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NON-EXISTENCE DOES NOT EXIST

R. ROUTLEY

The main aims of this paper are to explain criteria for the identity of
individuals, to compare various criteria for the existence of properties and
for the existence of propositions, and to present certain theses concerning
the existence and identity of individuals, of propositions, and of properties.
Several other topics are, however, treated incidentally; for example an ex-
tended sentential logic designed to take care of certain semantical para-
doxes and truth-value gaps by allowing for statement-incapable sentences
is sketched.

In order to attack in a formal way the question of the existence of
properties and relations and to formalise widely employed criteria for the
existence of attributes, i.e. of properties and relations, an extended predi-
cate calculus must first be introduced. As a first move it is valuable to
determine how much can be done in the simplest and most accessible of
higher order functional calculi, viz. second-order functional calculus. Now
this logic has to be so designed that it can express such propositions as
"Some properties do not exist" and "All properties, whether possible or
impossible,... .(e.g. exist)". At first this suggests that a system like R*,
which allows for quantification over all possible individual items, be ex-
tended to second order.1 Such an extension of R* to second order can be
obtained by

(i) relaxing a formation rule of R* so that predicate and propositional
variables as well as individual variables may be bound, i.e. by replacing
the formation rule specifying how ζir9 (read 'for all possible') can enter into
wff by the rule:

if A is a wff then (πu)A is a wff, where u is any variable (individual,
predicate, propositional).

(ii) replacing 'individual variable' whenever it occurs in the axioms
and transformation rules of R* by 'variable' and using in these axioms and
rules extra-systematic (or syntactic) variables which range over both in-
dividual, predicate or propositional variables. These extensions are, how-
ever, insufficient to yield a Henkin-complete second-order predicate logic.
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In order to strengthen the axioms sufficiently both predicate and proposi-
tional schemes have to be extended; for instance the predicate scheme ob-
tained from the enlargement of R*,

\-{πf)A ^ ^ g A\, where g is a predicate variable or a consistent predi-
cate constant,

is widened to allow substitution of any wff for/, i.e. the scheme is replaced
by:

Mπ/iA => S B A\> w h e r e B i s anY w f f

B need not even be consistent. Thus admitting this new scheme is tanta-
mount to allowing a further extension of attribute quantifiers beyond
possible attributes; it is tantamount to allowing that attribute quantifiers
can, under an interpretation of the logic, range over any attributes whether
possible or impossible. Consequently there is no reason for selecting
notation which indicates possibility-restricted quantifiers; the completely
unlimited quantifiers Ά' and 'S' read, respectively, 'for all (whether pos-
sible or impossible)' and 'for some' can be used without hazard. For
analogous reasons the usual propositional schema

V

using a universal but existentially-restricted quantifier ' V can be replaced
by

V

*-(Ap)A^ S B A |

Individual quantifiers of R* could also be extended, only to make the picture
clear and to escape the objection that the theory is simply a subsistence
theory the underlying quantifier-free logic would have to be amended, for
example by distinguishing sentence and predicate negation. To avoid such
amendment quantifiers over individual domains are not here extended;
consequently individual variables have substitution-ranges restricted to
consistent individual expressions.

To attack the problems at hand a modal extension of second order logic
is decidedly advantageous. For one reason various criteria for the exis-
tence of properties can be expressed in such a system but not simply in
second-order logic; for another identity criteria, of philosophical impor-
tance, can be separated in the modal extension but not in the second-order
logic itself. So consider first a S5-modalised second-order predicate logic
+ S52R*, a system of some interest on its own account.

Primitive frame of + S52R* The primitive symbols are those of pure
second-order predicate logic2, but with quantifiers 'π' and Ά', together with
the modal symbol 'D' and with individual, predicate, and propositional
constants including the monadic predicate constant Έ ' (read 'exists'). The
formation rules combine those of second-order predicate logic with those
for modal logic.
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Axiom schemata

R.I: I-((A D B)ΏC) D ((C3A) 3 (J9 => A))

R.2: i-(πι;)(i4. 3 5) D (A D (πι )i?), where t> is an individual variable which

does not occur free in A.

R.2B: *-(Aυ)(A D £) D (A z> (At;)£), where f is a predicate or propositional

variable which does not occur free in A.
V

S v
A I, where z; is an individual variable and u is an indi-

vidual variable or a consistent individual constant.
v

S p

B A I, where p is a propositional variable and B is a wff.
V

R.3C: MA/)A ^ 5 s "* " "" A I, where / is an w-adic predicate variable and

vu v2,... vn are w distinct individual variables and B is a wff.3

R.4: f-D(A D 5) D (A Z) Dΰ), where every variable in A is modalised,

i.e. within the scope of ' D \

R.5A: HD A D (τrf)A, where f is an individual variable.

R.5B: \-ΏA D (A?;)A, where i; is a predicate or propositional variable.

Transformation rules:

R1 H A , I - A D £ — > H J 3 (modus ponens)

R2 HA - » t - D A (necessitation)

Derived rules:

i-A—• ι-(7π;)A, where v is an individual variable

HA—• f-(A^)A, where υ is a predicate or proposition variable

(generalisation)

Proof: From R.5, RΊ and R2.

Definitions:

Dl. / sD/ (Â )/>

D2. -A =D/ (A D / )

D3. (ΣMU =Df ~(VU)~A

D4. .* ΞD/ ~ /

D5. A v 5 ΞD/ (A 3 5) ^ B

D6. A& 5 ΞD/ - ( A D ~ B )

D7. A Ξ B =Df (A D 5) & (5 D A)

D8. OA =D/ ~ D ~A

D9. A -3 B =D/ • (A D 5)

D10. A = B =Df (A -3 5) & (5 -3 A)

Dll. O(/) =D/ O ( Σ t f ! ) . . . ( Z i ^ j ^ . . ^ )

D13. (τ7/?)A(/>) sD/ (Ap)(Op^A(p))

D14. (S^)A Ξp̂r -(Av)~A, where v is a predicate or propositional vari-

able.
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D15. (lυ)A(v) =Df (Σv)(E(v) & A(v))\ , . . . . - . ,
_ 1 C / w v./ x / wr-/ v _, „, Xλ } where i; is an individual variable.
D16. (Vv)A(v) =Df (πv)(E(v) ^ A(υ)) j

D18. (τrf)A(f) =Df (Af)(O(f) ΏA{f))

General schemes for ' 3 ' and 'V cannot be introduced at this stage since

Έ(/)' and Έ(p)J (where ' / ' and ζρ* range respectively over predicate vari-

ables and constants and propositional variables and constants) have not

been defined.

Theorems and metatheorems:

Tl. Every theorem of propositional calculus is a theorem o/+S52R*.

Proof indication: R.1 is Lukasiewicz's shortest axiom for the pure impli-

cational calculus4, and it, together with R.2B and R.3B, modus ponens and

generalisation and definitions D1-D7, gives the full propositional calculus.5

T2. h-DA D A

Proof: By R.5B, R.3B & Tl

T3. \-Π{A D B) D. DA D DB

Proof: (i) (-( ϋ A D A) D ((A D B) D (DA D 5)); by Tl, T2

(ii) H((A D B) Ώ (DA D 5)); from(i)

(iii) \-Π(A D B) D(ΠAΏ B); from T2, (ii), by Tl

(iv) hD(A D 5) D D(DAD 5); from (iii), T2, R.4

(v) hD(A D 5) 3 (DAD DB); by R.4

(vi) KD(A D 5) D (DA D D5)j from (iv) and (v)

T4. h-DA D D ΠA

Proof: hD(DA D DA) D (DA D D DA); from R.4

Result by R2, R1, Tl.

T5. H~DA D D ~ DA

Proof: h θ ( ~ DA D ~DA) D (~DA D D - D A ) ; from R.4

Result by R2, R1,T1.

T6. Every theorem of 55 is a theorem o/ + S52R*

Proof: From Tl, R2, T2, T3, T5.

T7. Every theorem of S5R* is a theorem o/+S52R* 6

Proof: +S52R* includes R*, and S5R* has as postulates postulates of R*

and of S5.

T8. +S52R* is consistent

Proof: Consider the map M which maps V to Ά', (Π' to '(Av)9, and other-

wise is an identity map. Under M +S52R* maps onto a system equivalent to

that obtained from Church's F2 by replacing 'V by Ά \ For the restriction

of R.3A to consistent constants can be lifted. F 2 is consistent (in various

senses)2. Hence +S52R* is consistent.
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T9. \-{irv)(A D B) =>. A D (πv)B, where v is a variable of any sort which
does not occur free in A.

Not all results which hold for unrestricted quantifiers Ά9 and 'S' hold for
consistent quantifiers V and 'Σ' or existential quantifiers 'V and ' 3 \ In
particular, universal instantiation and particular generalisation are quali-
fied.

V

T10. ^(τrp)A(p) D §β A(p) \, provided B is consistent, i.e., OB

V

Til . Hπf)A(f) D β β " 1 "V" A<J)\, provided B is consistent

v
T12. ^ 3 B ^ ' D ( S ^ > ̂ ^ Provisos as in R.3B

V

T13. y-^VltV2"Vn)A I D (S/)A, wzίΛ provisos as in R.3C

v

S p

βA(p) I D (Σp)A(£), provided B is consistent
v

T15. ^ S B * 1 " 1 ^ ^ ) ! ^(Tf)A(f), provided B is consistent

T16. Scheme (A) (of footnote 3) zs α theorem-schema o/ + S52R*

Proof: Substituting K , J ί 2 . . J β p Ξ A ) for A in T13.

T17. t-(Σf)(πvι, v2- - -Vn)(f(vι, v2- *Vn) -A), where A is a consistent wff
containing distinct individual variables vi, vz... vn and f is an n-adic predi-
cate which does not occur free in A.

The restriction to consistent wff in preceding theorems plays an important
role in those solutions of logical paradoxes which class paradoxical items
as impossibilia, once orders are dropped.

T18. t- {Sf){Ήx)f(x), i.e. some property is a property
of every possible item.

\-'(ΣJ)(wc)fb)

Proof: Putting A(x) v ~ A{x), where A is consistent, for A in T16 and T17.

T19. \-(πx){Σf)f(x), i.e. every consistent item has
some consistent property.

Despite its initial attractiveness +S52R* has some serious defects,
exhibited in particular in the following theorems:

T20. (ΣX)AΌOA. Proof from R.5A

T21. (Σx)A D (ΉX)OA

Proof by T20, generalisation, and R.5A.

T22. (Σx)(OA^ nA) D (τjχ)(0A D DA) (principle of predication)
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Proof: (Σx)(θA 3 DA) D. O(OA D DA), by T20
D.OA =)DA , by S5 principles.

Result by generalisation and R.2A.

For the principle of predication, a principle tied to essentialism in
modal logic, is a completely unsatisfactory principle (for details see IE),
and T21 is false if essentialism is: for some consistent item is red but not
every consistent item, e.g. a non-red one, is possibly red.

A logic S52R*, which escapes these consequences, is obtained from
+ S52R* by dropping postulates R.5A and R.5B and adding instead as postu-
lates Tl, T2, T5 and the rules of generalisation. S52R* is consistent since
it is a subsystem of +S52R*.

Theorem. T20 and T21 are not theorems of S52R*. Hence S52R* is a
proper subsystem o/+S52R*.

Proof outline: A countermodel to T21, and thereby to T20, can be con-
structed by taking a two individual model, with distinct elements a and b,
for Church's system F2 and equating DA with A. Then every theorem of
S52R* is true in the model, but instances of T21 such as

a - a v a - b D . {a = a & a = b)

are false.

Identity of individuals with respect of S52R* When extensional identity
and strict identity of individuals are distinguished the Leibniz identity cri-
terion, usually adopted in higher predicate logics, proves inadequate.7 And
short of extending S52R*, for instance in the fashion explained below, there
is no decent option to introducing the extensional identity sign, written <Ξ>,
as a further primitive. Call the resulting system S52R*. The axiom -
schemes for '=' are

1. )rX = X

2. v-(x = y) Ώ(AΏB),

where x and y are individual variables or constants and B is obtained from
A by replacing one particular occurrence of x by y, this occurrence of x
being neither within the scope of (πx) or (πy) nor modalised {proviso (a)).

Strict identity is then defined.

D17A. x =y =Df Π(x= y),

and it can be shown that strict identity satisfies

1. hx= x
2. H ( ^ E 3 , ) D ( Λ D 5 ) ,

with proviso (β), where proviso (β) differs from proviso (a) in omitting the
clause 'nor modalised'8. It further follows, in = S52R*, but not in more
comprehensive intensional logics, that the Leibniz criterion holds for strict
identity: that is

t-(x=y) = (Aj)(f(x)=f(y)).



NON-EXISTENCE DOES NOT EXIST 295

Proof: (1) h ( * i y ) D (Af)if(x) = f(y))
For h(# = y) D. • (/(» = /(y)) by D17A and = 2

^ΛAf){f(x)=f{y))
(2) HA/)(/W Ξ /W)DUΞ3;)

H A / ) ( / M s f(y)) Z)(χ = χZD.x = y)

and (2) follows by Tl and Ξ l.

To introduce '̂ > as an extra primitive is displeasing, since it sacri-
fices a major gain in economy of second-order systems over first-order
ones. Worse, no purely extensional (i.e. non-strict extensional) identity
can be asserted in ΞS52R*: for if such an identity were asserted a strict
identity could be derived using necessitation, so contradicting the assump-
tion that the identity is not strict. Indeed no purely contingent truth can be
asserted in S5R* or in S52R*.

To overcome these defects two moves are made. First analytic as-
sertion, symbolised ζ\-9, is distinguished from (synthetic or analytic) as-
sertion, symbolised 'hh\ Second the formation rules are relaxed so as to
allow wff of the form f(pχ, p2- - -Pn), where / is an n-adic predicate (or
functor) and pu p2-*-Pn

 a r e propositional variables. Given the further
symbolism this relaxation permits, ex tens tonality of properties can be de-
fined. A system + R*, in which these moves are carried through, is now
presented.

The system +R* The primitive frame of + R* differs from that of
S52R* with respect to analytic assertion as follows:

(i) The formation rule of S52R* for predicates is replaced by the rule:

If f is an n-adic predicate {or functorial) variable or constant and if
each Uι, u2 . . .Un is either an individual variable or a consistent individual
constant or a propositional variable or constant thenf(ul9 u2 . . . un) is a wff.

It follows that Έ(/>)' is a wff. No expression of the form/(. . ,g(. .p..)...)
with one propositional function nested in another is however a wff.

(ii) Scheme R.3C is extended to
v

+ R 3C: t-(Af)A D ̂ β

 n A\9 where / i s an n-adic predicate (or functor-

ial) variable and υu v2.. vn are n distinct individual or propositional vari-
ables.

(iii) Scheme R.3B is curtailed to
v

S p
B A |, where B is a wff and p is a propositional vari-

able which is not a place holder in a predicate wff, i.e. p is not within the
scope of a predicate symbol; or else B is a propositional variable or con-
stant and p is a propositional variable.
Otherwise the postulates of +R* for analytic assertion are those of S52R*.
But the following postulates for assertion also belong to the frame of + R*.



296 R. ROUTLEY

Axioms:

+ R.6: MΣΛΓ)E(ΛΓ)

+ R.7: H-(ΣΛΓ)~E(#)

Transformation rules:

R+R.3 ϊ-A->tt-A

R+R.4 n-A, H-A D £-+ H-59

Definitions D1-D16 are transferred to +R*

Theorems and Metatheorems

Tl Every theorem of S52R* is a theorem, both asserted and analytically
asserted, of + R*.

On the other hand not every analytically asserted theorem of + R* is a
theorem of SR2R*.

T2 + R* is consistent

Proof sketch: The argument turns on showing that every theorem of+R*
has a tautology as afp, i.e. as associated wff of a propositional calculus
which contains 4 and / as primitive symbols. [The semantical motivation
of the argument is this: To establish consistency a model is selected over
which +R* reduces to propositional calculus. The model has two individ-
uals, the existent 4 and the non-existent / and these are identified with the
two propositions, the true and the false, of the model. Further all functions
of propositions (and individuals) are, over the model, reckoned to be truth
functional, and thus predicates can be eliminated.] The afp of a wff A of
+ R* is obtained by the following steps. Delete all vacuous individual quan-
tifiers and all occurrences of 'D' and bind all free individual variables.

v y

Replace each expression of the form (πx)B by ( Q ^ I & S r 8 ! ) - Replace E(4)
by 4 and E(f) by /. The wff Aτ obtained from A by these steps is a wff of a
protothetic which contains 4 and / as primitive symbols. By treating all
propositional functors of A1 as truth-functional A1 can be replaced by a
conjunction AM of wff of an extended propositional calculus which contains
4 and / as primitive symbols10. Finally the afp AM τ of Ais obtained by re-
placing all wf parts of A"of the form (Ap)C by ( 5 * c l & S ^ ' ( A s s e r t i o n

signs can simply be deleted).

T2.1 Every theorem of+R* has a tautology as afp.

To show this in full it would have to be shown that every axiom has a tau-
tology as afp and that the rules of inference preserve this property. From
T2.1 it follows that a propositional variable standing alone, since not a
tautology, is not a theorem of + R*, Hence

T2.2 +R* is Post-consistent, absolutely consistent, and consistent, with
respect to the transformation of A into ~A.
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Consistency of +R* may appear to be purchased at a price: for it is
not possible to add as further postulate-sentences such sentences as

(lp): It is possible that the only Cretan statement is that all Cretan state-
ments are false, without sacrificing consistency11,

In the context (possible world) in which 'All Cretan statements are false'
is the only Cretan declarative sentence, the sentence is statement-incap-
able, i.e. does not yield a statement, because of vicious content self-de-
pendence12. Thus the sentence (lp) cannot be taken as expressing a
proposition at all and so cannot be added to the postulate list of +R*. [If
(lp) were taken, under an alternative solution proposal for the paradoxes
(which can however be subsumed under the proposal just indicated), to ex-
press a proposition then it would express, applying S5, a logically false
proposition. So again (lp) could not consistently be added to the postulate-
list]. These issues do raise important questions as to the interpretation of
+ R*. To simplify an attack on these issues consider just the sentential or
propositional segment of +R*. The variables (and constants) of this seg-
ment are amenable to various rival though related intended-interpretations,
i.e. as sentential variables, as truth-value variables, as propositional vari-
ables, as variables with sentences as substitution-ranges and truth-values
as designation-ranges. Interpretations have also been proposed13 which
synthesize these interpretations: e.g. a variable has sentences as substitu-
tion-ranges, truth values as extensional designation-ranges or value-ex-
tensions, and propositions as intensional designation-ranges or value-in-
tensions. If not all significant declarative sentences express propositions,
such a synthesis breaks down. Here a different combination of interpreta-
tions, which allows for statement-incapable sentences, is sketched.

Interpretation 1: Variables have significant declarative sentences as
substitution-ranges. Each of these sentences either is statement-incapable,
in which case it is assigned value +i = {+1, -1}, or is statement-capable, in
which case it is assigned value +1 or -1 according as the statement it
yields (in its context) is true or false. The connectives which connect the
variables are sentential connectives. Values for such connectives as '&',
V , Ί> ' (here 'if . . . then materially — ' : not 'implies') are determined by
treating a variable which has value + i as if it had bracketed with it the
ordered pair of values <+ 1, -1* . Thus the matrix for '~ ' can be written in
full:

-1 1

The values +1 and -1 whether bracketed or not are combined according to
the usual truth-table valuations. Resulting bracketed values are assessed
according to the schemes:
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!K -ίH ;!H :!]-=
these schemes are also used in reverse. The following matrices result:

v 1 1 +i -1 &| 1 +i -1 3 1 i -1

1 1 1 1 1 1 i - 1 " 1 1 + i - l

+1 t t ; ] •, , , •;] .i , . i] ,
-1 1 +i -1 -1 -1 - 1 - 1 - 1 1 1 1

where the paired values are alternative possibilities for bracketed values
of either/? or q. For instance when/? and q both have value +i this scheme
for V appears -

P v Q

L:fc).!]
with values 1 and +i for both p bracketings and q bracketings. Apart from
paired values the matrices are those of Lukasiewicz's L3.5

Besides their intended role, the matrices can be adapted to provide a
logical model which allows for truth-value gaps, for example for Aristotel-
ian neuter sentences as usually explained. To illustrate: even if the
sentence 'There will be a sea battle tomorrow' is neuter, the sentence
'Either there will be a sea battle tomorrow or there will not be a sea battle
tomorrow' has value 1 and yields a true statement. For consider the valua-
tion:

p v ~/>

-1 1 1

The matrices are not fully truth-valued. But although the matrices only
provide partial truth-tables (in the many-valued sense), there is an effec-
tive procedure for deciding whether any given wff of sentential logic is a
-^-tautology, i.e. has as a value designated value +1 only. It follows

T3. Every sentential theorem is a +-tautology.

This result also holds when the logic contains 4 or/where these are con-
stants with fixed values +1 and -1 respectively. '/' can still be satisfacto-
rily defined as ((Ap)p', because some sentence has value -1, and the
quantifier 'A' has the following value stipulation:
(A$B(p) has value 1, -1, +i according as B(p) has value +1 for all substi-
tution-values for p, has value-1 for some substitution-value for/), or has
value +i for some substitution-value for p and +1 for all other substitution-
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values for p if any. These values practically coincide with values which

would be obtained by treating universal expressions as conjunctions.

Further the values are precisely those needed to lop off sophisticated

semantical paradoxes. Very briefly,

(2p): 'All Cretan statements are false', in contexts in which all other

Cretan statements, if any, are true, is statementally equivalent to (3p):

'This very Cretan statement is false', which, for reasons of vicious content

self-reference, has value +i. Hence (2p) has value +i. For (2p) can be

symbolised ((Ap)(c(p)^ ~pY\ and all values of p in this are 1 except for

(3p) when the value is +i.

Under this interpretation 1 the sentential calculus is not functionally

complete once fully truth-valued connectives which have uniform values of

+ 1 or -1 for components with value +i are admitted. Thus such semantical

connectives as %\ read 'is statement-incapable' and ' ^ ' read (in contrast

with ' / ' i.e. 'that . . . is true') 'that . . . is unlimitedly true', with matrices

# T Contrast: t

1 + 1 1 1 1 1

+i -1 +i -1 +l l +1]

-I +1 -1 -1 -ij +1 -ij +1

-1 -1

can be introduced. Axioms for a functional complete set of connectives are

not adduced here. Relevant points can, however, be made using the

matrices given and the definitions:

Dl f: Fp =Df Ί~ p

D2f: Prop(/>) =Df Tp v Fp .

'Prop(^)' reads 'that p expresses a proposition'. First, the law of excluded

middle in the form Tp v Fp is not a theorem. Thus Prop(/>) though always

true or false is not a theorem: not every sentence yields a statement.

Second, the theorem

t-Prop(/>) =£p= Tp v Fp

opens the way to

Interpretation2: The variables of sentential calculus have as substitu-

tion-values statement-capable sentence, and thus they yield, or have in-

directly, as values propositions. Interpretation 2 can be derived from

interpretation 1 by introducing propositional variables, distinguished by

Clarendon type, and defined through

D 3 f : (AgXB(/>) =Df (Ap)(l?rop(p) => B(p))

With propositional variables a generality interpretation can also be em-

ployed. Thus if A(p) is an axiom of sentential calculus then (Prop(/>) oΛ(p))

is a theorem. Hence A(p) is a theorem. Also
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(Ap)(A D B(p)) D. (Ap)(A D. Prop(/>) D J3(/>))

D. -A 3 (Ap)B(p), provided £ does not occur free in A.

Continuing for further axioms and rules, it follows

T4: The extended sentential calculus holds for propositional variables.
Propositional connectives to replace sentential connectives may also be de-
fined as in

D4f: (Ap,q) .p D q =Df (Afrq) .Prop(/>) D. Prop(#) =). p D q, where ' D ' reads
'that . . Γ materially implies that — ' .

Finally, in a wff where all connectives and variables are propositional,
connexions with sentences may be cut completely (and propositional ex-
pressions used where expressions are wanted). A logic with only wff of
this sort is a purely propositional logic.

Although +R* is consistent it is not complete under the intended inter-
pretation.14 For the interpretation law Π(τιx) DE(X) is valid under the in-
tended interpretation but it is not a theorem of +R*, as the representation
used to establish consistency shows: {4 &/) is the afp. Similarly
Meinong's law Π(πx)~ DEW is not a theorem. The interpretation law fol-
lows immediately once Ά ' and 'S' quantifiers supplant V and 'Σ\ This
replacement would provide several gains. To illustrate (Sx) Π ~ E(#) could
be deduced, e.g. from G ~E(C\x)(f(x)&,~f{x))) by particular generalisation,
though a parallel conclusion does not follow for 'Σ\

Identity of individuals To define identity auxiliary definitions of 'ex-
tensional in the ith place', 'extensional', 'extensional or modal in the ith

place', and 'extensional or modal', abbreviated respectively 'ext,' 'ext ',
'emi' and 'em', are introduced.

D17 exti(fn) =Df (Ap)(Aq)(p = q z>. (πud. . (τm / _ 1 )(7m / + 1 ). . . (ΉUK)

(/(«! «i-i P, «*) Ξ / ( % QUi+i . .Un))

D18 em. CΓ) =Df (Ap)(Aq) P = q^. (πwj. . (Ίiu^{f{ux ..p..un)= f(uλ. . q . . tύ)

D19 ext(fn) =Df extx(fn) & ext2(fn) & . . . & ext (fn).

D20 e m ( f ) =Df e m ^ " ) & . . . . & emn(fn).

It follows for monadic p r e d i c a t e s :

h-extGO = (A&(Aφ(p = q o.fip) =/te))
\-em(f) i (Ap)(Aq)(p = q Ώ.f(p) =f(q));

and it follows

hext(v) & ext(D) & ext(-) & ext(&)
hem(D) & - ext(Π) & em(0) & ~ ext(O)
hext(/) D em(/)

If */' is a predicate true only over some individuals, like 'is (unlimitedly)
tall', then as both f(p) smdfiq) are false '/' is extensional.
Extensional and strict identity are defined:
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D21. x = y si,/ (Afi(ext(f) D./(«) =/(«))
D22. ^ = 3 ; ^ / (Af)(em(f) Ώ.f(u) =/(*))

Actually more general definitions can be formulated:

D21\ « = 1; sD/ (A/)(ext(/) z>. /(«) s /(*))
D22\ M Ξ « =D/ (A/)(em(f) D. /(M) =/(«))

It follows:

I- x = x;

t- x = x
\- x = y Z) y = x;
h x = y D 3; = ΛΓ

H(Λ; S 3;) & (3; s ^ ) — (χ= z).

Here the premisses can be strengthened to strict identity since

h(#Ξ y) -$ (χ = y).

But in

Hx = y) &iy = z) -3 (* = ^ ) ,

the premisses cannot be weakened to extensional identity.

\-Ώ{x = y) =(x^ y).

Proof: (i) x = yp Π(x = y)
F o r : x = yΏ.(ρ = pΏ. Π(x = p) = Π(x = p)) D . Π(X = x) Ώ Π(X = y)

from D21T

Result by S5 and hx = x

H x = y) = π(χ = y)

Proof: hπ(x=y) = GD(x=y)
= π(x=y)

HAp)(E(p)= P) =). ~(Ap)(x= p)

Proof: ^x= po. ((p = p) D . E(/>) Ξ E(/>)) =>. E(ΛΓ) Ξ Eip); from D21 T .
h(A#)(E(ί) Ξ P) =>• (A/))(ΛΓ = f D . E(ΛT) S /,)

D . U = ~E(ΛΓ) =). EU) = -E(λτ))

D.-(ίf = E(*))

3 . ~ ( A ί ) ( ^ ί )

H-~E(p) 3. (ΣΛΓ) ~(x = p)

Proof: i-x = p D. E(#) 3 E(/>); as in previous theorem
H~E(£) 3. (ΣΛΓ)EW D(ΣX)~(?C =p)

H-(ΣΛΓ)E(ΛΓ) D . -E(/>) D (ΣΛΓ) - ( Λ Γ Ξ ^ )

Result using +R.6 and R +R.4

T5. if all primitive predicates {including Έ') o/+R* are extensional then

(i) extensional identity satisfies Ξ 2.
(ii) strict identity satisfies E2.

(in) (x^y) = (Af)(f(x) s /(y)).
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Proof: If (ii) holds then (iii) follows (as above in T9). If (i) holds then (ii)
follows as indicated above. It remains to establish (i). The proof is by in-
duction over the number of occurrences of primitive symbols ζ~\ *D?, 'π\
and Ά' in wff A. For a primitive predicate '/ ' , by hypothesis, \-ext(j).
Hence

\-χ = y D./(ΛΓ) Z)/(y)

This provides the basis of the induction. In the inductive step these cases
are considered.

(i) A is of the form ~Al9 Then B is of the form ~BX. By induction
hypothesis, \-x = y D. AX D Bl9 with proviso (α), and also therefore, by
s y m m e t r y , \-x =y^>. Bx^> Au with proviso (a). Hence \-x = y Ώ.^ A1z^^ Bl9

with proviso (α).
(ii) A is of the form A x D A2. Then B is of the form Bλ D 5 2 where one of
Bλ and £ 2 is the same as one of Aλ and A2. By induction hypothesis

\-X ΞpJpβΛ

" ι * \ with proviso (a)
\-x = y D. A2 D .B2 j ^
HΛΓ Ξ 3; D. ̂  D A 2 /

Hence HΛ: = 3; D. (AX D B^j D (A2 D 52), with proviso (α), by propositional
calculus and combining the provisos.
(iii) A is of the form (A^V^ (or (ΉX)A1). By induction hypothesis, \-x = y Z).
Aι^ Bu with proviso (a).

^-(Au)(x = y D. Ax D .Bj), with proviso (α) for Ax and J5X.
f-Λ: = y D. (AwMi 3 (Au)Bu with proviso (0?) for Ax and 5X and with u distinct
from x and y, i.e.
hΛ; Ξ 3; D. (A )̂AX D (Aw)Bx, with proviso (en) for A and 5.

The case for V is similar.

T6. If all primitive predicates of +R* are em, i.e. extensional or modal,

then

(i) strict identity satisfies Ξ2,

(n)(x^y)^(Af)(f(x)^f(y)).

Proof: (ii) follows from (i) (as in T9 above). Proof of (i) is analogous to
proof of (i) in T5, except that induction is over the number of occurrences
of ' ~ ' , '=>', Ά', V and '• ' , and that induction starts from

= xl v r, Λ where 'f is a primitive predicate
h x = yΏ.f(x)=f(y)\ * *

Theorems 5 and 6 point up a defect in the introduction of identity, as in
S5R* by schemes like ^i and Ξ2, or =1 and ^2. For these hold only provided
that the interpretations are restricted in the way the conditions of T5 and
T6 require. The schemes narrow, without warrant and without making it
explicit, the class of interpretations of the primitive predicates.
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The theory of identity presented has one serious deficiency, in the
division of predicates into extensional and non-extensional. For under the
proposal predicates like 'is possibly talΓ come out as extensional! There
are various ways out of this difficulty. A first is to treat an individual
predicate as extensional only if it has no non-extensional parts, and to
assume that all primitive individual predicates are extensional. But it has
all the defects of the introduction of identity in S5R*, and really shelves the
problem; for the problem simply reappears at the interpretational level. A
more satisfactory way out starts afresh: sentence predicates *Φ\ ζΫ, etc.
are added to S52R*. Then extensionality of sentence predicates is defined
as before (following Russell).

ext Φ =D/ (Ap,q)(p s p . Φ(p) = Φ(q));

and extensionality of individual predicates is then defined thus:

ext(/)=D/ ~(SΦ)(S£)[(π*)(/(*) ^ Φg(x)) & -ext Φ].

In other words, an individual predicate is extensional if it does not de-
compose into an expression containing a non-extensional sentence predi-
cate. Under this definition all purely non-contingent properties are
non-extensional.

Equivalence and identity of propositions Certain criteria for the
equivalence and identity of contents of sentences, whether the sentences are
statement-capable or not, are expressible in the formalism developed. Two
equivalence relations, which are here symbolised ζp Ξ q9 and (p ^ q\ are, in
fact, ejected by D2Γ and D22T. These expressions express only very weak
equivalence relations between propositions: for they amount, respectively,
to material and strict equivalence.

Proof: {ϊ)\-p± <3θ. {p = p D. (/> = />)=>(£ Ξ p)) D. {p = p) = (p = q); from Ό2V
.\Y-p ±q ̂ .p = q

(ii) p=q, (Ap')(Aq')(P' Ξ q% =>•/(£') =/(*'))>-/(/>) Ξ/(<?)
p = qv-ext(f)D.f(p)^f(q)
p = q h(A/)(ext(/") =)./(/)) =f(q)h choosing/appropriately.

,\\-p Ξ q D. p Ξ q 9 by deduction theorem.

HP = q) = (p = q)

Proof: (i)^p = q^Λp=P^Λp=P) = (p= P)) =>.(P = P)^ P = <l\ from D22 f

y-p=^qo.p=q
(ii) p = q, em(f) hf(p) = f(q)

p = q D. p = q\ by deduction theorem as in previous proof.

The definitions of identity of individuals are not nearly strong enough,
then, to provide plausible definitions of identity of propositions. To
approximate to such definitions +R* would have to be explicitly enriched by
certain pure (i.e. quotation-free) non-em functors, and in particular by 'Kx'
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i.e. 'x knows that' and 'As*' i.e. (x asserts that'. A much better approxi-
mation to propositional identity could then be made, with the definition

D5f: p =q^Df (A/)(f(p) =f(q)).

Without the additional non-em functors, however, there is no guarantee that
(p = q) does not collapse to (p = q): compare T6.

Another statemental relation of much importance, statemental equiv-
alence, can also be roughly explained.

D61: p(x) =q{y) =Df (pM = q(x)) & (# = y), where '£(#)' indicates that indi-
vidual expression V occurs in sentence ιp\

For example: Scott is the author of Marmion = the author of Waverley
wrote Marmion. Statemental equivalence, though much stronger than ma-
terial equivalence; may not preserve modal properties. Hence the
rejections

*p(x) = q(y) =>. • />(*) D Πq(y)
*p(x) £* q(y) o.p(x) =q(y)

Equivalence and identity of properties In an analogous way various equiv-
alence relations can be defined for property expressions. Consider, in
particular

D23. / — g=Df (Vx)if(x) Ξ £"(#)); actual co-extensiveness
D24. f =g=Df {vx)(f(x) =g(x))
D25. / = g =Df (τrx)if(x) =g(x)); logical co-extensiveness

But these relations by no means capture, even approximately, property
identity in all the usually intended senses. An often preferred explication
of property identity is provided by

D7': f=g^Df (πx)(f(x)=g(x)),

a definition which is well-formed with respect of +R* only given a further
extension of the formation rules. To obtain further definitions and to link
these with D23-D25 and D7T a still higher-order predicate logic is wanted.
Then compare

D81: f^g =Df (Ah)(ext(h) D. h(f) D h(g))
D9': f«g=Df (Ah)(h(f)^k(g))

Existence of propositions Various criteria for the existence of proposi-
tions may be compared:

CP1: Elp=~(pDp)

Thus \-(Ap) ~Elp, i.e. no proposition exists.
CP1 is at best a criterion for the existence of propositions: it is not in-
tended to characterize proposition existence, but only to be strictly equiv-
alent to a characterisation. In the case of CP1 such a characterisation
might be a physical locatability one—propositions (properties) like other
individuals exist iff they are physically locatable-or a connected deter-
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minacy requirement--propositions, like other individual items, exist iff
they are determinate in all extensional respects.
Under the first interpretation CP1 would be replaced by

CP1T: Prop(^) D. Elp= ~(p D p)

Then KA£).~ E Ip = ~(p D />)} so (A£) E \p

CP2: E(p) = p,

i.e. a proposition exists iff it is true, a correspondence thesis. It follows:

E(4) &~E(#

i.e. the true exists but the false does not.

CP3: E(p) = Op

i.e. a proposition exists iff it is consistent.

CP4: E(p) =(p^p)

Thus h(Ap)E(p), i.e. all propositions exist. Under the first interpretation

CP4T: Prop(p) Ώ. E(p) = p p
KAg)E(g)

CP5': E!(/>) s prop(£)
Thus f-E:(/>) Ξ. T£ v Ψp

Since [Prop(/>) 3 {p =>£)] but not conversely, CP5T is stronger than CP4.
Under CP4 contents of statement-incapable sentences exist; e.g. the content
of the sole Cretan assertion that all Cretan statements are false exists
under CP4 though not under CP5f. Thus CP4, since it admits paradoxical
contents, is really too liberal. On the other hand, if neuter propositions
were admitted (as existing) CP5T would be too restrictive.
There remain further criteria which cannot be symbolised without the
introduction of more non-em functors, e.g. the implausible

CP6T: E(p) iϊip is or has been entertained.

For under CP61 the existence of a proposition is a time-dependent, and
perhaps person-dependent, contingent matter. Improvements on the
psychologistic CP6' like
CP7T: E(p) iff p can be entertained
CP8T: E(p) Ξ O{Σx)(Bx(p) v Bx(~p), i.e. existent contents are the possible
objects of belief or disbelief, reduce to CP4, CP8f just like CP4 (under the
first interpretation) allows for the existence of non-propositional "beliefs"
and "thoughts".

The chief competing criteria are CPl and CP5T: for CP2 and CP3 can
be knocked out on various counts. First, Έ \ if not an extensional predi-
cate, is at least referentially transparent. If Έ ' is extensional CP3 is
eliminated automatically. Even if extensionality is disqualified as a re-
quirement, transparency as summed up in
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(1): ίW^(y)D.E(ίW)iE(fl(y))

holds. CP3 is eliminated since it fails to satisfy (1). Secondly, the exis-
tence of a proposition is not merely a contingent matter; a proposition if it
exists necessarily exists, i.e.

(2): E(ί)DDE(ί)

CP2 is disqualified as it fails to satisfy (2). Thirdly, criteria CP2 and CP3
have to be rejected if

(3): E(p) D E(~p),

and therefore

(30: EW^EH) 1 5

is correct. Given CP7f or CP8\ (3r) is immediate. If (3) is rejected pecu-
liarities appear. For instance, under CP2 E(p v ~/>) is true but either p or
~p does not exist. Then existent propositions are related to subproposi-
tions which do not exist. Therefore, on a component theory of propositions,
some existent propositions are in the extraordinary position of having
components which do not exist. This argument can also be worked against
CP5f; but it can be halted by discarding component theories.

Only CP1 and CP5T and their equivalents are left standing undimin-
ished. Choice between CP1 and CP5T presents a characteristic conflict
issue. Whether CP1 or CP5f or some other criterion is selected depends
both on whether a reduction of propositions, say to positive and negative
facts or to mental items or to sentences, is attempted, and on whether
criteria for the existence of propositions are assimilated to those for the
existence of observable or locatable items or, as a case of criteria for the
existence of abstract items, are given an independent status. Arguments
for either choice can be contrived. For instance in favour of CP5T it can be
argued: all propositions are possible objects of belief or disbelief; pos-
sible objects of belief or disbelief exist; therefore all propositions exist.
But the argument begs the question, because the dispute as to whether
propositions exist reappears in the issue as to whether possible objects of
belief or disbelief exist. It is tempting to argue that merely possible ob-
jects of this sort do not exist, since they fail to satisfy expected criteria
for the existence of objects. In favour of CP1 it may be argued: only
physically locatable items really exist; propositions are not physically
locatable; therefore propositions do not really exist. But the argument is
inconclusive too inasmuch as it appeals to a criterion for existence which
the other rejects. Philosophical usage on the whole lends support to CP5f

but that is not decisive. For reasons for supporting CP1 appear more
cogent; and some of the philosophical reasons supporting CP5T rest on such
discreditable assumptions as that we cannot talk about what does not exist.
The dispute as to whether and which propositions exist is, however, ,a
philsophical conflict issue, in Wisdom's sense16; and in the end a decision
is not so urgent.
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Since CP5f cannot be expressed in +R*, CP4 is used as an approxima-
tion. When both CP1 and the over-liberal CP4 are adopted as definitions it
follows:

h E(p) = ~ E lp; h E(p) D Prop(/>)
\rp = q z>. E(p) s E(q); ^p = # 3 . E!/> = E!#
HE(ii>)^ Ete); ^Elp^Elq

HE(ί) = E(~/>);
H E(/> v q) s E(/>) v Efa) Ξ E(/> & tf) ^ E(/>) & Efa)
HE!(/> v ? ) Ξ E ! ί v E ! ^ E ! ( p & )̂ = E\p & Elq
hE(4) & E(/); h-EW & -E!/

If existential quantifiers are defined:

(lp)A{p)=Df (Sp)(A(p) &Elp)
(Ep)A(p) =Df (Sp)(Λ(p) & E(p))

then \-(Ep)A(p) = (S/>)A(/>); and h~(3/>)A(/>).
Thus all inferences for 'S' remain valid for Έ ' , but many are rejected for
'3% in particular

* A(q) -3 (ip)A(p)

On the existence of properties Among various ways of defining the exis-
tence of properties in +R*, or in S5R*, a first that stands out is

PI. E(f) =Df (Σx)(f(x) & E(x)) (the instantial criterion),

i.e. a property exists iff something exists which has it.

*-E(/0 = O *)/(*)

If temporal variables are introduced PI can be improved upon with

Pl.l E(f)=Df (Σx)(Σt){f(x;t) & E(x t)),

and several interesting theses can be symbolised, e.g. the sempiternal
hypothesis for individuals: (τrx)((Σt)E(x;t) D (τrt)E(x t)), a statement which
is plainly not a theorem. In contrast a sempiternal hypothesis for proper-
ties:

(Af)((Σt)E(f;t) D (vt)E(f t))

(and also for propositions) is a little more tempting. This hypothesis can
be proved by using the definition:

E(f;t) =pf E(f)8ι(t = t)

For \-(Σt)E{f 9t) D. (Σ t)((t = t) & E(f))
^ E{f)
D. (τrt)(E(f) & .t = t)
D. (τϊt)E(f t).

But the definition and result are most unsatisfactory. In analogous ways it
can be shown that a property, if it exists, exists everywhere and that a
property if it exists at some space-time point exists throughout space-time.
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The resulting claims are downright misleading. For redness does not exist
everywhere; and certainly both redness and blueness, or redness and non-
redness, do not exist everywhere in space-time. The sempiternal hypoth-
esis for properties only gets its plausibility through confusion with an
atemporal hypothesis: that the existence of properties is independent of
time. This thesis is already exhibited by Pl . l . Opposing PI is

P2. 3 <f) =Df (ττx)(f(x) D E(*)) & (Σ*)/M,

i.e. a property exists iff some item has it and everything that has it exists.
The Σ-clause in P2 is essential as otherwise all inconsistent properties
would exist, though many consistent ones would not: indeed the most
common existent properties would be inconsistent ones. P2 would be more
convincing if ζτr' and 'Σ' were replaced, respectively, by existential
analogues 'V9 and ' 3 ' : but then the definition resulting is logically equiv-
alent to PI. As it stands P2 is not at all satisfactory, despite the attrac-
tiveness of its analogue for classes. For if, as seems reasonable, and as
follows from Meinong's principle of independence of existence from so-
being, non-existent items such as unicorns can have properties then few
properties have universal existence; and ultimately only one property,
existence, and certain of its compounds. Under this criterion common
properties such as redness and hardness do not exist! This provides one
of the usual reasons to preferring PI to P2 or to

P3. E!/ = - W ( f W D / W )

under which f-(A/) ~ E ! / , i.e. no properties exist.
However usual reasons for insisting that P3 is false rest on the assumption
that we can only talk significantly about what exists, an assumption which
rests in turn on the reference theory of meaning. Once the reference
theory is abandoned, so are many of the reasons for rejecting P3. This in-
cludes objections to P3 such as that it rules out as false all sorts of state-
ments many people (ordinary speakers) want to put up as true, e.g. 'There
actually are properties which... ', 'There exists a property, hardness,
which some material objects have'. Insofar as such people want to assert
more than that some material objects have a property, hardness, insofar as
they want to assert also that the property of hardness exists, they are
making ontological claims; and the truth of such assertions cannot be
warranted just by appeal to reference-theory-loaded common usage. It is
the reference theory too that is at the back of the assumption that one can-
not consistently assert that no properties exist, any more than one can
consistently say that some things do not exist. However although it is im-
possible to state consistently that some actual property (proposition) does
not exist, there are no such difficulties in stating that no properties exist
or that no actual properties exist.

In recent discussions of the existence of properties, especially as
concerns the acceptability of standard higher-order quantification theory,
an all-or-none doctrine prevails: either no properties exist so quantifica-
tion theory must, in accordance with the reference theory and its conse-
quence, Quine's criterion of ontological commitment, remain a first-order
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theory, or else properties—all properties—exist. But the doctrine that
when some properties exist all do has its source in the pervasive reference
theory of meaning. For consider a typical argument: If it can be asserted
that some properties exist then the language system concerned must con-
tain the equivalent of property variables. But if property variables are
admitted the corresponding universal concept, that of properties, must be
admitted17. Alternatively, if some properties exist the linguistic admission
that they do carries commitment to the universal notion, of all properties.
But (linguistic) admission of the universal concept, of properties, entails
commitment to the existence of all properties. This last crucial step
makes direct application, however, of the reference theory: otherwise why
should property discourse entail property existence? Of course it does not:
one can talk about properties, use predicate variables, and quantify non-
existentially over properties, without being committed ontologically to the
existence of properties. And though maybe not true, it is certainly con-
sistent to claim that some but not all properties exist. The erroneous all-
or-none doctrine repudiates outright, however, PI and P2 and leads to
criteria strictly equivalent either to P3 or to

P4. E2(/) =Df (>πχ)(f(χ) =>/(*)),

under which all properties exist.18 Under P4 not only non-instantiated
properties exist: even inconsistent properties such as round-squareness
which could not be actually instantiated exist. Even non-existence exists!
Yet how can it? Under P4 rampant Platonism would flourish without the
Platonic details of this existence of ideas. For under P4 the existence of
properties becomes a merely formal matter: there appears to be no
adequate filling out of how properties exist, what their existence is like,
why they exist, and so on.

P3 and P4 break all links between the existence of properties and the
existence of property-instances. So an actual property can in no way be a
matter of its (actual, or actual and possible) instances. But this does not
imply that a property may not be a matter of its instances, for example in
the sense of being an abstraction from its instances. Moveover the exis-
tence of instances of a given property is not really sufficient for ascribing
existence to an abstraction from these and other instances.

The widely favoured instantiation criterion evades these sorts of ob-
jections to P4, and leads to such interesting results, as:

H-E(E), i.e. existence exists

For: H E(E) = (Σx)E(x) = (lx)E(x)
HD~E(~E),

i.e. necessarily non-existence does not exist, where (~f)u =p/ ^f(u),
[Scope does not raise a problem, yet. But for further developments this
definition of predicate negation is unsatisfactory.] Hence

Ks/)~E(f).

In addition
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H-3(E) and H-~3(~E)

For 3(-E) = (π*)(~E(*) D E(X)) & (Σ*) ~E(x)
=>. (τrx)E(x)

In contrast 3(3) and 3(~ 3) are not well-defined.
Nonetheless the instantiation definition faces a number of difficulties

too. First, it destroys the powerful formal analogy between properties and
propositions, rejecting construal of propositions as zero-place relations.
If the analogy held the non-existence of properties would stand in much the
position of the non-existence of propositions, and P3 for example would re-
sult. Secondly, the instantiation definition opposes plausible compounding
principles for property existence. For example, / (e.g. existence) may
exist though ~f does not;/ (e.g. redness) andg- (e.g. non-redness) may both
exist though the compound / and g does not; and / v g may exist though
neither / nor g exists. Yet how can the compounding of two existent items
result in nothing actual (and no energy release); and how can an existent
entity have non-existent disjunctive components? Satisfying expected com-
pounding conditions leads back to P3 or P4. Thirdly, the instantiation
definition neglects the fact that properties are abstractions (from their in-
stances) and accordingly are indeterminate in various respects. But such
indeterminacy is, in the case of individual items such as Pegasus and the
present king of France, quite enough for the ascription of non-existence.
Thus the instantial criterion must suppose that properties are quite differ-
ent kinds of items from concrete individuals, and are not susceptible to the
same ontological assessment. But why, when a salient feature of a
property, as distinct from its manifold of property-instances, is that it is a
single individual item? P3 once again escapes this problem; for it can be
seen as a strict consequence of certain definitions of individual existence,
in particular those which imply that an item does not exist if it is indeter-
minate. Fourthly, if cardinal numbers are properties of manifolds19 then,
on the instantiation definition, numbers exist iff the requisite manifolds
exist. Thus if no w-manifolds exist, for n large, the cardinal number n
does not exist. The cardinal numbers cease to exist after a certain
number. Numbers larger than this number, will be merely possible proper-
ties. The parts of mathematics where these numbers are studied, like
much of mathematics, are simply concerned with possibilia. To avoid the
status-damaging conclusion that much of mathematics is not about actual
matters at all, a more liberal criterion than PI is often suggested, namely
the criterion

P5. Etf)=DfO(f),

i.e. all & only consistent properties exist. Further motives emerge in re-
constructing theories of universals for introducing instead of PI either P5
or

P6. Ejίf) =Df O E{f)

P6 is stronger than P5, since hOE{/) Dθ(/) . Possibility of properties
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differs however, from possibility of individuals. In contrast with the antic-
ipated connexion O(x) = OEM, the relation O(f) = OE(f) is rejected. For:

H-O(~E),

i.e. non-existence is a possible property, since

O(~E) = O(Σ*)~E(*).

Hence

H - O ( - E ) &~OE(~E);

and hence

*0<f)oOE(f);

*O{f)=OE(f)

Under P5 and P6 a property may exist even when it has no existent
instances. Indeed non-existence exists under P5. Thus many of the
difficulties of P4 break out again. With respect to mathematics the
Hubert-Poincare equation of existence with consistency or with possible
existence is rightly rejected by neo-intuitionism, since consistency is not
sufficient for correctness: and outside mathematics the equation seems
indefensible. Certainly existence of individuals and attributes should entail
consistency: but consistency does not entail existence, i.e.

hE(u)Ώ0(u);
*O(u) D E(u), u an attribute or individual variable

Some consistent mathematical items, i.e. geometric points and rigid bodies,
are individuals; but they fail to satisfy criteria for the existence of individ-
uals. They have, if you like, mathematical existence, but this just amounts
to possible existence. No, an imagined chair, an angel, a 7-D space, or a
god does not exist just because it is possible that it should; and likewise
angelicness, divinity, possibility and non-denumerability do not exist just
because it is possible that they should (if it is). So P4, P5 and P6 have to
go. P5 and P6 also run foul of a plausible extensionality principle. For

H-/ =gΏm Eif) = E{g),

since \-f = gΌ. {τrx)(E(x) D./W = g(x))
D. (ττx)(E(x) & fix) ̂  E(x) &g(x))
D. (Σx)(E(x) & /(*)) ^ (Σx)(E(x) &g(x))

But though

>-f=g^.O(f)^O(g) H/ = ̂ . O E ( f ) ^ E(g)
*/ Ξ g =>. O(f) ̂ O(g) */ ̂  g D. OE{f) D OE(g)

At least with cardinal numbers the retreat to P5 or P6 is premature.
For if cardinals are tied to paradigm sets their existence can be ensured
under PI given an appropriate criterion for the existence of sets, e.g. given

SI. E(w) =Df (ΉX)(X ε w D . E{X)) & (Σx)(x ε w).
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For then all non-null subsets of an existent set exist, and therefore since
some sets exist sets of arbitrarily large membership size exist. Finally
since sets represent manifolds manifolds of arbitrarily large size exist.
Nonetheless there are good nominalistic grounds for preferring a less
liberal criterion under which at most manifolds of individuals exist, and so
under which transfinite cardinals do not exist. Opposing P1-P6 is

P7\ ~0(EOO),

not so much a further criterion as a basis for rejection of criteria. Now
Έ(/)' may be statement-incapable either because (i) it has some contextual
defect, e.g. it is viciously self-referential, or because (ii) it is non-signifi-
cant. As (i) is viable only in isolated cases, support for P7 must be founded
on (ii). Limited support for (ii) derives from Russell's type theory under
which such expressions as Έ(E)' would be discarded as non-significant.
Two sketchy points. First, many expressions of the form Έ(/V would not
be rejected. Second, the case for RusselΓs particular significance theory
is not strong20, and there is a much stronger case for a significance theory
under which all expressions Έ(u)', where ζu' is a designating expression,
are significant20. This last point also serves to knock out support for (ii)
from verifiability or confirinability theses21. In any case the reasons for
rejecting as false verifiability and confirmability theories of sentence
significance are well-known. The points indicated can be so elaborated as
to provide good grounds for reckoning P7T false.

Associated with predicates Έ ' and ' 3 ' are existential quantifiers de-
fined thus:

(Ef)f(x) =Df (Sf)(f(x) & E(/))
( 3 / ) / W = D / (S/X/M & 3(/))

It follows:

H(E/)/W D(S/)(3*)/M;

H(E/)/W D(3*)EM

t-E(/) D(3*)EM

More important are the non-theorems:

* ( E / ) / M = E(*)22;
* (Ef)f(x) => E(x)
* (E/)/(x)MS/)(/(*)&EW)
* E(/) &/(*) D EM

To vindicate these rejections consider a typical counterexample to the last:
caninity exists, since some dogs exist, and Cerberus is canine, but
Cerberus does not exist. The other rejections follow from this last re-
jection.

Under other criteria for existence the picture is different. For

hE(x)^(3/)/(*)22.
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Proof: (i) E(x) D . E(X) & {Σx)E(x) & (ΉX){E(X) D E(#))

D. (S/)(/W & (ΣΛΓ)/(ΛΓ) & (π*)(f(*) D E(*)))

=>. G/)/(*)

(ii) (3/)/(*) =). (S/)(f(*) & (**)(/(*) D EW))
=>. (Sf){f(x) &.f(x)o E(x))
=). EW

(iii) \-E(x) = (&)<f{x) & E(x))

Hence

h(3/)/W = (S/)(/W & EW).
H(f)/MD. EW

Now let us add to +R* the primitive predicate 'mot', read 'is moving',
and the axiom:
+R.6T: ί—(3ΛΓ) mot (x) & (3x) ̂ mot(Λ:), i.e. there exists something that is
moving, and a thing at rest also exists. It is assumed that a suitable refer-
ence frame is selected. +R.6f renders +R.6 superfluous. It follows from
+R.6f:

H-E(mot) & E(~mot),

i.e. motion and rest both exist. The '-ness' transformation used could be
made explicit: here it can be regarded as absorbed into parentheses. It
also follows

H-~(A/)(E(/0 Ξ~E(~/))

which contradicts one reformulation of Leonard's law23

L5.1 (A/)(E(/)=~E(~/))

Indeed

H-~(AE/)(E(/M~E(~/)),

where

(AEf)B(f) =D/ (A/)(E(/) D £(/)),

so contradicting

L5.2 (AE/)(E(/)^~E(~/))

since

H-(S/)E(/).

Though

MS/)(E(/)^~E(~/))

and

H"(E/)(E(/)s-E(-/)),
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taking Έ' or 'gv~g? as '/ ' , the universal generalisations of these results
are not plausible. On the other hand it seems that

[(A/)(3(/)-~3(~/)]

though not a theorem holds for almost all properties - a further reason for
discarding P2.

To put P2 back in the race predicates or predication links such as 'has'
and 'is' or individual expressions must be taken to carry existential load-
ing. But rather than imposing existential loading on the interpretation of
the symbolism it is far better to make it explicit, e.g. in this way:

f(xE)^Dff(x) & E(#)
fE(x) =Df fix) & EOO;
fix) ^f fhc) & 3 (f)

Since

H/3(*E)=/3(*)

and

H/ 3 (#)D/(* E ),

there are two ways an exponent of P2 might try to build in existential
commitment. But the stronger of these, ζf3(x)\ cannot be used in P2 on
pain of circularity, and adoption of the weaker ζf(xE)\ in place of ζf(x)9 in
P2, collapses P2 into PI; for

(3(/))E HE (π*)(f(*E) D EM) & (Σx)f(xE)

= (τrx)(f(x) & E(x) D. E(*)) & (Σx)(f(x) & E(*))

Thus ensuing investigations concentrate chiefly on properties of E.

(a) h(Vχ)(Ef)f(x),

i.e. every existing item has some existent properties.

Proof: h(V*)(E/)/(#) = (Vx)(Sf)(f{x) & (3 *)/(*))

=. (π*)(E(κ) 3. (S/)(/W & (3*)/(*))

and

hE(pc) D. EW & (Σ^)(EW & E(r))

=>. E(x) &(lx)E(x)

=>. (S/)(/W & 0 *)/(*))

Hence

(ir^)(EW D (S/)(/W & (3AΓ)/(^)))

To strengthen (α) to: there exists a property which every existent has,
further compound predicates are defined:

(/ vg)(u) =Df f(u) vg(u);

(f&g)(u)=Dff(iύ &g(u)
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(fZ)g)(u) =Dff(u) ^g(u);

• (/) =Df (πx)O/(*r);

and similarly for polyadic predicates.

(/ -3 g)(u) ^f(u) -3 g(u);
(f=g)(μ)=Dff(μ) =giμ)

Then

u-E(gv~g)
l-(Zx)Eb) D (3 x)(g&)v~gb))

MA/)(D(/) 3 E(/)),

i.e. all analytic properties exist. This result reveals another inadequacy of
PI. It follows too

H- (E/)(V*)/(#),

i.e. there exists a property every existent has; and

It- D(/) 3 (Vx)f(x).

Furthermore an S5 modal logic of properties follows: for

a(f)*~O(~f);
HΠ(/)DE(/)
O(f^g)^. •(/) 3 D(^;
α(/) 3 D o(f)

\-~Π(j) 3 D ~Π(/).

Many other results follow as well, e.g.
HE(/vf) = E(/) vE(g);
HE(/&^)3E(/)&E(^24

(-•(/D^) 3. E(/&A) => E(̂ &fe)

More interesting than (α) is

(β): (V*)(E/)(/ίE &/(*)),

i.e. every existing item has some existent property other than existence,
which follows once the property of motion or rest is shown to be distinct
from existence: for then

l-EW 3. E(mv~ m) & (mv~ m)(pc) & (rav~ m%£)

3.(SjO(E(/)&/(*)&/M)
=>. (E/)(/£E &/(*)).

So

hW(EWD(E/)(/ίE&/W))

Other properties can be used equally well in this argument, e.g. the prop-
erty of being self-identical or the property of an individual of being an im-
proper part of itself. For self-identity differs from existence, i.e.
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H-EUI,

where

\{x) =Df (x = x)

For:

u-(Σx)~E(x) &x = x.

Hence

H-(ΣX)~(E(*) = l(*));

^ ~ ( E = I).

Since

M E = I ) D ( E = I),
»-(Eί I).

Since existence differs from self-id entity, existence differs from identity, a
point which may be defended alternatively using the following slick argu-
ment from Plato.25 For some property, e.g. mot, both the property and its
complement, ~ mot, exist. But if existence were the same as the attribute
of identity, not just self-identity, then since motion and rest exist, motion
and rest are identical, indeed all existent properties are one, which is im-
possible on several counts, e.g. because

H- mot $ ~ mot.

For

n-~(τrχ)(mot(x) $ ~mot(#)).

H-~(E Ξ ~ E), i.e. existence differs from non-existence.

Proof: \-f = gD.E(j)^ E(g)

So f-EOO & ~E(g) =>. ~(f = g)

hE(E) & -E(-E) 3. ~(E = -E).

Next

H-mot $ E, i.e. existence differs from motion.

To show this a slight detour is made so as to take in another argument of
Plato's, Define 'f blends with g' as '/ and g are coinstantiable', more
exactly

fBg=Df(Σx){fb)&gb)).

Then / B E ̂  E(f);

and H-mot BE

i.e. motion blends with existence, because

f-mot BE = E(mot),

i.e. because motion blends with existence iff motion exists.
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*- ~(mot B ~mot), i.e. motion does not blend with rest.

Now existence differs from motion because existence blends with rest but
motion does not blend with rest. More formally,

H- mot = E =>. (τrx)(mot(x) = E(x))
z>. mot B ~ mot = E B mot

Hence h (mot $ E)

On additional problems generated by relations There is the question of the
best criterion for the existence of (binary) relations, both of relations-in-
intension and of relations-in-extension. There are of course criteria for
the existence of relations parallelling all those discussed in the case of
properties, since one-place predicates may be obtained by identifying or
fixing the places of two-place predicates. Thus corresponding to the phi-
losophically rather unpopular P3 is the philosophically popular

R3. E \R = ~ (τϊx){τϊy){xRy D xRy),

under which no relations exist; and corresponding to the instantial criterion
PI is the criterion

Rl. E(R) Ξ OΛΓ)(3^) xRy26.

But the matter is not so simple; for also corresponding to Rl is the criter-
ion

Rli EL(β) Ξ (Σx)(Σy)(xRy & EW)

- but why should x be favoured over y? - and the criterion

Rl2. EuίΛ) = (Σx)(Σy)(xRy & . E(x) v E(y)).

Since criteria for the existence of relations ought to mesh with criteria for
the existence of properties—especially if relations are just properties of*
ordered pairs, and since there is no clear formal distinction between one
and two place predicates—further problems are raised for PI and P2. How
is PI, for example,—to be satisfactorily extended? Rl 2 as well as classing
as existent far too many suspect relations, falls foul of the notion that a
relation is a property of ordered pairs. For an ordered pair exists pre-
sumably only if its elements exist, and the property of these exists, apply-
ing PI, iff an ordered pair exists. Thus this analysis of relations leads
given PI to Rl. However, adopting the standpoint of PI, Rl rules out too
much. For a relation-instance, in contrast to a property-instance, may
exist even though one of its relata does not exist or does not now exist.
Both intensional relations such as knowledge and temporal relations create
special problems on this score: consider for example the relation of
(great)5-grandfather. The question of the existence of relations raises,
then, important philosophical issues as to whether relations exist inde-
pendently or whether they somehow reduce to properties, or to properties
and a few basic ordering relations such as temporal ordering or lexico-
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graphical ordering, or to membership relations, or to resemblance rela-
tions. Further issues arise since some relations are much less remote
than others; thus abstruse relations and highly generic relations such as
causation may be alleged to occupy an invidious position as regards ontic
standing compared with more specific relations such as hitting and touch-
ing. In fact relations are often regarded, without any good reason, as much
more remote than properties, even as merely logical constructions, and not
as items whose instances can be perceived27—indeed as items which do not
exist and which therefore, if they are to be spoken of, are, according to the
reference theory, in need of reduction. Many of the philosophical issues
are however bypassed by adoption of a criterion equivalent to R3, a
criterion which meshes with and has the same support as P3; then too the
reduction questions can be considered on their own without being so clouded
by ontological issues.

Statements about attributes cannot be satisfactorily reduced to state-
ments, expressible in +R*, about actual attribute-instances. But can these
statements be generally replaced by statements about a more comprehen-
sive class of instance statements, say by statements about possible
attribute-instances? Can all attribute talk be eliminated in the way these
examples suggest, where "Punctuality is a virtue" is replaced by "For all
possible x, if x is a punctual act then x is a virtuous act" 2 8 and "Redness
exists" by "Some item which is red exists"? In certain cases such re-
placements—preserving logical equivalence, not synonymy—can, it seems,
be made. To sharpen the problem a higher predicate logic without types is
wanted, in which all statements about attributes can be expressed. Such
logics not only have considerable intrinsic interest: they are vital for a
full assessment of the logic and ontology of attributes.
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