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EXPRESSIBILΪTY IN TYPE THEORY

H. JULIAN WAD LEIGH

§ 1. Introduc tion

This paper is based on a conception of mathematics not as a system of
statements about "mathematical objects" but as a system of derived rules
of inference which may be applied to physical objects. It aims to build a
foundation for mathematics based on elementary rules of logic which is
independent, so far as possible, of ontological presuppositions. The concept
of expressibility is introduced here mainly for use in constructing such a
foundation. It is a generalization and adaptation to type theory of the
"strong Γ-consistency" defined by Henkin in [4].

Let £ be a simple theory of types. Let Γ be a set of individual or
predicate constants in Q such that all members of Γ belong to the same
type. Let γ be a predicate in Q such that γ(a) is wf if αeΓ (where α is used
autonymously). We shall say that Γ is expressible by γ in £ if there exists
a complete and consistent extension 1 of % such that, for every constant b
of the relevant type, γ(b) is valid in 1 iff, for some αeΓ, the wff b =α is
valid in 1.

It will be shown that a simple theory of types can serve as ^
satisfactory foundation for mathematics if and only if certain meta-
predicates (i.e. predicates defined in the metatheory) are expressible by
predicates in the system. Incidentally, we shall find that certain important
problems of consistency, e.g. ω-consistency of number theory, consistency
of choice axioms, are reducible to problems of express ibility.

Let us say that a system Q of type theory is adequate for mathematics
iff

(1) the set of wffs of £ is recursive, its set of theorems recursively
enumerable,

(2) there is a designated class of individual constants called names
(for objects) such that

(a) if α, b are typographically distinct names, then hα Φ b in £,
(b) if A{xh . . . , xn) is a wff in which the individual variables

# ! , . . . , # « occur free such that

I-HAΓI . . . lxnA(xly . . . , xn) in C,
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then there are names aί9 . . . , an such that A(ah . . . , an) is not refutable
in 8,

(3) every mathematical theorem is a theorem of 8 in the sense that
both the theorem and its proof can be translated into Q and the translation
of the proof is a proof in $.

The first and third conditions present no difficulty in principle, which
makes the second decisive. Sub-condition (2b) is equivalent (c/. 507T 508T
below) to each of the following:

(i) the metapredicate 'name' is expressible in Q by V, where V is the
universal predicate of individuals,

(ii) 8 is strongly Γ-consistent (where Γ is the set of names) in the
sense of Henkin11.

We shall construct a system £μ(°°) in which there are infinitely many
names and in which the axioms of choice are theorems. This system will
be proved consistent by fairly elementary reasoning. It will be shown that
the following statements are equivalent:

(a) £μ(<*>) satisfies condition (2b) of adequacy,
(b) it is possible to construct an extension of Qμ(°°) which contains an

co-cons is tent number theory,
(c) the metapredicate Γfίn (defined immediately below) is expressible

in Cμ(°°).

We shall say that a predicate constant P is Γf m iff either (1) P is
λx(χψ x) or (2) P has the form X#(# = aiV . . . v x - aw) where x is an
individual variable and α^ . . . , α« are individual constants. Obviously if
Γfin is expressible by a predicate y, then γ(P) can properly be interpreted
by ((P is finite."

In §6 we shall define a predicate "fin" and prove that if Γfjn is
expressible in our system by any predicate y, then (1) it is expressible in
this system by fin, and (2) the wff y = fin is consistent in every extension of
that system in which Γf ιn is expressible by y. Thus the choice of a
definition of finiteness, and that of an axiom of infinity, is determined by
the requirements of adequacy.

If the equivalent conditions (a)—(c) are fulfilled, then we can construct
an extension of Cμ(°°) which is adequate at least for all mathematical
theories which can be finitely axiomatized, if not for all mathematics
(cf. §9).

§§2-4 are devoted to the construction of £μ(°°) and related systems.
Expressibility of metapredicates in these systems is discussed in §§5-8.
The remainder of the present introductory section is concerned with
motivation and presuppositions. All our results are deduced by syntactical
procedures without reference to semantics. Semantical considerations do,
however, dominate the motivation of our work. A logistic system is
designed for making inferences about objects. This motivates condition (2)
of the definition of adequacy. In a typical application the objects which
constitute the range of discourse would be some well-defined class of
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physical measurements or observable phenomena. In the general theory
the only assumptions made about the objects are (1) that they are distinct
one from another, (2) that we can assign a name to each biuniquely, and
(3) any one of various alternative hypotheses (§4) as to how many objects
are in the range of discourse. Beyond this we make no onto logical commit-
ments. We do not even make any assumptions concerning existence of sets.
The role of set theory in our work is analogous to that of geometry in
analysis. The heuristic nature of intuitive set theory makes it useful in the
informal or semi-formal presentation of an argument. We use it only for
this purpose. In this paper "set" is a synonym for "predicate", #εPan
abbreviation for P(λr). Let us say that a symbol J has a denotation iff it
refers to an entity E of which we can have knowledge independently of the
language in which J is an expression. The names are the only symbols
that we assume to have a denotation. It is only by inference that denotations
can be assigned to other symbols, and it is not required that any of the
latter have denotations. They may be nothing more than marks which serve
to facilitate certain calculations. In physics, functions which take complex
values are used where the imaginary part of a value of the function has no
physical interpretation. The usefulness of this procedure is presumably
due to the advantages of working with an algebraically closed field.
Similarly in a logistic system there is much to be gained by closure of the
system with respect to the logical operations. If there are some individual
or predicate constants to which no denotation can reasonably be assigned,
the benefits of logical closure may still justify their use.

In order that one may be able to assign appropriate meanings to
sentences which contain quantifiers, it is necessary to define the ranges of
variables. We shall define, for each variable, a syntactical range and a
semantic range. The syntactical ranges are composed of expressions b
such that from VxF(x) one can infer F(b). In particular, the syntactical
range of an individual variable is composed of the individual constants. If
F is a predicate variable such that F(xi, . . . , xn) is wf, its syntactical
range is composed of those wffs in which the variables xl9 . . . , xn, and
no others, occur free.

The semantic range of an individual variable must be composed of the
objects, if the system is to serve its purpose. Then a wff of the form
lxP{x) can be interpreted by "there is an object which is P". This
interpretation will be free from contradiction if the system satisfies
condition (2) of the definition of adequacy. (Here "contradiction" is to be
understood in a broad sense, according to which a system which is
consistent but not co-consistent would be contradictory).

The definition of the semantic range of a predicate variable is
connected with the meanings assigned to sentences which contain quantified
predicate variables. If b is the name of an object, we propose to interpret
lFF(b) by "there is something which can truthfully be said about b . " But
here "something" and "said" need to be made more precise. What can be
said about the object depends not only on the object but also on the
language. Let Q be the language we are using, and let lFF(b) be understood
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to mean "there is a true statement about b which can be written in the
language £." This leads us to identify the semantic range of a predicate
variable with its syntactical range.

Thus interpreted, type theory is not a pure object language. It contains
talk not only about objects, but also about talk, referring to some of its own
expressions. This interpretation allows us to disentangle type theory from
the ontological quandaries with which it has been associated in the
literature, such as misgivings about impredicative definitions and about
whether the system has a standard model.

One may regard the predicate calculi of higher orders as extensions of
the first-order calculus constructed by introducing into the system certain
forms of expression already present, at least potentially, in the metatheory.
But only certain kinds of predicates can thus be introduced. A predicate
can be introduced only if (1) it is uniform as to type (in the sense of 501D
below), and (2) its introduction is compatible with the axioms of exten-
sionality. We shall see that in a system with a finite set of names all
metapredicates that satisfy conditions (1) and (2) are expressible, hence
can be introduced. But if there are infinitely many names, then there are
predicates which do satisfy these conditions but cannot be introduced. We
can define in the metatheory a function which enumerates all predicates of
any given type, but in consequence of Cantor's theorem no such function is
expressible in the system12. We shall find other metapredicates for which
it is not easy to determine whether or not they are expressible, which
raises the question whether the powers of expression of type theory are
sufficient to make it adequate for mathematics. That is the problem of this
paper.

§2. Construction of the theory

In §1 we mentioned the predicate calculi of higher orders as extensions
of the first-order calculus. Here we use a short cut, starting with a pure
predicate calculus of order ω which will be designated by the symbol gω.
This will be extended by postulates, some of which will introduce individual
and predicate constants. The symbols of %ω include (1) logical constants,
i.e. quantifiers and truth-functional symbols, (2) individual and predicate
variables21. Each variable is composed of a letter with a superscript which
shows the type to which the variable belongs. Individual variables have the
form x, in which the dot is the type symbol. All higher type symbols are
constructed by the rule: if tί9 . . . , / „ are type symbols, then (ti, . . . , /«)
is a type symbol22. The atomic wffs of the system have the form

h'x9 n x1. . . x1, where 119 . . . , tn are type symbols. All other wffs are
formed from atomic wffs and logical constants in the usual way. The
symbols described above are the only ones needed for %ω, parentheses or
dots being avoidable by use of a parenthesis-free form of notation. For
working purposes, however, we shall use dots to show the scopes of logical
constants.

Type superscripts can usually be omitted in the working notation. A
formula in working notation may be a schema of which the instances are
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wffs. Thus the instances of the schema Fx have the form F x where t
stands for an arbitrary type symbol. Every such schema has a basic
instance written by placing the individual superscript wherever the rules
permit. All other instances are type elevations of the basic instance. For
perspicuity we shall, so far as possible, follow the practice, wherever two
variables in a formula must be of distinct types, of writing them in distinct
alphabets or distinct parts of an alphabet. In particular, dyadic predicates
will be symbolized by Greek letters. Where type superscripts are needed
at all, it is usually sufficient to write them in one or two places in a
formula (e.g. in Fx the type of F is uniquely determined). In the working
notation, atomic wffs composed of two variables will be written in the form
xzF (in place of Fx), those composed of three variables in the tormxay (in
place of axy)23.

The axioms of gω are

(1) all substitution instances of tautologies
(2a) all wffs of the form

VxA -*A{y)

where A(y) results from the wff A by substitution of y for x (subject to
proper safeguards against confusion of free and bound variables)24.

(2b) all wffs of the form

VFA->A(B(xn. . . χin))

where F is an /z-adic predicate variable having exactly m occurrences in A,
each of these occurrences being in one of the atomic wffs Fxix . . . Xin (1 <
i < m), B{xn . . . x^) is a wff in which there are free occurrences of
ATii, . . . , Xin, and if 1 < i < m then B(xn . . . xίn) results from B(xn. . ,xln)
by substitution of xix . . . xin for xλl . . . xln, A(B(xn . . . xin)) results from A
by the m substitutions of B(xn. . . xin) for Fx{1. . . xin

25, (subject to proper
safeguards against confusions or collisions of variables26).

(3) the usual axioms of extensionality. For monadic predicates F, G
these have the form

Vx. xεF<->xεG. ->VX. FεX-> GεX

Later, when we introduce individual and predicate constants into the
system, we shall allow the y in (2a) to be a constant of the same type as x.

The rules of inference of 2ω are (1) modus ponens and (2) if x is a
variable which does not occur free in A

A -^B \- A->VxB.

We do not need any axiom of reducibility or Mengenbildungsaxiom
because:
201T27 If A is a wff in which the variables xlf . . . , Xn occur free, then

3FVΛΓI . . . V*w. Fx± . . . xn ^->A

Proof. Each instance of

VJF3#I 3Λ:«. Fxλ . . . xn < H - > A -> 3#i . . . 3#w. A < - H > A
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is an instance of the axiom schema (2b). The consequent in this formula is
refutable. Hence the result by contraposition.

One could use 201T as an axiom schema and dispense with (2b). We
have chosen to use (2b) in order to emphasize that %ω is based on pure
logic without existential postulates. By the definition of the semantic range
of a predicate variable given in §1, any wff in which xl9 . . . , xn occur free
is an instance of Fxt . . . xn.

The expression ζ%A in £" will be used as an abbreviation for "A is
not refutable in £." The following rules for operating with the symbol |c
are easy to verify.

202 T Let A, B be arbitrary wffs. Then
(1) ϊ AvBiff either |c A or \ B,
(2) if\L Aand \-A — £, Otenl B,
(3) ifv-AandYA-> B, then t B,
(4) |c A iff either Y A Λ B or \. A Λ ΊB9

(5) YA -> B iffy- A implies Y B.

203D Let £ be the system %ω or an extension thereof. We shall say that
1 is a simple extension of G if SI is the same as £ or is generated from £ by
introducing postulates of the form A(al9 . . . , αw), where (1) A is a wff of G,
(2) xl9 . . . , xn is a complete list of the variables occurring free in A,
(3) A(al9 . . . , α«) is the expression which results when al9 . . . , α« are
substituted respectively for xl9 . . . , ocn in all free occurrences of the latter
in A, all type superscripts remaining unchanged by the substitution, (4) the
new symbols α1? . . . , α« are not in the vocabulary of £ and in 3JI they are
individual or predicate constants.

All systems constructed in this paper are simple extensions of %ω.
If the A of 203D is a closed wff of £, no new symbols are introduced by

the postulate.

204D In this case we shall say that the postulate is isophasic. 1 is an
isophasic extension of β if it is generated from G entirely by isophasic
postulates.

205T Let Qbe a simple extension of %ω and 331 a simple extension of £. Let
B be an arbitrary wff of 1.

We shall use these notations: if C is a wff of 1, let a1? . . . , αw be the
new constants (i.e. constants which belong to the vocabulary of 1 but not to
that of S) which occur in C or B or both; let yl9 . . . , yn be variables which
do not occur in C or B and are of the same types, respectively, as
αi, . . . , α w ; let C(y), B{y) stand for the expressions resulting when
3Ί> . , yn are substituted respectively for al9 . . . , αw in C, B.

Then \~B in 1 iff there exists a conjunction C of postulates generating
1 from Q such that

(1) \-Vylm . .Vyn.C(y)->B(y)inH.

Proof Assume KB in 1 and let Π be a formal proof of B. Let C be the
conjunction of those postulates generating Ifrom £ which occur in Π. Let



EXPRESSIBILITY IN TYPE THEORY 263

Qi, . . . , ap be the new constants occurring in Π. Let U(y) be the result of
substituting the variables yl9 . . . , yp for these constants in Π. Then
C(y), ϊl(y) is a proof in £ of B(y) from the hypothesis C{y).

We assert now that ^C{y) -> B(y) in £. To prove this it is sufficient,
by the deduction theorem, to show that the rule of generalization has not
been applied in 11(3;) to any variable occurring free in. C(y). By 203D no
variable occurs free in C, so the only variables occurring free in C(y) are
y 1, ,yp But these occur only where they have been substituted for
constants in Π, so the rule of generalization has not been applied to them.
The assertion follows. Now generalize on y1} . . . , yp and (1) is proved.

The converse is obvious. This result is also useful in the contraposi-
tive form:

206T t BinΛifft 3^ . . . lyn. C(y) A B{y) in 8.

207T If B is wf is £, then \-B in 1 iff there exists a conjunction C of
postulates generating 1 from 8 such that

H-33Ί 3ynC(y) ->Bin 8.

Proof. The hypothesis implies that none of the variables yl9 . . . , yn

occurs in B{ y). Hence the result from 205T.
From 206T it is easy to infer that

208T 1 is a consistent system iff, for every (finite) conjunction C of
postulates generating Έfrom %,

|c 33>! . . ,3yn C(y)in 8.

209D We shall say that 1 is a conservative extension of $ iff every wff of
£ which is provable in 1 is also provable in £.

From 207T it follows that

210T If 1 is a simple extension of %, then 1 is conservative iff, for every
conjunction C of postulates generating 1 from C,

t-3^1 . . . 33;WC(3>) in C.

211T If Ul is a conservative extension of £, then 1 is consistent iff % is
consistent.

212T If ! x is a conservative extension of £ and Έ.2 is a conservative
extension of l i , then ϊ 2 is a conservative extension of £.

§3. Introducing constants

We are now ready to construct extensions of %ω having a vocabulary of
individual and predicate constants. There are two conditions we wish these
extensions to satisfy:

301D (1) they must be conservative in the sense of 209D, and (2) they must
be quantificationally closed in this sense: let x be a variable and A a wff in
which x occurs free; if ι~3#A, then there is a constant b such that ~A(b)
where A(b) is the expression obtained by substituting b for x in A} and if for
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every constant b of the relevant type \-A(b), then v-\fxA. The first of these
conditions will assure that we are not smuggling in any existential assump-
tions, and the second that sentences containing quantifiers are provable if
and only if they are true according to the syntactical definitions of the
ranges of variables in §1. The semantic definition of the range of
individual variables will be dealt with later.

302D Let A be a monadic wff (i.e. a wff in which exactly one variable
occurs free) and x the free variable in A The expression yεA shall stand
for the schema V#. A —» A(y). This expression may be used if y is a
constant of the same type as x or a variable of this type which is free at all
places where it is substituted for x.

Let CO be an arbitrary isophasic extension of 8ω. For each monadic
wff A of CO we now introduce a constant 1(A) which is to be of the same type
as the free variable in A. We shall write 1A for 1(A) wherever A is used
as a syntactical variable for a wff. If P is a predicate constant we write
IP for 1{xεP). These constants, which we call 1- constants, are introduced
by postulating, for every pair A, B of monadic wffs which are of the same
type,

303P ΊAZAΛ IBEBA: Vy. yεA^yεB. -> ΛA = ΛB

Let Cl be the extension generated by these postulates. In this system there
are monadic wffs which are not wf in CO because they contain occurrences
of one or more 1-constants. We now make an extension C2 of Cl by
introducing a constant ΛA for every monadic wff A which is wf in Cl but not
in CO. For every such A coupled with every B of the same type as A,
there is a postulate having the form of 303P generating £2. Repeating this
procedure, we construct an infinite sequence of extensions.

Let Cl be the extension of CO generated by all the postulates which
generate members of this sequence. An expression is wf in CΊ iff it is wf
inCft for some non-negative integer n.

Our 1-operator is partly analogous to Hubert's ε-function31 and to the
functions iaioa) in Church's formulation of type theory32. On the other hand
it must be emphasized that the mark 1 standing alone is not a predicate of
81. Nor is any expression of the form 'ί(xεF) where x and F are free
variables wf in 81, since the 1-operator can be applied only to monadic
wffs. In consequence of this restriction it is possible to prove, without
appeal to any axiom of choice, that

304T C1 is a conservative extension of CO.

Proof.

305D Let φε sf (to be read "φ is a selective function") stand for

VΛΓVJF. xφF -> xtF. Λ VxVFVyVG:. xφF^yφGh Vz. zεF^^zεG: -> x = y

Note that the domain of a selective function thus defined is not restricted to
non-empty predicates.
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We shall use the lemma: if φ is a selective function and G is a
predicate of the same type as the members of the domain ofφ, then there is
an extension φr of φ such that

Φ'εsi Λlxxφ'G

The proof is elementary.
If B is a wff of 01, the expression %(B) will denote the extension of GO

generated by those 1-postulates (303P) in which every 1-constant occurring
has at least one occurrence in B. We shall prove first that G(i?) is a
conservative extension of GO.

Let !Bl9 . . . , ΛBp be a complete list of the 1-constants which occur in
B. In consequence of the way in which the 1-constants are written the
phrase "occurs in" expresses a transitive relation between 1-constants.
Hence any 1-constant which occurs in one of the ΛBi (1 < z< p) is one of
the ΛB(. We may assume that these constants are ordered by their sub-
scripts so that first come all those which are wf in GO, next those that are
wf in Gl but not in GO, and so on. This assures that if ΛBj occurs in ΛBi
then j < i.

We now construct a sequence of systems I o = GO, %,..., W.p such that
if 1 < i < />, SI,- is the extension of Έ.i^1 generated by postulates which
introduce ΛBi and an auxiliary constant φf which can be discarded later.
These postulates have the form

(1) Φi 3 ΦAΛφ/εsf
(2) VF: \fχ. xεF*-*Bi(x). ->Wi ΦiF

where φk is defined as follows: if there is a Bj of the same type as Bi with
j < i, let k be the largest of the subscripts j which satisfy this condition,
and let φ& be the selective function introduced by the postulates which
generate !&; if there is no such j , let k = 0 and let φ0 be the null relation.

We assert that the postulates (1) and (2) generate a conservative
extension of 1,-χ. If k * 0, Φk is a selective function in consequence of the
postulates generating 1^; if k = 0, φ& is a selective function since the
null-relation satisfies 305D. By 201T and extensionality there is exactly
one F such that VΛΓ. xεF <t—>Bi(x), and by the lemma there is a selective
function which is an extension of φ& and includes this F in its domain. The
assertion follows by 210T, hence by 212T ϋJl̂ is a conservative extension of
GO. Clearly the theorems of G(£) are theorems of Έtp, so G(£) is a conser-
vative extension of GO.

Finally to prove the theorem, let Bbe a wff of GO, let Π be a proof of B
in Gl and let G(Π) be the extension of GO generated by those Ί-postulates in
which all Vconstants occurring have occurrence in Π. Then Π is a proof in
G(Π) and G(Π) is conservative by the above reasoning. So B is provable
in GO.

This theorem shows that the postulates generating Gl from GO are
nothing more than implicit definitions of the 1-constants. If GO is gω, any
inference made by means of Gl is made by pure logic. Incidentally, by
introducing the Ί-constants we have formalized what is known as "natural
deduction." From 3x4 one can always infer "ΛA is such an x."
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306T £1 is quantificationally closed in the sense of 301D.

Proof. This can be proved by reasoning similar to that used in [6] 3 3

with respect to Hubert's ε-function.
This theorem holds in all isophasic extensions of CΊ, in particular in

the system £μ which we shall now construct.
The motive for constructing Cμ is that we need a system in which the

1-operator is expressed by predicates in the system so that we can use the
axioms of choice. The simplest way to do this would be to define μ as an
abbreviation for £1

1(φεsf Λ VFlxxφF)

and generate £μ as an extension of £Ί by postulating for each monadic
predicate constant Pof £1

307P IP μ P.

It will be more convenient, however, to use a stronger set of postulates.

308D Let ξ wo F be an abbreviation for

VxVy: x,yεF - \ xξyvyξxvx = y\h VG.VVΛΓ. xεG -* xεF. -+ Ix: X&GΛ

VJ>. yζx -> ΊyεG

to be read "ξ is a well-ordering oi F34."
Let p be an abbreviation for

Ί(VF ξwoF)

so that for each type t there is a p of type (tt) which is a well-ordering of
the universal set of type (t). Then Sμ can be defined as the extension of SΊ
generated by postulating for each 1- constant ΛA

3 0 9 P V y. ypΛA^ Ίy&A

In consequence of these postulates, £μ has the convenient property that for
each non-empty predicate P, IP is the p-first member of P. This permits
us to define a set of selective functions μ by the schema

VΛ V F : . xμF<r-+: XSFΛ Vy. ypx -> lyεF

and

310T the schema 307P is then deducible from 309P.

311T £μ is a conservative extension of CO iff the instances of the schema

312P 3φ. φε sf Λ VF3# xφF

are axioms (or theorems) o/£0.

Proof. Assume 312P. Since these are choice axioms the well-ordering
theorem 3ξ\ΛFξ wo F holds in £0. It is easy to see that Qμ is the same as
the extension of CO generated by the postulates
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(1) VFpwoF
(2) for each monadic wff A

ΛAzA Λ V y. ypΛA —» ΊyεA

We may assume that this extension is constructed by stages, first
postulating all instances of (1) and those instances of (2) in which A is wf in
80, next those instances of (2) in which A is wf in 81 but not in 80, and so
on, thus introducing all 1-constants.

Each p not only occurs in those places where it appears above as p, but
also in one instance of (2) where it occurs as the right argument of a p of
higher type.

Let B be an arbitrary wff of 8μ, let ti, . . . , tn be the types of the
1-constants occurring in B. Let 8μ(5) be the extension of 80 generated by
(i) those instances of (1) in which p belongs to one of the types (Mi)? >
(tjn), (ϋ) those instances of (2) in which ΛA is one of the 1-constants
occurring in B. We may suppose that 8μ(5) is generated by a finite
sequence of extensions of which each introduces just one new constant. It
is then easy to verify that, in consequence of the well-ordering theorem and
21OT, each of these extensions is conservative.

It follows by 2121 that 8μ(5) is a conservative extension of 80 and by
an argument similar to the last part of the proof of 304T, that 8μ is
likewise conservative.

To prove the second part: the axioms of choice are deducible from
307P by quantificational closure (306T).

Thus the system 8μ has a set of axioms which have prefixes containing
existential quantifiers. But this need not raise any ontological ghosts.
There can be no question about the existence of selective functions which
have in their domain all predicates of a given type; for such functions are
definable in the metatheory of 81. The choice axioms merely state that
such functions are included among the predicates of the object language.
We shall have more to say about this in §5.

313T Let B be a wff of 81, hence also o/8μ. Let C be the conjunction of
the postulates which generate the system 8(5) (the system 8μ (B)) defined in
the proof of 304T (311T). Then, using the notation of 205T,

^5 in 81 (in 8μ)

if and only if

^C(y) ->B(y)in 80.

Proof. It is sufficient to show (1) that 81 is a conservative extension of
Q(B) and (2) that 8μ is a conservative extension of 8μ(#).

To prove (1), let A be an arbitrary wff of 81. Construct the system
8(5 Λ A) by the method of 304T, introducing first those constants which
occur in 5. By this procedure one can show that 8(5 A A) is a conservative
extension of 8(5), from which (1) can be inferred as in the last part of the
proof of 304T.



268 H. JULIAN WADLEIGH

Similarly (2) can be proved by adaptation of the reasoning of 31 IT.

314D Let us say that a wff A of GΊ is basic iff there exists a wff B of GO
such that KA<—»£ in GΊ.

We have used the expression GO to denote an arbitrary isophasic
extension of gω. It follows that £1, which we have defined as the extension
of GO generated by 303P, likewise denotes an arbitrary member of a class
of systems. Let {GΊ} denote this class. It is easy to see that

315T {GΊ} is closed with respect to extensions generated by basic postu-
lates.

Gμ is not in the class {GΊ}, since 309P are not basic. The class {Gμ}
can be defined similarly.

To complete the vocabulary of our systems we mention here a few
notations that will be used in the sequel. The customary expressions of set
theory can be defined in obvious ways.

If A is a wff and χly . . . , xn is a complete list of its free variables,

λxx . . . Xn(A) =def 1(V#! . . . Vxn. F(xl9 . . . , xn)<r->A).

316D The concept of a function is introduced by

1 - s -def XfflxVyVz: yζXΛZζx. -> y = z)
s - 1 =defλζ(VxVyVz: xζyΛXξz. -* y = z)
1 - 1 =def 1 - s (Ί s - 1

Terms containing free variables are used in this paper in a few places.
Such expressions, which have the form φ'x can be introduced by postulating

φεl - s —> V#. ly yφx —» φ'xφx

It is not difficult to show that such postulates are conservative.

§4. Names for objects.

As stated in §1, each object is to have exactly one name, so if α,b are
distinct names we must have i-α * b. We shall use Arabic numerals as
names, placing a dot over each to distinguish the name-numerals from the
"proper numerals" which will be defined in §7. If the range of discourse
is finite, the names will be 6,, . . . , n for the appropriate choice of n; if it
is infinite, the names will be 0, i, 2, . . .

It would be natural to introduce these as new constants by postulating
m Ψ h for each pair of distinct names, but it is more convenient to define
them as abbreviations for certain expressions already present in GΊ.

401D Accordingly we define

0 =def 1{X = X)

1 =def *Ϊ(X Ψ 0)

2 =def Λ(X Ψ 6 Λ X ψ 1)



EXPRESSIBILITY IN TYPE THEORY 269

If the range of discourse is infinite, we postulate

402P i Ψ 0, 2 Ψ 0, . . .

These will be called the least number postulates. From them it can be
inferred that m *ή for all pairs of distinct names.

Let £Ί(°°) (£μ(°°)) be the extension of £Ί(£μ) generated by 402P. If the
range of discourse has exactly n members we postulate the first n - 1 wffs
of 402 P and

403P h = 0.

Then it is easy to prove for all numerals m such that m> n that m - 0. In
this case the only names are 0, . . . , ( « - 1). The systems thus generated
will be called SΊ(rc), Qμ(ri).

404T For each positive integer n, every closed wff of 8ω is decidable in
Q1(w), so QΊ(ft) is consistent.

Proof. Every wff of the form VxxεF is equivalent in £Ί(?z) to the
conjunction

0&F Λ . . . Λ (n - l)εF.

Every wff of the form VF FεA, where F is of type (•), is equivalent in
QΊ(n) to a conjunction of the form

PXZAA . . . Λ PqεAf

where q = 2n and each P, has one of the forms λx(x ψ x), λx(x= ri\y . . .
v x= mk), each mi being a name in CΊ(rc).

By a generalization of the two preceding statements it can be shown
that every closed wff of Su> is equivalent in £Ί(n) to a wff in which every
variable occurring is bound by λ and the only non- logical constants
occurring are lambda-constants, names and =. These wffs are clearly
decidable in $y\(n). The result follows.

From here through 41 IT it will be assumed that CO is %ω. Then the
axioms of £Ί(°o) are the axioms of %ω, the Ί-postulates (303P) and the
least-number postulates. Since every theorem of £Ί(°°) is deducible from a
finite subset of these,

405T every theorem of £Ί(°°) is provable in £Ί(n) for sufficiently large n.

It follows that

406T every wff which is consistent in infinitely many of the finite systems
is consistent in £Ί(°o).

The choice axioms 312P are provable in each of the finite systems, so
by 404T, 406T they are consistent in £1(°°), from which we infer

407T £Ί(°°) is consistent and by 311T so is Qμ(°°).

It is easy to find a wff A such that A is provable in infinitely many of
the finite systems and lA is also provable in infinitely many of these. So
by 406T and 407T:
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408T Both £!(<*>) and £μ(°°) are incomplete.

409D Let us say that a wff A is an infinity formula if A is refutable in each
of the finite systems but not in £Ί(°°). Then

410T A is an infinity formula iff (1) Y A in £1(°°), and (2) each of the least-
number postulates is a consequence of A.

By 405T:

411T No infinity formula can be proved in QΊ(°°) and it is easy to see that
this holds also for £μ(°°).

In order to satisfy condition (3) of adequacy (§1), £*)(<*>) must be extended
by postulating an infinity formula. In consequence of some results of
Trahtenbrot [9] there is no weakest (or strongest) infinity formula, which
would seem to make it difficult to justify selection of any particular
postulate. This difficulty is resolved in §6.

§5. Expressibility of metapredicates

501D A predicate Γ in the metatheory of C1(and of its isophasic extensions)
will be called a metapredicate iff: (1) the meaning of the statement
Γ(αi, . . . , αn), where au . . . , αw are Vconstants, is defined when these
constants are used autonymously; and (2) Γ is uniform as to type in the
sense that, whenever Γ(α1? . . . , αw) and Γ(bi, . . . , bn) are true, then, for
1 < i < n, α, and b, are of the same type.

It will be convenient to write αeΓ for Γ(αi, . . , αw), where use of the
symbol e (not ε) will serve as a reminder that the predicate is defined in
the metatheory. We shall also write αεy for y(αi, . . . , σn) where y is an
n-adic predicate in CΊ and the α/ are used in the language Q1.

Let us say that an w-ad of Ί-constants (bu . . . , bw) is relevant for Γ
iff, for any α such that αeΓ, α, and b, (1 < i < n) are of the same type.

502D Let C be an isophasic extension of £1, Γ a metapredicate, y a
predicate in £Ί. We shall say that γ expresses Γ in £ iff

(1) Q is consistent,
(2) for each α, if αeΓ, then hαεy in £,
(3) for each relevant b there exists αeΓ such that

n n n

\- bεγ —> b = α in C

503D We shall say that Γ is expressible by γ in % iff £ has an extension in
which γ expresses Γ. (We do not require that such an extension be
constructible in the sense that one can formulate an effective set of rules
for writing the postulates which generate it.)

504T If γ expresses Γ in £, then γ expresses T in every consistent
isophasic extension of £.

505T If Γ is expressible by γ in 1 and 1 is an isophasic extension of £,
then Γ is expressible by γ in &
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For a monadic metapredicate, the definition of expressibility in §1 is
equivalent to 503D. This follows from Lindenbaum's theorem51 and 504T.

506T Let 1 be the extension of £ generated by postulating αεy for each
αeΓ. Then the following are equivalent:

(1) Γ is expressible by γ in β,
(2) for every finite collection of relevant n-ads bi, . . . , bp there exist
Si, . . . , αpeΓ such that

t bxεy -+ bi = Si . Λ . . . Λ . bpεγ -» bp = ap in 1,

(3) for every finite collection Bi, . . . , Bp of wffs of the same type as
y, there exist au . . . , opeT such that

t Ix. xεγ^xεB^ —> αiεl^: A . . . A : 3#. xεγ ΛxεBP. ->σpεBPin 1.

Proof Assume (3). Let us say that a wff B is relevant iff it is of the same
type as y. It will be shown first that there exists a consistent extension ft
of 1 such that, for every relevant B,

(4) if t-a$B in ft for every aeT, then t-VJ?. xεγ -> x$B in ft.

To see this, observe that from

(a) F 3AΓ. #εyΛΛ;ε.Bi. -^Q^BI.A: 3X. xεγ*xεB2. -^Q2^2

and

(b) i-α^JBi

one can infer

(c) £ VΛΓ. ̂ εy -» x$B±. Λ: 3J?. xεy ^xεB^. -• α2ε52:

This argument applies also where (a) holds for Bl9 . . . , Bp (p> 2) and
(b) holds for any proper subset of Bί9 . . . , J5?. Thus we can generate an
extension ftx of 1 by postulating Vx. xεγ -* 5$i? for every relevant B such
that \-a$B in 1 for every αeΓ, and condition (3) will be preserved in ftx. If
there are any relevant B such that hd&B in ftx for all αeΓ but not HVJ?. xεγ —»
J?εJ5 in ft1? let ft2 be generated from fti in the same way, and so on, infinitely
many times if necessary, till we have an extension ft which satisfies (4).

This done, let bi b2, . . . be an enumeration of the relevant n-ads, by a
Gδdel numbering or some lexicographic rule. Now postulate, for each bf ,

(5) biεγ->bi = αt ,

where the αt are determined by the following rule: if there exists at least
one αeΓ such that

n n n n n n n n

|c bi - α Λ ,bYεγ -* bx = a±. A . . . Λ ,bf -i εγ —> b t -i = α, -i in ft,

then let α̂  be the first of these in the enumeration of the relevant n-ads; if
no such αeΓ exists, let αf be the first of all the αe Γ(or an arbitrary αeΓ).

Thus the postulates are uniquely defined. It remains to be shown that
they are consistent. We prove this by course-of-values induction on the
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n n

sequence bi, b2, . . . . Assume that the conjunction of the first p members
of the sequence of postulates (5) is consistent. Then by rule (4) of 202T,
either

n n n n n n n

\. b f +i$y Λ .bxεγ —* bλ = d i . Λ . . . Λ .bpεγ -* bp = ap in 5ft

or
n n n n n n

t b?+1εy Λ.biεy -» bi = CU.A. . . Λ ,bpεγ -> bp = apin 31.
If the former, then clearly the (p + l)th postulate is simultaneously
consistent with the first p postulates. If the latter, then

t Ix: .xεγ Λ :X = b ? + 1 Λ ,bλεγ —» bx = Si. Λ . . . Λ .b^εy -• bp = ap in 31

and the expression following the first conjunction sign in this formula is a
relevant wff. It follows by (4) in its contrapositive form that there exists
αeΓ such that b^+1 = α is simultaneously consistent with the first p
postulates. This proves that the postulates (5) are consistent.

It follows that (3) implies (1). It is almost obvious that (1) implies (2).
Assume (2) and consider first the case where Γ and γ are monadic. Let
Bi, . . . 9BP be relevant wffs. We shall write Bi for λx(Bi(x)) (1 < i< p).
By (2), there are α1? . . . , apeΓ such that

(6) |c 1(y ΠJ5,)εy->αi = 1(y ΠB^.A . . .Λ. t(γ ΠBp)εγ-+ap = Ί(y ΠBP)

From each member of this conjunction we can deduce

Λ(γ nBi)εγ* Ί(y nBi)εBi~> QiSBi,

and, since for any monadic P, ι-ΊPεP<—>lx xεP.

3#. xεγΛxεBi. -* (nεBi

Apply this to (6), using rule (2) of 202T, and it follows in this special case
(Γ and γ monadic) that (2) implies (3).

To extend this to the general case it is sufficient to exhibit, for an
arbitrary n-adic predicate P, an n-ad of constants Ci, . . . , c» such that

\-cεP<r-^lχ xεP

We show a method of doing this by illustrating it for the case n = 2 where,
if a is the dyadic predicate under consideration, the required constants are

1(32 xaz) and 1(1(3^ xaz)a y).

The proof is now easy to complete.
It follows that,

507T in order that Γ be expressible by γ in £, it is sufficient that

(1) haεγfor each αeΓ,

and

(2) the equivalent conditions (2), (3) of the preceding theorem are
satisfied.
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It follows also from 506T that,

508T if Γ is a monadic metapredicate of individual constants, then Γ is
expressible in $ by V ((where V = λx(pc = x)) iff 6 is strongly T-consistent in
the sense of Henkin52.

509T If (1) Γ is expressible by γ in 8,
(2) A is a wff such that ϊ A in every extension 1 of Qin which γ
expresses Γ,

then (3) ^A in every such extension 1 of 8, and (4) Vis expressible by γ in
the extension of 8 generated by postulating A.

Proof. By (1) there is an extension 1 of 8 in which γ expresses Γ. By
(2) and 504T, |c A in every consistent extension of 1, hence \-A in 3R, from
which (4) follows by 505T.

51OT In the finite systems 81M, 8μ(n) all metapredicates are expressible.

Proof\ There is a finite subset A = {α1? . . . ap} of Γ such that />< n and
A is maximal with respect to the property that for all pairs α, , QjβA such
that i ψ j the wffs α* ψ α7- are simultaneously consistent in 81(ra). It can be
verified that Γ is expressible in Gl(w) by \x(x = <x1v. . ,vx = Qp). This
applies also to βμ(n).

51 ID For each type t, let ΓΊ/ be the metapredicate composed of all dyads of
the form IP, P where P is of type (t).

512T For each type /,ΓΊ/ is expressed by the μ of type (t(t)) in £μ. It is
expressible by μ in every extension of £1 in which the relevant axiom of
choice is not refutable.

Proof. The first part is a consequence of 31 OT and the fact that each
μ is single-valued. The second part follows by 311T.

This theorem shows how a question of consistency, such as consistency
of an axiom of choice in a particular system, can be stated as a question of
expressibility. It also shows that an axiom of choice is correctly inter-
preted as a statement to the effect that any universal selective function (of
the relevant type) definable in the metalanguage is expressible in the object
language.

513D LetΓ^ be the metapredicate composed of the names. From 507T it is
clear that condition (2b) of the definition of adequacy given in §1 can be
stated in the form "T^ is expressible by V in Q."

It can be proved that Γ̂  is expressible by V in £1, but this proof is not
of much use to us since it does not hold for ζμ. It will be seen later that
expressibility of Γ̂  by V in £μ entails the consistency of number theory
embedded in £μ.

Consider an enumeration, based on some system of Gδdel numbering
or lexicographic ordering, of all the predicates of a given type t in 81. Let
Γbe defined by uT{P,n) iff P i s the nth predicate in the enumeration." Let
Γ be expressed by γ in 81(w). Since ι-0 -h in 81(w), there is more than one
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predicate P such thathPyό in £1(w). In C1(°°), however, if Γ were ex-
pressed by γ then γ would be a mapping of a set of individuals onto the
universal set of type (t), which is impossible. So Γ is not expressible in
CΊ(oo). The non-denumerable sets of mathematics are represented in CΊ(°o)
and its extensions by predicates of which no enumeration is expressible in
the system.

§6. Expressibility of "finite"

This concept has shown itself to be surprisingly elusive, so it may help
to ask the question: what do we really mean by "finite" when the word is
used informally ? Let us say that a set has property A if we can write a
complete list of names of its members, and that it has property B if we can
specify a procedure by which, given any list of names, one can name a
member of the set which is distinct from each of the objects named on the
list. If a set has property A we do not hesitate to call it finite, and if it has
property B we do not hesitate to call it infinite. There are, of course,
many sets which we call finite even though we cannot list their members,
e.g. the set of bacterial organisms in a shovelful of garden soil. But it
seems reasonable to suppose that it is only because we lack the necessary
information that we cannot list the members of such a set.

Property A is the basis of the definition in §1 of the metapredicate Γfίn.
This definition is the basic instance of a typically ambiguous schema. We
shall be concerned here mainly with the basic instance. The definition of
Γfίn cannot be translated literally into the formal language, for this would
require powers of self-reference which δi and 8μ do not have. In order to
find a predicate to express Γfjn one must look for some property which is
possessed by the members of Γfίn and their synonyms in C1 and by no other
constants in G1 and can be described in that language. In searching for a
proof that a particular predicate applies to all finite sets it is natural to try
induction. In our search for a definition of finiteness in CΊ we start by
sketching a general theory of mathematical induction61. In the definitions
which follow it is to be understood that, for some type t, a is a predicate of
type (*(*)) and P, Q, R are of type (t).

601D We shall say thatP is a-hereditary (in symbols, Pεα-hered) iff

VF: F c p -> VAT. xaF -*xzP.

602T If X is a family of α-hered sets, then the intersection of the members
of X is α-hered.

603D We shall say that Q is a-connected to R (in symbols, Q α-con R) iff

(1) «2Λ,

and

(2) VF: R QFΛF C Q . ->1X.XO>FAX$FAXSQ

604T i-Q Qf-con R->VF: jFεα-hered->. R c F -+Q c F in CO, i.e. if Q α-con #,
then Q is contained in every α-hered overset of R.
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Proof. Let F be an α-hered overset of R, Q a-con R. Then RQ FDQ.
If we also had

(1) F Π Q c Q

then, since Qαf-con R, we would have

3x.xa(F Π Q)ΛAΓ$(JP Π Q)Λ#εQ,

hence

and F would not be α-hered. So (1) is false and the result follows.

605T Suppose there exists a set Q which is both a-hereditary and
a-cσnnected to R. Then by 604T, Q is the intersection of all a-hereditary
oversets of R, and it is the union of all sets a-connected to R. Hence Q is
uniquely determined by a and R.

606D Such a set Q, if it exists, will be called the a- completion of R. The
relation a will be called inductively complete iff every set has an
α-completion.

607T In order that a be inductively complete, the following condition is
sufficient and necessary: If R is any set and Q is the intersection of all
a-hereditary oversets of R, then

(1) VF: R QFΛF C Q . -> 1X.XCIFΛX$F.

Proof. Assume the condition holds. By 602T, Q is α-hered. Hence

(2) F c QλxaF. -» xεQ,

which, in conjunction with (1), implies Q a-con R. This proves sufficiency.
The necessity is obvious.

608T If a is isotonic in the sense that

VJPVGIJP C G - * Vx.xaF ~*xaG

then a is inductively complete.

Proof. The hypothesis implies that a set-F is α-hered iff Vx.xaF -* xεF}

and the result follows by 607T.

609D Given a relation ξ of type (tt), let ξε be defined by

ξε =defλxF(ly.yεFΛXξy).

Thus ξε is the relative product of ξ and the relation ε and is of type (#(/))-

61OT If a is existential in the sense that, for some relation I, a = ξε, then
a is isotonic, hence {by the preceding theorem) a is inductively complete.

611T If a = ξε, then P is αf-hered iff

V* Vy: xεPλyξx. -* yεP,
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i.e. P is α-hered iff, in the usual terminology, it is closed with respect
toξ.

612T The definitions and theorems 601-611 can be modified so as to apply
to a triadic relation a of type (tt(tt)) and dyadic relations ζ, η, θ of type (ft)
as follows:

ζ is α-hered iff

Vξ :ξ c ζ -» vxVy. a(x,y,ξ) - xζy,

and θ a-con η iff

(1) θ^ V
(2) vξ: ηθξAξc: θ. ->lxly. a(x,y,U* ΊxξyΛXθy.

The necessary modifications of the remaining definitions and theorems
can easily be found by the reader. Similarly for w-adic a where n > 3.

Every proof by induction in mathematics is an application of 604T or
one of its extensions to w-adic relations (n > 2). To obtain the principle of
finite induction on the natural numbers, let σ be Peano's successor
function and let 7v be the set of natural numbers. The induction postulate
can be stated in the form: 71/ is σε-connected to {0}. Then by 604T, if OεP
and P is σε-hereditary, 71/ ^ P.

To obtain the principle of transfinite induction, let a set S be well-
ordered by a relation p. Let φbe defined by: xφR iff (1) RcS and (2) A; is
the p-first member of S - R. Then S is φ-connected to each of its subsets
— in particular the null-set. So by 604T, if P is φ-hereditary, then SQ P.

Every entity defined by induction in mathematics is, for some a, the
^-completion of some set or relation. In particular, primitive recursion
is a form of a-completion.

This completes the sketch of induction theory. It will now be used in
finding an expression for Γfin.

614D Let r be the relation defined by

r =defλFG(lxVy: yεFΛy$G. -*y =x)

i.e. FτG iff there is at most one member of F which is not in G.

614D fin is the rε-completion of {Λ}, i.e. of the family whose sole member
is the null-set.

By 610T, fin exists. By 605T, fin is the union of all families of sets
τε«connected to {Λ} and is itself τε~connected to {Λ}. It is also τε«
hereditary, i.e. τ-closed.

615T IfFεrmand GQF, then Gεfin.

Proof. G c F implies GτF. The result follows by 611T.
The next theorem yields an alternative definition of fin.

616T Let X be the family composed of those sets F such that every family
of subsets of F has a maximal member. Then X = fin.
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This can be proved by showing that X is rε-connected to {A} and is
rε-hereditary.

617T If .PeΓfm, then KPεfin in £T; that is to say, fin satisfies condition (1) of
507T.

Proof If P is Λ the result is immediate. If P is {al9 . . . , αn}, then it
is easy to see that the family composed of A, {αα}, {(Xi,o2}, . . . , {ol9 . . . , α j
is rε-connected to {Λ}.

618T If X is any predicate such that Γfin is expressible by X in J31(°°) and SR
is an isophasic extension of £Ί(°°) in which X expresses Γfin, then \-X = fin in
1.

Proof. We show first that

(1) i-Xετε-heredm 1.

Suppose #eΓfin and Q is any predicate constant of type (•). From the
definition of τ(613D) it is easy to deduce

\-QτR Λ Q * A. ->lx:.xεQ*Vy:yεQΛy$,R. -> y = x.

Let b =ί/e/Ί(ArεQΛV^:^εQΛ3;$β. -* j ; =JV). Then

hQ = ft Λ Q * Λ. -* Q = R U {b}.

If β is A, ft u {b} = {b}. If ft is {αi, . . . , αw} then ft u {b} = {α1? . . . , αw,b}.
So in each case one can write an expression S such that SeΓfjn and
\-QτR Λ Q ψ Λ. -> Q = S. Since X expresses Γfin and ΛeΓfίn, it follows that

(2) v-QτR -*QεX\n 1.

Now let P,Q be two predicate constants of type (•). Since Xexpresses
Γfin, there exists fteΓfίn such that \-PεX-*P = ft in % hence \-PzX-*.
QτP->QτR and by (2) \-PεX->. QτP -> QεX, from which (1) follows by
quantificational closure and 611T.

It is not difficult to show that

(3) \-χ τε-con{Λ}m SK.

The result follows from (1) and (3).
From this theorem it is easy to infer that

619T If Γfin Is expressible by X in £Ί(°°) or any isophasic extension of
£Ή°°), then it is expressible in this system by fin, and, (by 509T), in the
extension of this system generated by postulating X = fin.

So if the concept "finite" is expressible at all in a theory of types, we
know how to express it.

620T Let 3H be an isophasic extension of £Ί(°°). If Γfin is expressible in I ,
thenϊ V^fin in S.

Proof Clearly, if fteΓfin, then \-V Ψ ft in S1(°°), from which the result
is easy to infer.
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621D Let £1(inf) denote the extension of βi generated by the postulate V$fin.
It is easy to see that this postulate is basic (314D), hence

622T CΙ(inf) belongs to the class {SΊ}.

Clearly Vίfin, if consistent in 81(°°), is an infinity formula in the sense
of 409D, and, by 410T,

623T βi(inf) is an extension o/£Ί(°o).

In consequence of 620T and 509T,

624T if Γfin is expressible in C1(°°), it is expressible in CΊ(inf).

625T Every statement made in §6 remains true if, for %\, Q1(°°), £Ί(inf) we
substitute βμ, J3μ(°°), βμ(inf).

§7. Number theory in SΠ(inf)

In this section it will be shown that Γfin is expressible in £Ί(°°) iff
number theory is co-consistent in βi(inf). For this purpose it will be helpful
to define the natural numbers as families of finite sets, using a definition
equivalent to that of Principia Mathematical The results of §6 make it
possible to do this with minimal labor.

701D We define the relation Θ as an abbreviation for

λZX(VG: GεY<->lF.FεXAF C G Λ G T F ) ,

where T is defined by 613D; that is to say, YΘX iff Y is the family
composed of all sets G such that, for some FεX, G is composed of all the
members of F and exactly one individual which does not belong to F.

702D Using 0 as an abbreviation for {Λ}, we define 9i/, the class of natural
numbers, as the 0ε-completion (606D, 609D) of the class {0}.

Existence of 7u is confirmed by 610T. By 605T ^ i s θ ε-hereditary
and θ ε-connected to {θ}.

703T The relation θ has the following properties:

(1) θε l - s ( 3 1 6 D )

(2) VX3YYΘX
(3) VXVF. YβX-* HY

(4) VXVY:.YΘX-> : 3G GεF-> IF.FεXΛF * V.

These are easily inferred from 701D.

704T IfXε7i/,then

(1) i ς fin
(2) FεX iffX is the family of sets equipollent to F
(3) 3JP FεX {assuming V ίfin)

Clearly 0 has these properties. Since Jl/ is 0ε-connected to {0} it is
sufficient by 604T to show that each of the three properties is θε-
hereditary. For (1) and (2) this is easily inferred from 701D; for (3) it
follows from (1), the infinity postulate V Φfin and 703T(4).
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705T Let K be the restriction of Θ to 7i/, i.e. XYX(YΘXΛ YZ%*XZ%). Then

(a) κεl-1
(b) VX: Xε%>-> 3F. YKXΛY Ψ 0

(c) VPKZ-con {θ}.

(a) follows from 703T(l) and 704T (2), (3); (b) from 703T (2), (3); (c) from
the definitions of %> and K.

These three properties of K are equivalent to the properties of the
successor function described by the Peano postulates. (Observe that (c) not
only implies Peano's induction postulate in consequence of 604T, but also
implies that every number n distinct from zero is the successor of a
number distinct from n.)

706D We have already defined zero. Let the positive integers be defined by

1 =defκ% 2=defκ'l, . . .

We shall call these the "proper numerals" to distinguish them from the
name-numerals of §4. All the recursive functions and predicates of
natural numbers are definable as Ί-constants, using 606D, 612T. All
theorems of number theory are theorems of QΊ(inf).

707T \-VF: JPεfin «-> IX. Xε7i/AFεX in CΙ(inf).

This can be proved by showing that the predicate

XF{1X. XεTlΆFεX)

is rε-hereditary and rε-connected to {A}.

708T Given any constant P of type (•) and any proper numeral n > 0,

\-Pεn<r-*P = {IP, ^ P , . . . , l ^ P } in CΊ(inf)

where

\P =rfe/1(ΛτεPΛA; ΦΊP)

V 5 =Λ>/Ί(#εPΛΛr ψ I P λ . . .AXΨ T f - i P )

Proof. T h e s c h e m a

VJP:: Fεn<r-> 3 # i . . . 3#«V;y:. yεF<^>: y = xt v . . .vy = xn.
Λjfi^ΛΓ2Λ. . .AXι*XnΛ. . .*Xn-i*Xn

can be proved, by recursion, for each positive integer n.

709T LetTnbe the metapredicate composed of the proper numerals. The
following statements are equivalent:

(1) Γn is expressible by VPin βi(inf)
(2) Γf m is expressible in δΊ(<*>).

Proof. Assume (1) and let SR be an extension of CΊ(inf) in which 71/



280 H. JULIAN WAD LEIGH

expresses Tn. Let P be a predicate of type (•). By 502D there exists a

proper numeral n such that

^Λ{PzX/,Xz7l/)z7l/ -* Λ(PzXί,Xz7l/) = n in 1.

hence by 707T t-Pεfin -> Pzn, and by 708T there exists fleΓfin such that

hPεfin -> P = # in I

which proves, in conjunction with 617T, that fin expresses Γfίn in 3Jt. By
623T, 505T this implies (2).

Assume (2). Then by 624TΓfin is expressible by fin in CΙ(inf). Let 5R be
an extension of £1(inf) in which fin expresses Γf ι n. Let Wbe any predicate
constant of type ((•)). By 704T(3), 707T,

)~Wz7l/-> Wεfin inβi(inf).

Since fin expresses Γί in in ft it follows that there exists #€Γfin such that

y-Wz7u -AW =R in ft.

Now it is not difficult to prove that for each #€Γfin there exists a numeral n
such that

HflεOv . . . v Rzn,

so

v-WzTi/ ->. W ε O v . . .vΛWzn'va %

hence by 704T(2)

v-WzTi/ ->. W= 0v. . .v W= n,

from which it is easy to infer that Tn is expressible by 71/ in 3d, hence by
505T in 81(inf).

710T Tn is expressible by 7v in CΊ(inf) iff number theory is ω-consistent in

CΙ(inf).

Proof. Obviously \-nz7i/ in £1(inf) for each proper numeral n, hence Tn

is expressible by 72/ iff condition (2) of 507T is satisfied, and this is
clearly equivalent to ω-consistency.

711T Every statement made in this section remains true if, for SΊ, SΊ(°°),
CΊ(inf) we substitute Qμ, Cμ(°°), Cμ(inf).

§8. Arithmetic on the name-numerals

Since we can construct arithmetic on the proper numerals one might
ask, why bother with arithmetic on the names? The answer is twofold.
From a formal point of view, the conditions of adequacy set out in §1, in
particular condition (2b), can be satisfied in an extension of Cμ(°°) only if
we have at least the possibility of constructing an co-consistent number
theory on the names. This is proved by 806T below. From the standpoint
of motivation and semantics, the empirical objects which are discussed
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when mathematics is used in science are usually described in numerical
terms, either by whole numbers or rational numbers, or by ordered finite
sequences of such.

Up to now we have given parallel treatment to £1 and £μ. But here we
reach a stage at which the two systems diverge. To save space we confine
our attention here to the more important of the two, namely £μ. We shall
use the abbreviation a ) 'b for λx(xab) where a is a dyadic predicate and b
an individual or predicate constant of the relevant type. ct)'b may be
verbalized by "the α-segment of b " . We shall also use expressions of the
form a ) (x where a or x or both are variables. For justification of this
see the end of §3.

Let Qv be the extension of Cμ(inf) generated by the postulate

801P V i ρ > ' # ε fin

where p is the well-ordering of the individuals defined in §3. This
postulate, together with the axioms of J3μ(inf) implies that the well-ordering
of the individuals is of type ω. Thus all of number theory is provable on
the name-numerals in Qv.

The members of Vv (702D), subsets of %/, etc. form a model for Qi/,
which can be used to show that if the proper numerals are expressible by
71/ in £μ(inf), then the name-numerals are expressible by V. This motivates
the next two theorems.

802T Assume that the axioms of £0 are the axioms of %ω and the axioms of
choice. Let Q be a monadic predicate constant such that \-lx xεQ in%μ.
Then one can construct in the metatheory a function Πρ, to be called
projection on Q, which maps into itself the set of expressions composed of
the wffs, variables and Λ-constants of %μ such that

(1) if α is an individual constant, then Πρ'α is an Λ-constant such that
HΠρ'αεQ in Qμ,

(2) if B is a theorem of £μ so is RQ'B.

Proof. We shall write Π for Πρ. If x is a variable or 1-constant, xr

stands for Π<#.
Let (t) be the type of Q. If x is a variable of arbitrary type, let xr be

the variable which results when each dot in the type superscript of x is
replaced by t.

We shall use the expression p' for "power set of," e.g. p'Q denotes the
power set of Q.

If x is a variable or Ί-constant, the expression Qx' is defined as
follows:

if x is of type , Qxf stands for x'εQ
if x is of type (.), Qxf stands for x'ε p'Q
if x is of type (••), Qxf stands for x'ε p'(Q x Q)

and similarly for higher types.

Qxί . . . Xn stands for Qx[ Λ . . . Λ Qxn.
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If A is a wff of βμ, the wff ΠS4. is constructed in three steps, namely:

(a) Replace each variable x in A by xr, wherever its occurrence is not
contained in an Ί-constant. Replace each Ί-constant α in A by the constant
α' which will be defined later. Let Ar denote the resulting expression.

(b) For each expression of the form Vxf (3xr) occurring in Ar and not
contained in an Ί-constant, substitute V#\ Qxf -» (lxr. QxrΛ), the punctua-
tion being modified as required to suit the context, e.g. VxrΊyrAr(xf, yr)
becomes Vxr: Qxr -> lyr. QyΆA(xf, yf). Let A" stand for the result of this
operation.

(c) If A is a closed wff of Sμ, then li'A is A\ Otherwise let xl9 . . . , xn

be a complete list of the variables occurring in A. Then li'A is
Qx[. . .Xn ->A".

If T is a theorem of GO, then IΓΓ is a theorem of £μ. To prove this it
can be verified (bearing in mind the hypothesis hlx xεQ) that (i) if A is an
axiom of 00, i.e. an axiom of %ω or an axiom of choice, then hli'A in Cμ,
and (ii) if B follows from A (from A and A -* B) by a rule of inference, then
li'B is deducible from IΓA (from li'A and Uζ{A -> B)) in £μ.

It remains to be shown how, for each Ί-constant α one can define α' so
as to satisfy (1) and (2). Let B be a theorem of Cμ. We may assume
without loss of generality that B is a closed wff. Let α l 5 . . . , αw be the
Ί-constants occurring in B, and let C(alf . . . , an) be the conjunction of the
postulates which generate the system Cμ(-B) defined in the proof of 31 IT
from CO. Then by 313T,

H V*! . . . Vxn. C(#i, . . . , xn) — B(xlf . . . , x«) in QO,

and by what we have just proved, the projection of this wff on Q, i.e.

V*i . . . VXn\ QXΊ . . . Xn->. C"(X'U . . . , X'n) -+ Brf(x[, . . . , x£),

must be a theorem of Cμ. This is equivalent to

V*ί . . . V*w': Q*ί . . . Λ i ίACΉ . . . , *ί). - QAΓI . . . x^AB^xί, . . . , xί).

From this it is easy to infer, since Π ^ is B" (B being a closed wff),
that conditions (1) and (2) will be satisfied if αj, . . . , α» are so defined that

(3) KQαi . . . on A C"(αJ, . . . , α )̂ in βμ.

In constructing Gμ from CO, as in the proof of 31 IT, each 1-constant is
introduced by a postulate of the form

IAΪAA Vy. ypΛA —> Ί^έA,

which says that ΛA is the p-first A; such that xzA, where p is a well-
ordering of V. Now suppose that p' is an arbitrary well-ordering of Q and
ΛA is an individual constant. Let ϊl'ΊA be so defined that, if the intersection
Q Π A" is non-empty, then IΓΊA is the p'-first member of this intersection,
and otherwise it is the p-first member of Q. In formal language let

II'IA =-\(QχΆx'ε(Q Π A") A Vy'. yrp'*\A ->Ίy'&(QnA"))
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where we may take p ' to be 1(ξ woQ), or any other well-ordering of Q. This
will satisfy (3) so far as concerns individual constants.

Now consider the 1-constants of type (••), i.e. dyadic relations of
individuals. These are introduced by postulates which say that ΛA is the
Pi-first relation such that ΛAίA where p1 is a well-ordering relation of
type ((••) (••)). The postulates of Cμ require that the p of type (••) mentioned
in the preceding paragraph be the pr-first of the well-orderings of the
individuals. Except for this condition, ρλ can be an arbitrary well-ordering
of the universal set of type ((••))• So, having appropriately selected p f we
can satisfy condition (3) by setting Π'pi =pj equal to any well-ordering of
p'(Q x Q) such that p ' is the pί-first member of the set of well-orderings of
Q. The reader should have no difficulty finding the proper formal
expression for a relation satisfying this condition.

Now to generalize. Letp be any of the well-ordering relations used to
introduce 1-constants in constructing Gμ. If there is no well-ordering of
lower type in the field of p (as in the case where p is a well-ordering of
individuals), then Π'p can be an arbitrary well-ordering of the relevant set
in the model (e.g. Q, p'Q, p ' (Q χ Qx Q), etc.). If p does have such a
relation of lower type in its field, then we assume that such a relation of
lower type has already been selected. Let pi be the relation thus selected.
Then p ' must satisfy the condition that pi is the p'-first well-ordering of
the relevant set in the model.

Thus Π can be constructed in various ways to satisfy (3). This
completes the proof.

803T Let £0 be as in the preceding theorem. Then there exists a projection
ΠN on 7i/(lQ2Ό) such that

(1) if a is an individual constant, i-Π'αεTZ/ in Qμ(ίnf),
(2) if ή is a name and n the corresponding proper numeral, then Π^ (ή

is n,
(3) if KB in &/, then ι-ΠN

 (B in Sμ(inf).

Proof. Let ΠN be constructed as a special case of the projection
described in the preceding theorem, with Q specialized to 71/ and the
well-ordering of the individuals mapped on the natural ordering of the
proper numerals. (1) and (2) are immediate. To prove (3) it is sufficient
to supplement the proof of 802T by showing that (i) the axiom of infinity
V$fin maps on a theorem of Sμ(inf), which it does since h ^ f i n , and
(ii) 801P maps on a theorem, which it does since it can be proved in £μ(ίnf)
that the natural ordering of the proper numerals has the property ascribed
to p by 801P,.

804T If £μ (inf) is consistent, then 801P is neither refutable nor provable in
Cμ(inf).

Proof. In consequence of 803T, if the negation of 801P were a theorem
there would be a contradiction in Qμ(inf).

By constructing a projection on p(Vΐ/ it can be seen that if 801P were a



284 H. JULIAN WADLEIGH

theorem this would involve a contradiction in βμ(inf), since no ordering of
$'71/ of type co can be expressible in βμ(inf).

805T The following statements are equivalent:

(1) Γfin is expressible in βμ(°°).
(2) Γ^ (513D) is expressible by V in Qv,
(3) Γfin is expressible in Qv.

Proof. We shall use the projection defined in 803T. Suppose Tή is not
expressible by V in £ZΛ Then there are individual constants al9 . . . , <ty
such that, for all possible choices of names ήly . . . , hp,

\-Qχ ψ ή±v . . .vQpψ hp i n Qv.

So by 803T, for all possible choices of proper numerals nl9 . . . , np,

h-αί ψ n±v . . . vαjΐ np in Cμ(ίnf).

Since we also have, by 803T,

i-αj, . . , α^ε^in Sμ(inf),

it follows that the metapredicate composed of the proper numerals is not
expressible by 71/ in £μ(inf), hence by 71 IT, 709T Γfin is not expressible in

This proves that (1) implies (2). Now assume (2) and let

R =defλF(3x FQp)ζx)

i.e. R is the family of subsets of p-segments. It is easy to prove that R is
τε-hereditary and that {Λ} C R, SO

(a) i-fin c R in Ci/.

We also have, for every name numeral ψ 0,

(b) hp) <h = {0, . . . , (n - 1)} in &/

and

(c) p ) <0 = Λ in 6ι/

From (a)—(c) it follows that (2) implies (3). That (3) implies (1) is
immediate by 505T.

The next theorem shows that V can express Γ̂  in ^μ(°°) only if the
well-ordering of the individuals is of order-type co, that is to say:

806T If Wlis an extension o/Cμ(°°) in which V expresses Γ̂ , then SI is also
an extension of Qv.

Proof. It is easy to see that the statements (a)—(c) in the proof of the
preceding theorem are provable in £μ(°°).

Since V expresses Γ^ in 9JI there is, for every individual constant α, a
name n such that hα = ή in 1, hence,
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\-p)(a = p)ζή in I,

from which it follows by (b), (c) and 618T that

hpVαεfin,

and by quantif icational closure

(1) \-Vx p)'xεf\n in I.

From the least-number postulates (402P), (b), (c) and quantificational
closure it can be inferred that our hypothesis implies

*-Vxly y$ p> '#in a,

so V$R where R is defined as in the preceding theorem, so by (a),

(2) κv$fίn in a.

The result follows from (1) and (2). From 805T and 806T it is not difficult
to deduce the equivalence of the statements (a)—(c) on p. 258, §1-

§9. Concluding remarks

We have shown that the system Qv satisfies condition (2) of adequacy if
and only if Γfin is expressible in £μ(°°). That it satisfies condition (1) is
clear from the way it is constructed. Condition (3) remains to be verified.
We have shown how arithmetic can be developed in this system and it is
easy to see that basic concepts and constructions of mathematics, such as
groups and other algebraic structures, topological spaces, Lebesgue
integrals, etc. can readily be identified with 1-constants in &/. More
generally, let T be a mathematical theory which is finitely axiomatizable.
Let A(bu . . . , bn) be the conjunction of the axioms of T, where bu . . . , bn

are the undefined terms. Then we have in $i; such 1-constants as

X#i(3#2 . . . 3#n A(xlf . . . , xn))

and λxλ . . .xn(A(?d, . . . ,xn)) Evidently T can be embedded in %v. Its
axioms are absorbed in the postulates which introduce the relevant
1 -constants.

It is conceivable, however, that there might be some special mathemat-
ical theories which cannot be finitely axiomatized even in a system of type
theory, and which could be incorporated in an extension of %v only if we
introduced new constants by infinite sets of postulates. In view of this it
seems better not to be dogmatic in asserting that %v satisfies condition (3).
The system does, however, seem adequate for all the better known and
more important parts of mathematics.

Finally, we now review the question whether any ontological presup-
positions have been used in constructing £ι> as an extension of goo. This
extension is generated by

(1) the Ί-postulates (303P)
(2) the axioms of choice
(3) the postulates 309P
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(4) The infinity postulate IF FWn
(5) 801P

The 1-postulates, as we have seen, are nothing more than implicit
definitions. They give names to things of which the existence is already
proved within the system (cf. 304T, 210T). On (2) we commented following
31 IT and following 512T. The comments made here on (1) apply also to (3)
in consequence of 31 IT. Postponing discussion of (4) for the moment and
passing to (5), this postulate merely transposes to the individuals a system
of relations, i.e. number theory, already constructed in Cμ(inf) on predi-
cates of type ((•)).

Now as to (4). We seem at first sight to have committed ourselves to
the assumption that there exists, independently of the language Qv, an
infinite totality of some kind. And this is really rather paradoxical. The
trend in physics today seems to favor a finite universe. In any case, the
totality of human knowledge is necessarily finite. The end results of most
if not all mathematical inferences, if they are statements about reality,
are statements about finite configurations of things or events.

Why, then, do we use an infinite system? Presumably because the
methods of classical mathematics require afield which is closed with
respect to limit operations, even though our measuring instruments are not
sensitive to indefinitely small space-time intervals. The use of infinite
predicates, then, like that of certain complex-valued functions in physics
(cf. §1), is to facilitate calculation. The calculations are reliable if Γfjn is
expressible in Cμ(°°), and if this is the case, then all our results could have
been obtained, at least in principle, in one of the systems Qμ(n) without
assuming anything about expressibility of Γfjn.

So if we really are assuming existence of an infinite totality, we must
be guilty of a preposterous act of make-believe, and that merely for the
sake of computational convenience. But there is really no need to interpret
the infinity postulate this way. A predicate P is finite if there is a
self-terminating algorithm which lists the objects x such that xεP and
terminates itself when the list is complete. P is infinite if either (a) there
is a listing procedure which terminates only when the operator gets tired
or bored or runs out of paper, or (b) there is no listing procedure. Thus
the infinite is essentially open-ended. "The completed infinite", like "the
round square", is a contradiction in terms. The postulate Vφfin is a
statement, not about the universe, but about the logistic system itself. It
means, in effect "we are using an open-ended system."

NOTES

11. Henkin's definition of strong Γ-consistency in [4] must be adapted to the present
context by specifying that the variable in Aj(x) is an individual variable.

12. In consequence of our definition of the range of a predicate variable, and also of
condition (1) of adequacy, we are compelled to give due recognition to the fact,
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pointed out many years ago by Skolem, but frequently ignored in the literature,
that a set may be enumerable in metalanguage without being enumerable in the
object language. Of course all our predicates are enumerable in metalanguage.
See end of §5, below.

21. It is not easy to decide whether to use ''predicate" as a primitive idea and
define "function" in terms of predicate, as is done in this paper, or to follow the
reverse procedure, as is done, for instance, in [1]. The choice made here,
prompted in the first place by the conception of type theory as an extension of
the first order predicate calculus, is also partly motivated by the thought that
''predicate" is a more elementary and ζ'function" a more sophisticated concept,
as suggested by the history of the two.

22. cf. [5], pp. 129,131. Our notation differs from the abbreviated form of [5], p. 131
in that we do not omit the outer pair of parentheses. In his fourth edition Acker -
mann abandoned his type symbols.

23. Perspicuity is the aim of these notations. The forms x ZF and y ax imitate
simple syntactical patterns common in natural language: noun-copula-adjective,
as in "three is prime," and noun-verb-noun as in "four exceeds three."

24. For definition of confusions and collisions of variables see [7], p. 136.

25. This axiom schema is analogous to *509n on p. 297 of [2].

26. See note 24.

27. Reference numbers followed by T refer to theorems, by D to definitions, by P to
postulates.

31. [6], vol. 2, pp. 9 ff.

32. [1], pp. 57 ff.

33. Vol. 2, p. 15.

34. Cf. the definition of well-ordering on p. 21 of [3].

51. [8], pp. 98, 366.

52. Subject to the modification specified in note 11.

61. Our method of approach to this problem has been inspired by that of White-
head and Russell in [10], Part IΠ, Section C. Our predicate "fin" (614D below)
is equivalent to the analogue in %\ of the "Cls induct" of [10], but the form of its
definition is entirely different.
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