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NEW ALGORITHMS FOR THE STATEMENT AND CLASS CALCULI

HENRY C. BYERLY and CHARLES J. MERCHANT

INTRODUCTION.

Efficient algorithms for making inferences in the statement calculus
and in the calculus of classes may be developed with a fractional
representation of statements. The idea is to take the transitivity of
implication as the fundamental mode of inference. We seek then a
representation in which hypothetical syllogism, which is an expression of
this transitivity, appears in a convenient form. Both the inferences:

All A are B p D q
All B are C q D r
All A are C pz) r

work as if one "cancelled" the middle terms. This apparently simple-
minded view can, as we shall show, be developed into a remarkably simple
and perspicuous set of techniques for manipulation of logical relations
between calsses and between statements.1

PART I: THE STATEMENT CALCULUS.

1. Fractional Representation of the Statement Connectives. With a few
stipulated conventions of interpretation some of the basic logical relation-
ships between the connectives of the statement calculus may be built into
the notation itself. We represent the usual statement connectives in the
following "fractional" form2:

P q l
q P iP' q)

It is convenient to adopt some arithmetical terminology in talking about
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the fractional representations. Thus we shall speak of "inversion" of
fractions, "multiplication" of juxtaposed statement terms and later of

"cancellation" of terms. The inverse of a statement letter p: — maybe

taken in the sense of "assert that p ." The fraction - then represents the

denial of the statement p. Inversion of statement letters will in fact
correspond with negation of statements. Multiplication in the numerator is
read as negation of the conjunction of the multiplied statements. Multipli-
cation in the denominator is read as (assertion of) the disjunction of the

statements. Thus "——" represents (pv qvr), whereas " ^ - " r e p r e s e n t s

~{P ' Q ' r)> In combination an expression such as '̂ —*•" represents

(~/> . q) D {rvs).
Each fraction represents a statement. Juxtaposition or multiplication

of fractions, indicated by "•", represents the conjunction of statements as
a string of premises. We also use the dot symbol for conjunction within the
denominator, but conjunctions within a fraction may always be removed as
will be shown in section (2). Since conjunction is a commutative and
associative operation among statements, multiplication of fractions is
commutative and associative. Furthermore, since both conjunction and
disjunction are commutative and associative, so is multiplication of
statement terms in either numerator or denominator. Using " = " to

1 1 P(qv)
abbreviate "is logically equivalent to" we then have: — = — , —~— =

pq qp 1
^ etc

Some analogies with arithmetic fractions appear in the logical manipu-
lations but these analogies are limited. The motivation for the representa-
tion and suggestion of its potential usefulness may be seen at once when we
introduce an operation for negation of statements.

Negation Principle'. Any expression which appears as a factor either
in the numerator or in the denominator of a fraction may be moved across
the fractional line to yield a logically equivalent fractional representation
provided the expression is negated.

Assuming the principle of double negation: p" = />, we have:

1 p t
 A

 1 P

-p = Ί™άJ>=V
The following equivalent ways of writing "p z> tf" then appear in a simple
application of the negation principle:

ρ _ 1 _pqt y
q P ' q 1 P r '

Referring to the stipulated readings we have:
(p Dq) Ξ (~pvq) =~(p ~q) = (~q =) ~/>).
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2. Equivalence Transformations. To represent the statement form
{pvq) D (r - s) we must indicate disjunction in the numerator and conjunc-

(p v q) pa

tion in the denominator: ( ' The expression " — " represents rather
(p q) D (rvs). The convenience of the representation is, however, not
marred by the necessity for indicating conjunction in the denominator and
disjunction in the numerator because of the following "separation" rules:

A {PvQ) _P Q β P P P
r r r (q r) q ' r

We can thus simplify fractions in which the conjunction or disjunction is, so
(pvq) p q

to speak, in the wrong place. The particular case: = ~ -r is an

expression of one of DeMorgan's laws. The particular case -. r = — — is
\P'Q) P Q

an express ion of the inferences ru les of conjunction and s implicat ion. We

may apply (A) and (B) in combination: ) v

 λ = - • - • - . - . The l a t t e r

(r s) r r s s
equivalence has the special case, with p for r and q for s: , v . =

p q p q p q p
- . - . - . - = - -. (We use here the principle that tautologies such as -
p p q q q p F & p

may be inserted or removed without altering the truth value of the
conjunction of fractions). We have thus represented "(/> Ξ q)» in the form:

There is, unfortunately, no straightforward way of "multiplying" the
t> r iyy

fractions. In particular: - - ψ —. We have rather the pecularity that

q s qs

~ ( - J = - ~. Negation of whole fractions may be accomplished by inverting

and "factoring" the terms. Thus also:
(£A=λ λ 1 t

Λqs) p' r l " 1'
We require the usual rules of distribution to express the various

equivalent forms of expression with mixed conjunctions and disjunctions.

C X 1 D 1 1
* [p-iqr)} (p-q)(p-r) ' p(q >r) [(pq) - (pr)]

These equalities represent the equivalences: p (qvr) = (p - q) v (p r) and

pv(q r ) = {pvq) {pvr).

We need further a means of simplifying complex fractions. As with

arithmetic fractions, ί is ambiguous. This ambiguity is a reflection of the

non-associativity of material implication. We simplify such expressions by
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bringing down the numerators of the simple fractions occurring in
numerator or denominator of the main fraction. We then have the reduction
rules:

F (t\=(±\ _(P'v<l) F P_ _±_ =±_
' W W r ' M /JΛ q'r

r r \rj \qfr)

The rules (E) and (F) may be taken as stipulations, but they are also built

into the notation. "—7-", the numerator in (E), expresses "(~pvq)'% and

the disjunction must be indicated in the numerator. ίC——" expresses

"(cq vr)" which is represented in the denominator simply by the product

"q'r". Using (E) and (F) together we have: 7 ^ = (P'v(l) = JL . JL w h i c h
to v / v / to /r\ r , s r , s r , s

shows that (p D q) Z) (r ~D s) = [~p D (~r vs)] [q D (^r vs)]. In (E) we can
P' q

simplify further, by the equivalence (2.A) to give: — —. In (F) the

q r

conditional "p D (q D r)" may be expressed as " t " which may be used

to obtain the transformations of the rule of exportation.
Repeated factors in numerator or denominator may be omitted:

Γ P£=P J L = I
1 V pp p'

These idempotent laws correspond to the tautologies:

(p p) ^pand(pvp) =/>.

Simplifications of the conditionals: (/>D^/>) and {~pΌ P) appear in the
form:

P'- 1 - 1 a n α p - pp- p*

As a further example of the ease with which further equivalences may
be derived in the fractional representation we derive the law of absorption:

(p D q) ΞΞ [p D (p - q)]. We insert the tautology "-" and use the rule 2.B:

P _ P P_ P
q P q (P-q)

3. Inference Rules. Two rules of inference are sufficient in the
fractional representation to yield easily all the usual inference rules of the
statement calculus. The motivation, we recall, for the fractional repre-
sentation was the sort of "cancelling" which occurs in inferences based on
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the transitivity of material implication. The following single cancellation
rule yields all inferences for which, intuitively, the conclusion is contained
in the premises:

Fundamental Cancellation Rule: Any term which appears on opposite
sides of the fractional line in two fractions may be cancelled to yield, upon
multiplying (collapsing) the remaining fractions, a valid inference.

Examples will show the extreme simplicity and freedom of application

of this rule. Only one caution is necessary: — does not cancel to yield " - " ,

which, as will be noted later, corresponds with contradictory forms. We
use "—»" to indicate logical entailment.

(1) Hypothetical Syllogism: -ζ ~> ~ •

P 1 1
(2) Modus Ponens: - -z —> - .

(3) Modus Tollens: %'4->4-

(4) Disjunctive Syllogism: -T- % —> - .
pq 1 q

p r 1 / p 1\ r 1 / 1
(5) Constructive Dilemma: - - . - = ^ • - J . - - > _ . - - > -

(6) Destructive Dilemma: £ . Z . ± = (ί.-^.Z-.L.Z

_pr_ 1_
1 pfrr'

In (6) we use an obvious corollary to the fundamental cancellation rule:
a term and its negation appearing on the same side of the fractional line
may be cancelled.

(7) pz)(qvr)

(8) (p-q)Dr

s^p / : . (H)3r: f j^ .
(9) (p-q)vr

(p-q)z) s/ :. (rvs) : — ± τ - ^ - * —
' ' (pj^q)r s rs

Here we cancel a compound, remembering that "pq" in the numerator is a
(negated) conjunction.

We complete the system with a rule of addition:
General Rule of Addition: Any term or terms may be multiplied (tacked

on) to expressions in the numerator or in the denominator of a fraction to
yield a second fraction which is a logical consequence of the first.

This rule allows the "paradoxical" inferences. When just the cancel-
lation rule is used, the premises "contain" the conclusion and involve no
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new terms appearing in the conclusion. The addition rule allows, on the
other hand, the following sort of technically valid but intuitively unsatis-
factory inferences:

(DP /Λ(pvβ) :\-j-q

(2) q /.\(P=>q) ' ~q~*~q

(3) ~p / : . ( f D ? ) : | - |

(4) p D ? / Λ ( P J ) D ( ? V S ) ~^—s

Contradictions. The fractional representation of the contradictory
1 1 p

form p ~p is: . = - -. Applying the cancellation rule we have:

"Jf"f~-*T A string of fractions which, upon cancellation, yields, ί f - "

represents an inconsistent set of premises. The rule that "a contradiction
implies anything" follows clearly from the application of the rule of

addition to the expression " - " .

P QIt might appear that p = q, if represented as - -, would reduce to

ίί . >> βUt βie cancellation rule, as stated gives only: J- η —> —, which

is merely an instance of any statement entailing a tautology. No cancella-
Ption may be made in the expression " T " . The sense of cancellation, we

recall, is to make a "transitive jump" from one implication to another.
Tautologies. There is with the fractional representation a simple

criterion for deciding whether a statement form is tautologous or not. Any
fraction containing a statement letter as a factor both in the numerator and
in the denominator is a tautology. The conjunction of two tautologies is, of
course, also a tuatology. For some examples we express the Hilbert-
Ackermann axioms for the sentential calculus in fractional form and
transform the fractions until a statement letter is a factor of both
numerator and denominator.

(«».« = » : ^ - H
(2)fD(ίv?) : -£-

pq

(4)[(f3ί)]3[(rv«3(rvί)]:74--r4-ί:!M
\ / wr 'ί/j L\ ft \ Ί/J (rvp) (r\tq)τrq rq

rq
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In the fourth axiom we simplify using Rule 2.E and the negation principle to
yield a fraction in which "q" is a factor of both numerator and denom-
inator.

4. General Adequacy of the System. The negation principle can be
justified in general by induction on the number of factors. We omit the
formal proof and merely note the crucial logical equivalences involved.

ABC.
Starting with the general expression " — " we may, according to the

PQR...
principle of negation, move a term, say "A", from numerator to denomina-
tor provided we negate that term. This operation corresponds to the
logical equivalence of the following forms:

[(A.B.C..) D (JPvQvβ...)]= [(B.C..) D [A D (PvQvfl . . .)]

Ξ [{B.C ...) D H v P v Q v β ...)].

The principle of negation involves, in the usual formulation, the equiva-
lences expressed by the laws of exportation and implication.

To show that the permissible inferences using the cancellation rule are
in fact valid we consider the various argument forms which correspond to
all the sorts of cancellation which can occur. We let the letters: A, B, C,
D, E stand for any statement, simple or compound; or these may be
vacuous and replaced by " 1 " . Then every inference in the fractional
representation which uses the cancellation rule may be put into the form:

_A_ $D AD

$C ' E ~*CE '

(This general form clearly includes the cases of the form: ^— -r- -* ——,
E JpC EC

by the commutation rules). We appeal to the definition of logical con-
AD

sequence. The conclusion —— is false if and only if both "A" and "£>" are
Ch

true and "C" and "E" are false. Since B cannot be vacuous if there is to
be cancellation, we have to consider the two cases: ((B" is false and "B"

A

is true. If "B" is false, the first premise —• is false. If ζtB" is true, the
second premise •— is false. Thus both premises cannot be true and yet the

E
conclusion be false.

We could also write out the sixteen varieties of inference which arise
when some or all (excepting B) of the terms are vacuous. For example, if
C and D are replaced by " 1 " we have an instance of modus ponens. If

A,C,D,E are all vacuous, we have the derivation of " - " from the

contradiction: B. ~B.
5. Examples of Derivations.

A. (PvQ)
(~QvR)
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( ~ S D ~ Λ ) / . ' . ( ~ S D P )

/_1 1 \ S' ^ 1 Sf ^ Sf

\P0 ' 0rR/ ' Rr~* Pft' ftr~* P'

B. [Pv(Q - R)]

(S ΏR) I .'. R.

I 1 f\ S 1 0__¥_Λ 1
VΛQ Ή) ' S/ ' R -* (Q Λ)ίf ' Λ "* (Q Λ)Λ " (QΛ) (RR)

__1 1 1 1
~ QR' RR~* RR~ R'

C. (A D £ )

~(C •-/))
-(£ - B) Ό ~D / .'. (A D £ )

/A J _ \ / C ^ (££)'\ _^ A 0{EB)' A(EB)f

\# ' #'C) ' \ 1 ' $' / 0 ' 1 ' 1
A _A A _̂ A

" (E B) ~ E ' B ~* E'

D. [(A ' B) D (CvD)]

(C D£)

[A ' ( F v 5 ) ]
(Z) ΏG)/ .'. [(A D ~ F ) D(J5vG)]
/A£ ^ \ 1 R._M. . 1 ^ _^ 1 ^
\g!^ El [A -(JP5)] ' G "*£>£' (A .F)(4-Jf) ' G ~* $E{A -F) ' G

"^EGίA F ) " .EG " EG ~* £G

E. [(A Έ)^(C Z)D)]
(E D ~D)

A C / / . F

AS E_ l l _ /A^ . JL\ . / I . ! . 1. !\
C ' i ) f ' (i? £) ' (A C) " \ G ^ ' pή' \B ' E 'A ' Cj

D ABE 1 I 1 1 I
0' '4 ' $' $ V l

—the premises are contradictory, so any expression follows by the
addition rule.

PART II: THE CALCULUS OF CLASSES

The same sort of algorithm is applicable to a Boolean algebra of
classes. The basic relations of a Boolean algebra which are shared by
terms of syllogistic and statements of the statement calculus are exploited
in the fractional representation by giving the manipulations the same form.

We let the letters A, B, . . . now stand for classes rather than state-
ments. We then stipulate:
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"—" represents "A Q B" (class inclusion).
B

Equivalent formulations of class inclusion in terms of set union and
intersection suggest, with a little imagination, writing

"•^' for "AΠB = φ" and "-£-" for "AΠB= V\

Complementation of a class, the analogue to negation of a statement, then
obeys the negation principle: a term may be moved across the fractional
line, salυa υerίtate, provided it is negated (complemented). We have then:

A ABf B' 1
B~ 1 " Ar ~ BAr

which express the relationships:

(A c B) = [AΠBr = φ] = (Bf <^Ar) = [(BuA') = l].

Set union and intersection, like their analogues disjunction and conjunction,
are commutative and associative so that the order of multiplied terms may
be ignored and the parentheses omitted in unmixed expressions. We limit
the application here to syllogistic reasoning though the techniques might be
extended to the entire monadic predicate calculus.

1. The Fractional Representation of Categorical Statements, Since
categorical statements may be interpreted rather naturally in terms of
relations between classes we can apply the above techniques to syllogistic
reasoning. We can in fact develop a fractional representation of categorical
statements which allows quick and easy solutions to all the problems
arising in syllogistic, from the immediate inferences through enthymematic
sorites.

The choice of representations for the universal statements is clear
from the class notation for the A and E type statements: All S are P: The
class of S's is included in the class of P's: No S are P\ The intersection
of the classes S and P is empty. The particular statements will be
represented by the inversions of their contradictories, plus an indication
that they are existential statements. We then stipulate the representations:

A: AUS are P - ^

cp
E: No S are P - —

I: Some S are P — ,
\S)P
P

0: Some S are not P — —
w)

The parentheses around the subject terms of particular statements have
only an indicating function. They are necessary to remove the ambiguity
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which would otherwise arise in reading " — " both as "All A are B" and as
B

"Some B are not A." We note that the expression "—" (with no paren-

theses) has no (syllogistic) reading. It could, however, be used to represent
the statement: Everything is either S or P.

The fractional representation gives a rapid and easily remembered
means of writing out all the logical equivalents of any categorical state-
ment. We can thus obtain all the immediate inferences of traditional
Aristotelian logic which are valid under a Boolean interpretation, that is,
without existential presupposition. The negation principle and commuta-
tivity of multiplication of terms are syntactically the same as in Part I.
We get the immediate inferences of conversion of the E and I statements
from the commutation principle:

SP__PS^ _1 1_
1 ' 1 a n α (S)P ~ (P)S

The negation principle yields the obversions. Thus the equivalence of
"All S are P" to "No S are non-P" appears in the equation:

S SPr

P ~ 1

The immediate inference of contraposition, valid for A and 0 statements,
appears as:

S__P^_ P S'
P~S> (S)~ (P>)

There is no temptation to misapply conversion or contraposition. The only
restriction on the manipulations is that a fraction must be written in a form
which corresponds with the categorical statements—in particular the
parentheses must be filled.

2. Syllogistic Inference. The following procedure suffices to pick out
those and only those conclusions which follow validly for a set of categori-
cal statements:

(1) Having represented the premises in fractional form, write the
fractions together as if to ''multiply" them;

(2) Inference rule: Cancel any terms which appear both in the
numerator and the denominator.

The result is then to be interpreted according to the following rules:

(1) If more than one pair of parentheses occurs, no (syllogistic)
conclusion may be drawn;

(2) If a term cancels, the two fractions may be collapsed into anew
fraction.

The first rule of interpretation corresponds to the traditional rule that no
valid syllogism has two particular premises. That only one particular
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premise may be used in any type of valid syllogistic argument saves the
method from embarrassment.

EXAMPLE (1) All Mare P.
AllS are M. / .*. All S are P.

P lfi~* P

EXAMPLE (2) No P are M.
Some M are S. / .'. Some S are not P.
PJjΛ 1 _P

1 θ"(5)

In Example (2) we note that cancellation is unhindered by the parentheses;
some term must, however, be placed in the parentheses to read the result.
Along with the restriction to at most one particular premise we see easily
that one rule of distribution suffices to pick out just the fifteen syllogisms
valid without existential presupposition: the middle term must be dis-
tributed exactly once. For the terms which appear in the denominator are
just the distributed terms and the middle term must appear once in the
denominator, once in the numerator to cancel.

An advantage of the fractional method is that any conclusion which may
validly be inferred is actually generated.

EXAMPLE (3) All P are non-M.
Some Mare not S. / . ' . ( ? )
_P__JL PS__jP_ S_
M' (M) ~* () ~"(S') " (P')

Thus we may infer either ((Some non-S are not P" or that (iSome non-P
are not S" even though one of the traditional rules of quality is violated.
This example shows that the obvious derived inference rule may be used:
positive and negated terms on the same side of the fractional line may be
cancelled.

The fractional method involves no assumption of existential import,
but it is particularly easy to see in this representation just what appropri-
ate assumptions yield the nine additional forms of syllogism valid under the
traditional point of view. For AAI-1 we require "Some S are S."

S " Ίfi ' (S)S ~~* P ' (β)S ~* (S)P'
The fractional method provides an easy technique for solving en-

thymemes. Once given the fractional representation of two of the state-
ments of a valid syllogism the third missing statement may be found as in a
simple problem of algebra. Let us, for example, complete the enthymeme
"There must be something burning in the kitchen with all that smoke." We
might reconstruct the argument as follows:

Some kitchen place is a smokey place.
Some kitchen place is a fiery place.
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Abbreviating the classes: kitchen, smokey, fiery places as K, Sand F, we

have: —— - —> , . We clearly must cancel the "S" and insert the

S
"F". The missing premise is then -=• or "All smokey places are fiery."

Γ

The fractional method is prefectly general for arguments with any
number of categorical premises. We can solve the following enthymematic
sorites without any additional rules:

All A are B.

All non-C are D. / Some non-A are C.

Putting the argument into fractional form we have:

A C[ Γxl 1

B' D ' ly\~*(A')C

We must cancel "B" and " D " and also introduce parentheses. We thus

need — - or any equivalent form. The missing premise which makes the
\B )

argument valid is then "Some non-B are not D."
New notations and algorithms add nothing, of course, to the store of

logical relationships which there are; they may, however, make them
easier to express and interrelate. A practical application would appear to
be in teaching elementary logic: the easily learned techniques would
provide quick access for the beginning student to a systematic manipulation
of logical relationships among statements and among classes.

NOTES

[1] A very similar technique, in somewhat different notation and limited to syllo-
gistic, was discovered independently by Professor Fred Sommers. See his 'On
a Fregean Dogma," in I. Lakatos, Ed., Problems in the Philosophy of Mathe-
matics, Vol. I (North-Holland) (1967), pp. 47-62.

[2] The representations themselves have no obvious intuitive significance, but may
be taken simply as notational stipulation. One could develop the same technique
using t(P/l" to represent " P " instead of "~p.» But then "PZ)Q" would come
out "Q/P", which also seems backwards.
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