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AN UNSOLVABLE PROBLEM CONCERNING
IMPIICATIONAL CALCULI

BISWAMBHAR PAHI and RALPH C. APPLEBEE

Propositional calculi are assumed to be defined as in Harrop [2]. A
propositional calculus is called implicational if it has exactly one connec-
tive and that a binary one. Algebraic structures called finite models of a
propositional calculus P in Harrop [2] will be called here finite rule-
models of P. An algebraic structure of the appropriate kind is called a
model of P if every theorem of P is valid in it. We note that every finite
rule-model of P is a finite model of P, but the converse need not hold. It is
proved in Harrop [2] (lemma 3.1, pp. 5-6) that there is an effective method
for deciding whether or not a finite algebraic structure is a finite
rule-model of a propositional calculus P. We prove here the following:

Theorem. There is no effective method for deciding whether or not a finite
algebraic structure is a model of an arbitrary sύbcalculus (with modus
ponens as its only rule of inference) of the classical implicational calculus.

We first prove a lemma which is of some independent interest.

Lemma. For every wff a there is a finite algebraic structure Ma such that
for any wff β, β is invalid in Mα if and only if a is a substitution instance
ofβ.

Proof. If δ is a wff all of whose propositional variables are given without
repetition in the list vu v2,..., vk, then δ is also written as b{vx,v2i..., v£.
Let a(vl9 v2,..., vs) be given, and let the set of all subformulas of a be
listed in the sequence γu y 2 , . . . , ys, y s + 1,.. ., γs+m such that Ύi = vu i =
1, 2,.. ., 5 and no y; is a subformula of any of its predecessors in the
above sequence. For example, if a is CCpqCNqNp then a desired sequence
of subformulas of a is: p, q, Np, Nq, Cpq, CNqNp, CCpqCNqNp.

Based on the construction of a we define the finite algebraic structure
MQ. Let S = {0, 1, 2, . . . , s + m}, and D = S - {s + m} be the set of desig-
nated elements of Mα. If Ω* is the set of all propositional connectives, then
corresponding to each &-ary cυ* ε Ω* we define a distinct &-ary operation ω
on 5 as follows: For any k-tuple iu i2, . . . , 4 of elements of S,
ω(ή, iz, . . , ik) = h if there is a subformula y; of a such that
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Ύj = ω*(nv Yi2, , ΎikY> otherwise ω(il9 i2, . . . , 4) = 0.

For the example CCpqCNqNp, s = 2, m = 5 and the operations iV and C
defined on the set {0, 1, 2, . . . , 7} are:

N{1) = 3, N(2) = 4, N(x) = 0 otherwise;
C(l, 2) = 5, C(4, 3) = 6, C(5, 6) = 7, C(#, 3;) = 0 otherwise.

Clearly, a(vh v2, . . . , ^s) is invalid in Mα, because α takes the value
s + m when V{ = /, e = 1, 2, . . . , s. Hence, any wff β of which a is a
substitution instance is also invalid in Mα. Before proving that if β is
invalid in Mα, then a is a substitution instance of β we note the following
properties of Mα.

(1). The elements 1, 2 , . . . , 5 are not in the range of any operation ω&Ω.
(2). For any jεS and s <j, there is a unique &-ary operation coεΩ and a

unique &-tuple of elements from S such that ω takes the value j for this
k- tuple.

(3). For each jεS and s <j, j has a unique factorization using only
elements from the set {l, 2, . . . , s} and operations from Ω.

(4). For each ωεΩ, ω(. . . , 0, . . . ) = 0.

Let β{uu u2, . . . , un) be invalid in Mα. Then, there is an invalidating
assignment to the variables of β from the set {l, 2, . . . , s + m} (see
property (4) of Mα) such that β takes the value s + m for this assignment.
Let Ui take the value fc for this assignment, 2 = 1, 2, . . . , n. Let
δ = βiμjy j v u2/γj2, . . . , un/γjjn). Since each y# is a subformula of α and y,
takes the value z when t^ takes the value t, t = 1, 2, . . . , s, δ takes the
value s + m when ^ takes the value t, t = 1, 2, . . . , s. In view of property
(3) of Ma, δ must be a. For our example CCpqCNqNp, if β were Cu^CNu^n^
then the invalidating assignment gives 5, 2, 3 respectively to uu u2, and us.
Substituting the fifth, the second and the third subformulas of CCpqCNqNp
in the previously given list for ul9 u2, and u3 respectively in β we get
CCpqCNqNp.

Remark. A rule of inference is called non-trivial if it has some application
for which the conclusion is not a substitution instance of any of the
premises of that application. No non-trivial rule of inference is satisfied
by every Mα.

Proof of the Theorem. Assume it is false. Let P be an implicational
calculus (all of whose theorems are classical tautologies) with modus
ponens as the only rule of inference. Let a be any wff with implication as
its only connective. Consider Mα. By assumption we can decide whether or
not Mjα is a model of P. If Mα is a model of P then a is not a theorem of P
by the construction of Mα. If Miα is not a model of P, then some theorem of
P must be invalid in Mα. Thus, by the lemma, a is a substitution instance
of a theorem of P and hence a is itself a theorem of P. Therefore, P is
decidable. This contradicts theorem 1 of Gladstone [l].
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