of B. Sobociński," Notre Dame Journal of Formal Logic, vol. X (1969), pp. 261-262.
[13] Sobocinski, B., "A note on modal systems," Notre Dame Journal of Formal Logic, vol. IV (1963), pp. 155-157.
[14] Sobocifiski, B., "Family K of the non-Lewis modal systems," Notre Dame Journal of Formal Logic, vol. V (1964), pp. 313-318.
[15] Sobocinski, B., '"Modal system S4.4," Notre Dame Journal of Formal Logic, vol. V (1964), pp. 305-312.
[16] Sobocinski, B., "Remarks about axiomatizations of certain modal systems," Notre Dame Journal of Formal Logic, vol. V (1964), pp. 71-80.
[17] Thomas, I., "Decision for K4,'" Notre Dame Journal of Formal Logic, vol. VIII (1967), pp. 337-338.
[18] Zeman, J. J., "The propositional calculus MC and its modal analog,' Notre Dame Journal of Formal Logic, vol. IX (1968), pp. 294-298.
[19] Zeman, J. J., 'Modal systems in which necessity is 'factorable",'" Notre Dame Journal of Formal Logic, vol. X (1969), pp. 247-256.
[20] Grzegorczyk, A., 'Some relational systems and the associated topological spaces,' Fundamenta Mathematicae, vol. LX (1967), pp. 223-231
[21] Bull, R. A., Review of 20 in The Journal of Symbolic Logic, vol. 34 (1969), pp. 652-653.

University of Notre Dame
Notre Dame, Indiana

