AN UNSOLVABLE PROBLEM CONCERNING IMPLICATIONAL CALCULI

BISWAMBHAR PAHI and RALPH C. APPLEBEE

Propositional calculi are assumed to be defined as in Harrop [2]. A propositional calculus is called implicational if it has exactly one connective and that a binary one. Algebraic structures called finite models of a propositional calculus \mathbf{P} in Harrop [2] will be called here finite rulemodels of \mathbf{P}. An algebraic structure of the appropriate kind is called a model of \mathbf{P} if every theorem of \mathbf{P} is valid in it. We note that every finite rule-model of \mathbf{P} is a finite model of \mathbf{P}, but the converse need not hold. It is proved in Harrop [2] (lemma 3.1, pp. 5-6) that there is an effective method for deciding whether or not a finite algebraic structure is a finite rule-model of a propositional calculus \mathbf{P}. We prove here the following:

Theorem. There is no effective method for deciding whether or not a finite algebraic structure is a model of an arbitrary subcalculus (with modus ponens as its only rule of inference) of the classical implicational calculus.

We first prove a lemma which is of some independent interest.
Lemma. For every wff α there is a finite algebraic structure \mathbf{M}_{α} such that for any wff β, β is invalid in \mathbf{M}_{α} if and only if α is a substitution instance of β.

Proof. If δ is a wff all of whose propositional variables are given without repetition in the list $v_{1}, v_{2}, \ldots, v_{k}$, then δ is also written as $\delta\left(v_{1}, v_{2}, \ldots, v_{k}\right)$. Let $\alpha\left(v_{1}, v_{2}, \ldots, v_{s}\right)$ be given, and let the set of all subformulas of α be listed in the sequence $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{s}, \gamma_{s+1}, \ldots, \gamma_{s+m}$ such that $\gamma_{i}=v_{i}, i=$ $1,2, \ldots, s$ and no γ_{j} is a subformula of any of its predecessors in the above sequence. For example, if α is $C C p q C N q N p$ then a desired sequence of subformulas of α is: $p, q, N p, N q, C p q, C N q N p, C C p q C N q N p$.

Based on the construction of α we define the finite algebraic structure \mathbf{M}_{α}. Let $S=\{0,1,2, \ldots, s+m\}$, and $D=S-\{s+m\}$ be the set of designated elements of \mathbf{M}_{α}. If Ω^{*} is the set of all propositional connectives, then corresponding to each k-ary $\omega^{*} \varepsilon \Omega^{*}$ we define a distinct k-ary operation ω on S as follows: For any k-tuple $i_{1}, i_{2}, \ldots, i_{k}$ of elements of S, $\omega\left(i_{1}, i_{2}, \ldots, i_{k}\right)=j$, if there is a subformula γ_{j} of α such that

$$
\gamma_{j}=\omega^{*}\left(\gamma_{i_{1}}, \gamma_{i_{2}}, \ldots, \gamma_{i_{k}}\right) ; \text { otherwise } \omega\left(i_{1}, i_{2}, \ldots, i_{k}\right)=0
$$

For the example $C C p q C N q N p, s=2, m=5$ and the operations N and C defined on the set $\{0,1,2, \ldots, 7\}$ are:

$$
\begin{gathered}
N(1)=3, N(2)=4, N(x)=0 \text { otherwise; } \\
C(1,2)=5, C(4,3)=6, C(5,6)=7, C(x, y)=0 \text { otherwise. }
\end{gathered}
$$

Clearly, $\alpha\left(v_{1}, v_{2}, \ldots, v_{s}\right)$ is invalid in \mathbf{M}_{α}, because α takes the value $s+m$ when $v_{i}=i, i=1,2, \ldots, s$. Hence, any wff β of which α is a substitution instance is also invalid in \mathbf{M}_{α}. Before proving that if β is invalid in \mathbf{M}_{α}, then α is a substitution instance of β we note the following properties of \mathbf{M}_{α}.
(1). The elements $1,2, \ldots, s$ are not in the range of any operation $\omega \varepsilon \Omega$.
(2). For any $j \varepsilon S$ and $s<j$, there is a unique k-ary operation $\omega \varepsilon \Omega$ and a unique k-tuple of elements from S such that ω takes the value j for this k-tuple.
(3). For each $j \varepsilon S$ and $s<j, j$ has a unique factorization using only elements from the set $\{1,2, \ldots, s\}$ and operations from Ω.
(4). For each $\omega \varepsilon \Omega, \omega(\ldots, 0, \ldots)=0$.

Let $\beta\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ be invalid in \mathbf{M}_{α}. Then, there is an invalidating assignment to the variables of β from the set $\{1,2, \ldots, s+m\}$ (see property (4) of \mathbf{M}_{α}) such that β takes the value $s+m$ for this assignment. Let u_{i} take the value j_{i} for this assignment, $i=1,2, \ldots, n$. Let $\delta=\beta\left(u_{1} / \gamma_{i_{1}}, u_{2} / \gamma_{j_{2}}, \ldots, u_{n} / \gamma_{j_{n}}\right)$. Since each γ_{i} is a subformula of α and γ_{i} takes the value i when v_{t} takes the value $t, t=1,2, \ldots, s, \delta$ takes the value $s+m$ when v_{t} takes the value $t, t=1,2, \ldots, s$. In view of property (3) of \mathbf{M}_{α}, δ must be α. For our example $C C p q C N q N p$, if β were $C u_{1} C N u_{2} u_{3}$ then the invalidating assignment gives $5,2,3$ respectively to u_{1}, u_{2}, and u_{3}. Substituting the fifth, the second and the third subformulas of $C C p q C N q N p$ in the previously given list for u_{1}, u_{2}, and u_{3} respectively in β we get CCpqCNqNp.

Remark. A rule of inference is called non-trivial if it has some application for which the conclusion is not a substitution instance of any of the premises of that application. No non-trivial rule of inference is satisfied by every \mathbf{M}_{α}.

Proof of the Theorem. Assume it is false. Let \mathbf{P} be an implicational calculus (all of whose theorems are classical tautologies) with modus ponens as the only rule of inference. Let α be any wff with implication as its only connective. Consider \mathbf{M}_{α}. By assumption we can decide whether or not \mathbf{M}_{α} is a model of \mathbf{P}. If \mathbf{M}_{α} is a model of \mathbf{P} then α is not a theorem of \mathbf{P} by the construction of \mathbf{M}_{α}. If \mathbf{M}_{α} is not a model of \mathbf{P}, then some theorem of \mathbf{P} must be invalid in \mathbf{M}_{α}. Thus, by the lemma, α is a substitution instance of a theorem of \mathbf{P} and hence α is itself a theorem of \mathbf{P}. Therefore, \mathbf{P} is decidable. This contradicts theorem 1 of Gladstone [1].

REFERENCES

[1] Gladstone, M. D., "Some ways of constructing a propositional calculus of any required degree of unsolvability," Transactions of the American Mathematical Society, vol. 124 (1965), pp. 192-210.
[2] Harrop, R., "On the existence of finite models and decision procedures for propositional calculi," Proceedings of the Cambridge Philosophical Society, vol. 54 (1958), pp. 1-13.

Central Washington State College
Ellensburg, Washington

