Notre Dame Journal of Formal Logic Volume XI, Number 2, April 1970

AN UNSOLVABLE PROBLEM CONCERNING IMPLICATIONAL CALCULI

BISWAMBHAR PAHI and RALPH C. APPLEBEE

Propositional calculi are assumed to be defined as in Harrop [2]. A propositional calculus is called implicational if it has exactly one connective and that a binary one. Algebraic structures called finite models of a propositional calculus \mathbf{P} in Harrop [2] will be called here *finite rule-models* of \mathbf{P} . An algebraic structure of the appropriate kind is called a *model* of \mathbf{P} if every theorem of \mathbf{P} is valid in it. We note that every finite rule-model of \mathbf{P} is a finite model of \mathbf{P} , but the converse need not hold. It is proved in Harrop [2] (lemma 3.1, pp. 5-6) that there is an effective method for deciding whether or not a finite algebraic structure is a finite rule-model of a propositional calculus \mathbf{P} . We prove here the following:

Theorem. There is no effective method for deciding whether or not a finite algebraic structure is a model of an arbitrary subcalculus (with modus ponens as its only rule of inference) of the classical implicational calculus.

We first prove a lemma which is of some independent interest.

Lemma. For every wff α there is a finite algebraic structure \mathbf{M}_{α} such that for any wff β , β is invalid in \mathbf{M}_{α} if and only if α is a substitution instance of β .

Proof. If δ is a wff all of whose propositional variables are given without repetition in the list v_1, v_2, \ldots, v_k , then δ is also written as $\delta(v_1, v_2, \ldots, v_k)$. Let $\alpha(v_1, v_2, \ldots, v_s)$ be given, and let the set of all subformulas of α be listed in the sequence $\gamma_1, \gamma_2, \ldots, \gamma_s, \gamma_{s+1}, \ldots, \gamma_{s+m}$ such that $\gamma_i = v_i, i = 1, 2, \ldots, s$ and no γ_i is a subformula of any of its predecessors in the above sequence. For example, if α is CCpqCNqNp then a desired sequence of subformulas of α is: p, q, Np, Nq, Cpq, CNqNp, CCpqCNqNp.

Based on the construction of α we define the finite algebraic structure \mathbf{M}_{α} . Let $S = \{0, 1, 2, \ldots, s + m\}$, and $D = S - \{s + m\}$ be the set of designated elements of \mathbf{M}_{α} . If Ω^* is the set of all propositional connectives, then corresponding to each k-ary $\omega^* \varepsilon \Omega^*$ we define a distinct k-ary operation ω on S as follows: For any k-tuple i_1, i_2, \ldots, i_k of elements of S, $\omega(i_1, i_2, \ldots, i_k) = j$, if there is a subformula γ_j of α such that

Received March 4, 1969

200

$$\gamma_i = \omega^*(\gamma_{i_1}, \gamma_{i_2}, \ldots, \gamma_{i_k});$$
 otherwise $\omega(i_1, i_2, \ldots, i_k) = 0.$

For the example CCpqCNqNp, s = 2, m = 5 and the operations N and C defined on the set $\{0, 1, 2, \ldots, 7\}$ are:

$$N(1) = 3, N(2) = 4, N(x) = 0$$
 otherwise;
 $C(1, 2) = 5, C(4, 3) = 6, C(5, 6) = 7, C(x, y) = 0$ otherwise.

Clearly, $\alpha(v_1, v_2, \ldots, v_s)$ is invalid in \mathbf{M}_{α} , because α takes the value s + m when $v_i = i, i = 1, 2, \ldots, s$. Hence, any wff β of which α is a substitution instance is also invalid in \mathbf{M}_{α} . Before proving that if β is invalid in \mathbf{M}_{α} , then α is a substitution instance of β we note the following properties of \mathbf{M}_{α} .

(1). The elements $1, 2, \ldots, s$ are not in the range of any operation $\omega \varepsilon \Omega$.

(2). For any $j \in S$ and s < j, there is a unique k-ary operation $\omega \in \Omega$ and a unique k-tuple of elements from S such that ω takes the value j for this k-tuple.

(3). For each $j \in S$ and s < j, j has a unique factorization using only elements from the set $\{1, 2, \ldots, s\}$ and operations from Ω .

(4). For each $\omega \varepsilon \Omega$, $\omega(\ldots, 0, \ldots) = 0$.

Let $\beta(u_1, u_2, \ldots, u_n)$ be invalid in \mathbf{M}_{α} . Then, there is an invalidating assignment to the variables of β from the set $\{1, 2, \ldots, s + m\}$ (see property (4) of \mathbf{M}_{α}) such that β takes the value s + m for this assignment. Let u_i take the value j_i for this assignment, $i = 1, 2, \ldots, n$. Let $\delta = \beta(u_1/\gamma_{j_1}, u_2/\gamma_{j_2}, \ldots, u_n/\gamma_{j_n})$. Since each γ_i is a subformula of α and γ_i takes the value *i* when v_t takes the value *t*, $t = 1, 2, \ldots, s$, δ takes the value s + m when v_t takes the value *t*, $t = 1, 2, \ldots, s$. In view of property (3) of \mathbf{M}_{α} , δ must be α . For our example CCpqCNqNp, if β were $Cu_1CNu_2u_3$ then the invalidating assignment gives 5, 2, 3 respectively to u_1, u_2 , and u_3 . Substituting the fifth, the second and the third subformulas of CCpqCNqNpin the previously given list for u_1, u_2 , and u_3 respectively in β we get CCpqCNqNp.

Remark. A rule of inference is called non-trivial if it has some application for which the conclusion is not a substitution instance of any of the premises of that application. No non-trivial rule of inference is satisfied by every M_{α} .

Proof of the Theorem. Assume it is false. Let **P** be an implicational calculus (all of whose theorems are classical tautologies) with modus ponens as the only rule of inference. Let α be any wff with implication as its only connective. Consider \mathbf{M}_{α} . By assumption we can decide whether or not \mathbf{M}_{α} is a model of **P**. If \mathbf{M}_{α} is a model of **P** then α is not a theorem of **P** by the construction of \mathbf{M}_{α} . If \mathbf{M}_{α} is not a model of **P**, then some theorem of **P** must be invalid in \mathbf{M}_{α} . Thus, by the lemma, α is a substitution instance of a theorem of **P** and hence α is itself a theorem of **P**. Therefore, **P** is decidable. This contradicts theorem 1 of Gladstone [1].

BISWAMBHAR PAHI and RALPH C. APPLEBEE

REFERENCES

- Gladstone, M. D., "Some ways of constructing a propositional calculus of any required degree of unsolvability," *Transactions of the American Mathematical* Society, vol. 124 (1965), pp. 192-210.
- [2] Harrop, R., "On the existence of finite models and decision procedures for propositional calculi," *Proceedings of the Cambridge Philosophical Society*, vol. 54 (1958), pp. 1-13.

Central Washington State College Ellensburg, Washington