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LOGICAL CONSEQUENCE IN MODAL LOGIC:
NATURAL DEDUCTION IN S5

JOHN CORCORAN and GEORGE WEAVER

This paper presents a (modal, sentential) logic -£DD which may be
thought of as a partial systematization of the semantic and deductive
properties of a sentence operator (D) which expresses certain kinds of
necessity. The language of .̂DD is LDD, the smallest set of formulas
containing a countably infinite set of sentential constants and closed under
forming Πφ, ~φ, and (φ z> ψ) from any formulas φ and ψ already in the set.
This is essentially the language of S5. The semantics of -£DD is essen-
tially Kripke's semantics for S5. In the semantics for .£DD, however, an
interpretation of LDD is defined as an ordered pair (a, P) where a is an
ordinary truth-value interpretation of the sentential constants and P is a
set of such interpretations with a ε P. (α, P) is a model of φ if φ is true
under (α, P) and {a, P) is a model of S c LDD if each ψ in S is true under
(a,P). This permits logical consequence to be defined: for S c LDD,
φε LDD, φ is a logical consequence of S(S\=φ) iff every model of S is a
model of φ. The deductive system consists of "natural" rules permitting
proofs from arbitrary sets of premises and we let S\-φ mean that there is
a proof of φ from the premises S.

Let LD be the sublanguage of LDD containing all formulas of LDD de-
void of iterated or nested D. Let -£D be the restriction of ^DD to LD, i.e.
£π is the logic with language LD such that, for S <Ξ LD and φε LD, S \=φ
relative to -£D iff S 1= φ in «£DD and S hφ relative to -£D iff there is a
proof in -£DD of φ from S containing only formulas of LD. Strong com-
pleteness (S t= φ implies S \-φ) for -£DD is proved from the following three
lemmas: (1) strong soundness (Sϊr-φ implies S t= φ) for -£DD, (2) strong
completeness for -£D and (3), a reduction theorem to the effect that every
formula in LDD is provably equivalent in -£DD to a formula in LD. From
these results, together with Kripke's weak soundness and weak complete-
ness results for S5, it follows that φ is a theorem of S5 iff φ is a theorem
Of ZDD.

1 The Logic of -£DD. Let O be a countably infinite set of symbols called
sentential constants and let LDD be the smallest set of formulas containing
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& and closed under forming Πφ, ~φ and (φ z> ψ) from any formulas φ and
i// already in the set. The set of (purely) modal formulas is the smallest
containing all formulas in LΠΠ of the form Πφ and closed under forming
~ψ and (ψ D η), Let L be the sentential language included in LDD, i.e. L is
the smallest set of formulas containing & and closed under forming ~ψ and
(Ψ 3 v).

1.1 The interpretations of LDD are to be ordered pairs {a, P) where a is
an ordinary truth-value interpretation of L and P is a set of such interpre-
tations with aεP. In a particular interpretation (a, P) ,a is to be thought of
as an "actual world" and P is to be thought of as a set of "possible
worlds". We use the notation aP to indicate an ordered pair, (a,P).
Accordingly, formulas in L are true in aP iff they are true inβrformulas
not involving necessity (D) have their truth-values determined by the
actual world a. Πφ will be defined as true in aP iff φ is true in all bP,
bεP. Thus, in effect we will have, in addition to the actual world a and the
set of possible worlds P (both of the interpretation aP), the "actual"
interpretation aP and its corresponding set of possible interpretations:
{bP:bεP}. The corresponding set of possible interpretations for a possible
interpretation is the same as that of the actual interpretation. The above
remarks might aid the reader in seeing beyond the formal development
which follows.

Below a, b, a\ b\ etc. are functions from & to {t, f} and P, P\ etc. are
sets of such functions. aP is an interpretation (of LDD) iff aεP. For each
interpretation aP we define a unique function VaP from LDD to {t, f} in such
a way that for each φε LDD, VaP(φ) = t(= f) when and only when φ is to be
regarded as true in aP (false in aP). Let N and C be the usual truth-
functions corresponding to ~ and D.

Definition: For φ ε&, VaP(φ) =a(φ). If φ = ~ψ then VaP(φ) =N(VaP{ψ)). If
φ = (ψ D η) then VaP{φ) = C(VaP(ψ), VaP{η)). If φ = Πψ then VaP(φ) = t iff
VbP(ψ) = t, for all bεP. V"pis called the (truth) valuation in aP.

If VaP(φ) = t then aP is a model of φ. If aP is a model of every formula
in S then aP is a model of S. If every interpretation is a model of φ then we
say that φ is logically true and write \=φ. If every model of 5 is a model of
φ, we say that φ is a logical consequence of S and write S \=φ. Thus, letting
Λ denote the empty set, A\=φ iff \=φ. For conciseness we write TS, φr

instead of τSu{<rf-τ and "φ \=ψ' instead of }{φ}t=ψτ and accordingly, the
following are consequences of the above definitions.

50.0 If S\=φ, for all φεS\ and Sτ N ψ, then S\=ψ.
50.1 If S c Sτ and S \=φ then Sτ f= φ.
51 S, φ\=φ.
52 If S\=φ and S\=(φ z> ψ) then S\=ψ.
53 US, φ\=ψ then S\=(φ D ψ).
54 If S, -<^(=ψ- and S, ~<p μ~ /̂ then SN^.
55 If S\=Πφ thenS\=φ.
56 If all formulas in S are modal and S h<ρ then S ND(p.
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The first three of these principles follow from the definitions of "\="
and "model of S" without regard for the particular character of the
semantics. The next three hold because the valuations preserve the
normal meanings of ~ and D. S5 follows since VaP(Πφ) = t implies
VaP(φ) = t.

S6 follows from the following proposition: If φ is a modal sentence
then for all a, bεP, VaP(φ) =VbP{φ). To see this, assume the proposition
and let 5 be a set of modal formulas such that S \=φ. Let aP be any model
of S. If S is empty then φ is true in all interpretations, in particular in all
interpretations bP with bεP. Thus VaP{Πφ) = t. If S is not empty then, by
the proposition, bP is also a model of S for any bεP. Since S (= φ each such
interpretation must be a model of φ. Thus VaP(Πφ) = t. Since aP is any
model of S, S \=Πφ.

The proposition mentioned above is proved as follows. Let P and a be
arbitrary except that aεP. Consider the property of formulas φ: for all
bεP, VaP(φ) = VbP{φ). From the definition of valuation it follows that the
property holds for all formulas of the form Πψ and also that it holds for
~ψ and (ψ D η) whenever it holds for ψ and η. Thus it holds for all modal
formulas.

1.2 The deductive system for -£DD parallels the semantic principles (SO.O
through S6) so closely that the (strong) soundness proof is quite simple.
The sentential (or tautologous) part of the system is essentially Jaskowski's
system (referred to by Leblanc [7], p. 16). This consists of the familiar
rules: assumption (A), repetition (R), detachment or modus ponens (i^E),
conditionalization (DI) and a form of reductio ad absurdum (~E). The modal
rules are G introduction (DI) and D elimination (DE).

The proofs are written left-to-right on one line rather than top-to-
bottom on several lines. Brackets, ] and [, are used as punctuation in the
proofs. Thus proofs will be strings over LDDU{], [}; i.e. certain strings of
formulas of LDΠ having ] and [ interposed as punctuation will be proofs.
An occurrence of [φ at a place in a proof Π indicates that φ is assumed in
Π at that place. An occurrence of ]φ at a place in a proof Π indicates
(a) that the right-most assumption (not already discharged) is discharged
and (b) that φ is derived from the remaining (undischarged) assumptions.
An occurrence of φ (not preceded by ] or [) at a place in a proof indicates
that φ is derived from the undischarged assumptions preceeding it. In
order to give the reader an orientation to the new linear notation, we give
several familiar natural-deduction proofs using it.

Examples'. The string (a) below is a proof of (φ z> φ) from Λ, (b) is a proof
of (φ D (ψ Z) φ)) from Λ, (c) is a proof of ((φ 13 ψ) D (φ D η)) from {φ z>
{•ψ D η)), (d) is a proof of φ from (~φ Ώ ~ψ) and (φ 3 ψ) and (e) is a proof
of ~φ from (φ D ψ) and (φ ZD ~ψ).

(a) [φφ] (φ D φ)

(b) [φ[ψφ](ψ D φ)](φ^> (Ψ =><?))
(c) [(φ D (ψ D η)) [(φ D ψ) [φψ(ψ D η) η] (φ D η)] {{φ D Ψ) 3 (φ D η))
(d) [(~φΏψ)[{~φΏ~ψ)[~φψ~ψ]φ

(e) [(φ D ψ)[(φ D ~ψ)[—φ [~φ~φ—φ]φΨ ~ψ]~φ
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Proof (e) has more lines than necessary but the superfluous lines make
the application of (~E) more transparent.

We say that an occurrence of a formula in a proof is open if it is
derived from undischarged assumptions and that it is closed if it is derived
from discharged assumptions. Because the concepts of open and closed are
crucial in discussing proofs we will give fairly rigorous definitions of them
despite the fact that "closed" amounts to being enclosed in paired brackets
and "open" is simply "not closed". It is also perhaps desirable from the
point of view of exposition to first define a fairly "small" set of strings
which will include all proofs.

Proof expression (p.e.) is defined recursively as follows: [φ is a proof
expression, if Π is a proof expression so are Π [φ, Uφ and Il]φ where < îs
any formula of LDD. No string (over LDD {], [} is a p.e. except by the
above two rules. Proofs will be defined as certain of the proof expressions.
E.g., [φφ will be a proof and [φ~φ will not.

Now we will define "closed in a p.e." (enclosed between paired
brackets) and "open in a p.e." recursively by reference to substrings of
proof expressions called closed sections. Closed section is defined as
follows: [φiφ2, . , φn] is a closed section. If β is a closed section so is
[<?i<?2, , ψnβΨiΨ2, . , Ψn] No string (over LDD {],[}) is a closed
section except by the above two rules. Let β be a p.e. An occurrence of φ
in β is closed in β iff it is within a closed section which is a substring of β.
An occurrence of φ is open in β iff it is not closed in β. An occurrence of a
formula in β which is immediately preceded by a [ is an assumption in β. A
formula (not an occurrence) is an assumption of β iff it occurs as an open
assumption in β.

Definition of Proof: In the following rules φ, ψ and η are formulas of
LDD; Π, Πi, and σ, στ are strings over LDDU{], [}. Π is a proof iff Π is
constructed by a finite number of applications of the following rules.

(A) [φ is a proof and if Π is a proof then Il[φ is a proof
(R) If Π is a proof and φ occurs open in Π, then Uφ is a proof.

(DE) If Π is a proof, φ occurs open in Π and (φ ZD ψ) occurs open in Π
then Uψ is a proof.

(i3l) If Π = σ [φσ'ψ is a proof where the indicated occurrence of φ is the
right-most open assumption in Π then Il]{φ D ψ) is a proof.

(~E) If Π = σ[~φσ' is a proof where (1) the indicated occurrence of ~φ
is the right-most open assumption in Π and (2) both ψ and ~ψ
occur open in Π, for some ψ, then Il]φ is a proof

(DE) If Π is a proof and Uφ is open in Π then Uφ is a proof.
(D I) If Π is a proof, φ occurs open in Π and all open assumptions in Π

are modal formulas then UΠφ is a proof.

Notice that in (DI) and (~E), if σ is not null then σ is a proof. More-
over, every proof Π ends with an open formula. The last formula in Π is
called the conclusion of Π and is denoted by C(Π). The set of (open)
assumptions of Π is denoted by A(Π). We define: S h φ iff there exists a Π
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such that A(Π) <Ξ s and C(Π) = φ. Instead of Λ v φ we write \-φ. If \-φ, φ is
said to be a theorem (of -£DD).

Before considering the soundness of / D D it is appropriate to demon-
strate some facts about the deductive system alone. By suitable extensions
of proofs given above we have:

D0.1 (φ Z) {ψ Ώ φ))

D0.2 ((φ D (ψ D 77)) D ((φ D ψ) D (φ z> 77))

i)Λ3 ((-<? D ψ) D ((-<? D~ψ) D <?))
D0.4 (φ D <p)

Z>6>.5 ((φ D ψ ) D ((<p D ~ψ) z> -<^))

As meta-proofs below we either exhibit an object-proof or indicate how
an object-proof may be constructed.

DO, 6 (φ 3 — φ )
[φ[~—φ[—φ]~φ]~~φ](φ D — φ )

DO. 7 ( — φ D φ)

[—φ\rφ]φ]{—φ ^ φ)
D0.8 {{φ Dψ)D ({~φ D ψ) 3 ψ))

Let us verify the obvious fact that

Z)βO IfS \-φ and S H (φ D 1//) ίftew S h-ψ

Proof: Assume S H<ρ and SH(<^ D ψ). Thus there are two proofs, say Π
and ΓΓ, such that A(Π) U A(ΠT) c s, C(Π) = φ and C(ΠT) = (<p D ψ). Π Πτ is
also a proof with A(Π Πτ) ζ S . Moreover, ^ and (<ρ D ψ) are both open in
Π Πτ. Thus Π Jl'ψ is a proof with A(Π U'ψ) Q S and C(Π Wψ) = ψ.

Now we consider some facts involving D.

Dl.l \-{Πφ D φ)

[Uφφ]{Ώφ Ώ φ)
D1.2 \-(~nφ D D ̂  D(/?)

Z)ί.3 h(D(φ D ψ) D (D<̂  3 ΠΨ))
[D(<p D ψ ) [ D ^ D ι//)ψDi//] ( α ^ 3Dψ)](D(ςp D ψ ) D (Dςp DDψ))

D2.4 h(D<p DDD(^)
[D </? DD φ](Πφ D DD φ)

i)2.5 l-(<p D ~D^(^)
[(^ [^"^ D ~φ \y Ώ~φ ]π~φ~φ ]~Ώ~φ ](φ D ~Π~φ)

D1.6 \-(φ D D~D~<p)

To the end of the previous proof adjoin the following.

The indirectness of the proof of D1.6 indicates a quite far-reaching
troublesome situation. Specifically: there are infinitely many non-modal
formulas φ such that φ \=Πψ for some ψ, but Πψ can not be proved directly
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from φ by proving ψ from φ and then boxing. (Dl) can only be used when all
open assumptions are modal. This restriction is obviously necessary.
Thus if -£DD is to be strongly complete, there must always be an
"indirect" way of getting from such a φ to such aDψ.

DR1 Ifhφand\-(φZ) ψ)then\-ψ

Proof: Special case of DRO when S = Λ.

DR2 Ifhφ then \-Uφ

Proof: Let Π be a proof of φ from Λ. All open assumptions are modal
formulas (vacuously). Thus WUφ is a proof of Uφ from Λ.

1.3 In this section we compare the deductive system of JLΠΏ both with a
formulation of sentential logic (Mendelson [8], pp. 30-37) and with a formu-
lation of S5 as a logistic system (Kripke [6], pp. 67-68).

Let SCx be the following sentential logic. L, the language of SCi, is the
set of formulas of LDD devoid of D. An interpretation, α, of L is a function
from β> to {t, f}. As usual, the truth-valuation in a is the function Va from
L to {t, f} such that Va{φ) = a(φ) for φ εύ>, Vβ(~<p) = NVa(φ), Va{(φ D ψ)) =
C(Va(φ), Va{ψ)). a is a model of φ iff Va{φ) = t. a is a model of 5 c L iff
Va(φ) = t for all φ εS. S T N φ (S tautologically implies φ) iff every model of
S is a model of φ. If Λ T (= φ then we write T (= φ and call φ a tautology as
usual. The deductive system of SCX is defined as follows: Π is a proof in
SCX iff Π is a proof in /DD and every formula in Π is in L. ST \-φ iff there
is a proof Π in SCX such that A(Π) <^S and C(Π) = φ. If Λ T \- φ then we
write Ύ \-φ and say that φ is tautologically provable.

By considering the proofs of D.01, DO.2, D0.3 and DRO it is clear that
they still hold when t- is replaced by TK It follows by the reasoning in
Mendelson already cited that SCi is complete, i.e., that T \=φ implies
T\-φ. Thus the sentential rules of -ώUϋ form a complete sentential logic.

S Q L is consistent (in the sense of SCi) iff there is no ψε L such that
STHψ and S T t-~ψ. S Q L is maximally consistent (in the sense SC^ iff S
is consistent and, for φεL, if φjίS then S, φ is inconsistent. By the rea-
soning in Davis [3], pp. 7-9, every consistent set is a subset of a maximally
consistent set and every maximally consistent set S has a unique model
(viz. for each φεσ, a{φ) = t if φεS and a{φ) = ί if φfίS). The latter fact
will be used below. It follows that SCX is strongly complete {ST\=φ implies
SΎh-φ): suppose S T |= φ; then S, ~φ has no model; by the above result,
S, ~φ is inconsistent; S,~φT)rψ and S,~φ T \-~ψ; using (-Έ), ST \-φ.

Let SC2 be exactly like SCX except that the language is now all of LCD.
Interpretations will be functions from &u{Πφ:φε LDD} to {t, f} and the
proofs are those of -£DD not involving use of (DE) or (Dl). All of the above
results for SCX hold mutatis mutandis for SC2. Thus all of the tautologies
in LDD are theorems of SC2.

Except for a change in notation, the set of theorems of S 5 as formu-
lated by Kripke (loc. cit.) is the smallest set containing all tautologies of
LDD and all formulas of the forms Dl.l, D1.2 2SΛ D1.3 and satisfying DR1
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and DR2. Thus if ςί> is a theorem of S5 then φ is a theorem of ^.DD.
Kripke showed that S5 is complete relative to the semantics of -£DD, i.e.,
if \=φ then φ is a theorem of S5. It follows then that

Theorem 1.3: .£•• is {weakly) complete in the sense that \=φ implies \-φ.

1.4 The completeness theorem for ^DD and other provability results, as
well, are without significance unless ^DD is at least shown to be con-
sistent (i.e. there is no φ such that y-φ and i—φ). Moreover, the deductive
system of JLUΠ is inadequate unless every one of its proofs Π can be relied
on to establish logical consequence between premises and conclusion
(A(Π)NC(Π)). In this section we demonstrate that -£DD has this property.
It will follow that j£DD is strongly sound, i.e. that S\-φ implies S\=φ.
From strong soundness it follows that -£DD is (weakly) sound (\-φ implies
\=φ) and from (weak) soundness consistency follows.

Lemma 1.4: For every proof Π in -£DD, if φ occurs open in Π then

A(Π)h<ρ.

Proof: The proof is by a "course-of-values" induction on the proofs of
-£DD. The lemma is obvious for proofs of the form [ψ. Now let Π be an
arbitrary proof and assume that the lemma holds for all proper subproofs
of Π, i.e. assume that for all ΓΓ such that Π = IΓσ, σ non-null, A(IΓ) \=φ for
all φ open in IT. This is the induction hypothesis. We show that the lemma
holds for Π. There are seven cases according to which of the seven rules
of inference was used to form the last "s tep" of Π. In carrying out these
seven cases we had found it convenient to define for each Π the set of
formulas occurring open in Π. Since we merely sketch the proof here, we
will not introduce any new notation for this concept.

In case (A) was the last rule used, the induction step follows from the
induction hypothesis, S0.1 and SI. For (R) as the last rule used, the induc-
tion step follows from the induction hypotheses. For (DE), (DI), (~E), (DE)
and (DI) the induction step follows by the induction hypothesis, SO.0 and,
respectively, S2, S3, S4, S5 and S6. The induction step follows in general,
therefore, and the proof is complete.

Incidentally, since the deductive systems ofSCi, SC2 and the sentential
part of ZΠD are all included in that of ZΠD and since S0.0, S0.1, SI, S2,
S3, S4 and S5 all hold for the semantics of sentential logic; it follows by the
above reasoning that the theorem holds for these logics as well.

Theorem 1.4: -£DD is strongly sound, i.e. S \-φ implies S \=φ.

Proof: Assume S \-φ. Then there exists a proof Π with A(Π) Q S and C(Π) =
φ. Since φ is open in Π, by the lemma A(Π) |=<ρ. By S0.1, S\=φ.

In the special case where S is empty we have the weak soundness
result for ^DΠ, i.e. \-φ implies \=φ. Putting this together with Theorem
1.3 (weak completeness) we have what is called by some logicians a "weak
bridge result" for «ZΠD, viz. \-φ iff \=φy thereby partially bridging the
semantics (N) and the deductive system (H). Since S5 (as formulated by
Kripke) also has the weak bridge property we have that φ is a theorem of
S5 iff φ is a theorem of ZΠD.
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Note: The rule (R) is superfluous in the sense that if S\-φ in .̂DD then
there is a proof in -£DD of φ from S which does not make use of (R). This
is proved using the following proposition: if Π is a proof in -£DD and IT is
the result of deleting from Π the first occurrence of a formula obtained by
use of (R) then Πτ is a proof in /DΠ and every φ open in Π is open in IT.
Now assume S\-φ. It follows that there is a proof Πo of φ from S such that
every other proof of φ from S contains at least as many formulas as Π, i.e.
it follows that there is a "shortest" proof Πo of φ from S. By the above-
mentioned proposition Πo cannot contain any formulas obtained by use of
(R).

2 The Logic £π Here we consider a proper subsystem JLΠ of -£DD. The
language of . £ • is LD, the set of formulas of LDP without iterated D. More
precisely, LD is the smallest set of formulas (1) containing all formulas in
L, (2) containing all formulas Πφ with φ in L and (3) closed under forming
~φ and (φ D ψ) from φ and ψ already in the set. The semantics of JCΠ is
exactly the same as that of ZDD except all valuations VaP are restricted to
LD. The proofs of JLΠ are the proofs of /DD which contain only sentences
in LD—i.e. the only changes in the rules come (1) for (DI) where one cannot
form Πφ unless φ has no D occurring in it and (2) for (A) where one cannot
write [φ unless φ is in LD. Here we use N and \- relative to £π. If there
is any chance of confusion, we will add "in «£D" or "in «£DD'\

Theorem 2.1: JLΠ is strongly sound.

Proof: Let S, φ c LD. Suppose S \-φ in ZD. Then S \- φ in ^DD. By
Theorem 1.4 (strong soundness), S \= φ in -£DD. But since S, φ c LD, it
follows by the remarks of the last paragraph that S \=φ in JLπ.

Our object now is to show strong completeness for JLΠ, i.e. that S\=φ
implies S\-φ. The proof parallels the ideas of Henkin [5]. Consistent and
maximally consistent, both relative to £.Π, are defined as above mutatis
mutandis. By Lindenbaum's argument (Davis [3], p. 7) every consistent set
of sentences is a subset of some maximally consistent set. We show that a
model aP can be formed for each maximally consistent set. Thus every
consistent set of sentences has a model. From this fact, strong complete-
ness follows (See section 1.3 above):

First we need some elementary facts about maximally consistent sets
of formulas of JiΠ. Let Π(S) = {φ: Πφ ε$

Theorem 2.2 If S is maximally consistent [relative to j£π) then

(1) // φfίS thenS\-~φ,

(2) If S \-φ then φεS9 (Hence φεS iff Shφ),
(3) φεS or ~φεS,

(4) -φεSiffφίS,
(5) (φ Dψ)εS iff φjiS orψεS,
(6) S Π L is maximally consistent in the sense of sentential logic,

(7) D (S) is consistent in the sense of sentential logic, and
(8) D(S) \-φ implies φ εΠ{S).
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Proof: Parts (1) through (6) are easily proved using D0.1, DO. 5 and the
definitions. (7) follows from (6) using the observation that Π(S)QS Π L.
To see (8), assume that D(S) \-φ. Let Π be a proof of φ from D(S) and let
φh φ2, . . . , and φn be the (open) assumptions of Π. Then [Πψx [Uφ2 [Uφz,
. . . , [Πφn IT is also a proof where Πτ is obtained from Π by deleting the
['s before φh φ2y . . . , and φn in Π—the occurrence of ψi in the new proof
is justified by (DE). Since each ψi is in D(S), each Uφ{ is in S. Since all
assumptions of the new proof are modal and φ is open in the new proof,
Uφ can be added on by (DI). Thus S \-Πφ and by 2, UφεS. Thus φεS.

Next we form a model of any given maximally consistent set. But first
consider any consistent S <Ξ LD. S Π L is consistent in the sense of
sentential logic and thus has a model a. Thus for anyP withαεP, aP is a
model (in the sense of -£π) of 5 Π L. D(S) is also consistent in the sense
of sentential logic and thus has a model, b. LetP τ be the set of all models
of D(S). For any a1εP\ a'F" is a model of {Πφ:φεΠ(S)}. But aP need not
be a model of S. We will show that in case S is maximally consistent aF"
where a is a model of S Π L and P τ is the set of models of D(S) is a model
of S.

Theorem 2.3 If S is maximally consistent and a is the (unique) model of
SO L and P is the set of all models {in the sense of sentential logic) of
D (S) then

(1) for all (pεLD, φεS iffVaP{φ) = tand, therefore,
(2) aP is a model of S

Proof: LD is the smallest set containing o and {D<ρ:<pεL} and closed under
forming ~φ and (φ z> ψ) for φ, ψ already in the set.

(1) can easily be seen to hold for all formulas φ in O. It also holds for
all formulas Πφ for φεL. This is seen as follows. Let φε L. Then
VaP(Πφ) = t iff VaP(φ) = t for all bεP. Since φε L, VbP(φ) = b{φ). Thus
VaP(Πφ) = t iff b(φ) = t, for all bε P. Now we show Only if: Suppose Uφε S.
Then φε Π(S). Thus b(φ) = t for all bεP (by hypothesis). Thus VaP(Πφ) = t.
For 'if we need part (8) of Theorem 2.2. Assume YaP(Πφ) = t. Then b(φ) =
t for all bε P. Since P is the set of all models (in the sense of sentential
logic) of D(S), D(S) T \=φ. By strong completeness of sentential logic
D (S) v-φ. By part (8) of 2.2, φεΠS. By the definition of Π(S), Πφε S.

It can easily be seen that the property of (1) holds of ~φ and (φ z> ψ) if
it holds for φ and ψ. Thus it holds for all formulas in LD.

Theorem 2.4: JiU is strongly complete.

Corollary 2.4: The semantics of JiU is compact, i.e.

(1) If S \=φ then there is a finite F Q S such that F \=φ and (equivalently)
(2) if S has no model then there is a finite F Q S such that F has no model.

Proof: Suppose S \=φ. By strong completeness Shφ. Then there is a
proof Π of φ from S. Π can only have a finite set F oϊ assumptions. Thus
F h φ. By soundness F \= φ.

Putting Theorems 2A and 1.4 (strong soundness) together we have
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S hφ iίί St-φ, the strong bridge result for X.Π. This completely bridges
the semantics and the deductive system of «£D. In addition, we have the
following.

Theorem 2.5: Let N and No, φ Q L and let Mo = {Πφ:φεN0}. Then
(1) N\-φ iffNTv-φ
(2) \-Πφ iffT\=φ
(3) if N is consistent then Nv-Ώφ iff ^Uφ
(4) if Mo UN is consistent then Mo U N h- φiff M0\-Πφ
(5) M0\-φ iffN0\-φ

Proof: The 'if' parts of (1) through (4) are immediate. We will show the
'only if' parts of (1) through (4) first and then show (5). (1): Suppose Nhφ.
Then Nϊ=φ. Now we show NT h φ which implies NT \-φ by strong complete-
ness of sentential logic. Let a be any model of N. Then a{a} is a model (in
-£DD of N. Thus a{a} is a model of φ. Since φεL, a is a model of φ.
(2): Suppose \-Πφ. Then \-φ. Hence (=(/?. Let a be any interpretation.
Va{a\πφ) = t iff a(φ) = t. But h<ρ. Thus a is a model of φ. So Th<ρ.
(3): Suppose Nv-Ώφ where N is consistent. Then N\=Πφ and iV has a model
β. Hence αP is a model of iV where P is the set of all interpretations of L.
Thus VaP(Πφ) = t. But V*p(D<p) = t iff b(φ) = t for all b. Thus T\=φ. Thus
T H f So ĥ ? and hD^. (4): Suppose that M0UN is consistent and
Mo U N\-Πφ. By soundness Mo U N\=^Πφ and there exists a model, #P say,
of Mo U iV. We will show Mo \^Uφ from which Mo KDφ follows by strong
completeness. Let a'P1 be any model of Mo. Then α(P U Pτ) is a model of
Mo UN. Why? Suppose ηεN then α(P UP1) is a model of 77 iff a(η) = t.
But αP is a model of JV. Suppose ηεM0. Then r] = Πψ and «(P U P !) is a
model of Gψ iff b(ψ) = t for all bεP UP' . But «P is a model of Mo, hence
b{ψ) = t for all bεP, and «'PT is a model of Mo, hence b{ψ) = t for all bεP\
Hence α(P U Pτ) is a model of Mo U N. Since Mo UiNΓ μn<p, a(F U P') is a
model of Dφ. Thus b{φ) = t for all bε(P U Pτ), in particular, for all bεP\
Thus ^TPT is a model of D<ρ. But α τP' was an arbitrary model of Mo; hence
M O N D ^ . (5) Since Πψ\-ψ, if NQ\-φ then Mo i-^. Now assume Mo \-φ.
Let α be any model of No. a{a} is, therefore, a model of Mo and hence of φ.
But φεL so V*UI(<?) = VΛ((/?). Thus N0T Nφ. Thus iV0T h<p. By (1), iV0 h</>.

The significance of these results is as follows. (1) tells us that, if we
can prove a formula of sentential logic from a set of sentential logic
assumptions using the system -£D, then we can prove the same thing using
only the sentential logic rules. Thus (DE) and (Dl) provide a "conserva-
tive" extension of sentential logic. (2) tells us that, Πφ is a theorem of
JLπ iff φ is a tautology. (3) tells us that even in the case of a theory, all of
whose assumptions are devoid of D, Πφ is a theorem of the system iff φ is
a tautology. Thus extending SC! to £u enables one to distinguish from
among the consequences of a set of sentential logic assumptions those
which do not depend on the particular assumptions. (4) implies that we can
use -£D to systematize the distinction between assumptions which we might
want to regard as necessary and other assumptions which we would con-
sider merely "factual" or merely true. If we put boxes before the former
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and list the later (simply) then: if we can prove Πφ then φ is a consequence
of the necessary assumptions. However, in such a case if we can prove φ,
but not Ώφ, it does not follow that φ is a consequence of the "factual"
assumptions. Example: DP, P D R HR but R does not follow from P D R
alone. For further discussion along these lines see Curry [2], pp. 359-360
(5) tells us that we do not get any "truths" by assuming that our axioms
are necessary that we could not already obtain by taking the assumptions as
merely true.

Note: Notice that, in the proof of strong completeness of ^D, the rule (πl)
was used only once, viz. in the proof of clause (8) of Theorem 2.2. Here a
weakened rule, (Dlτ), would do just as well.

(DΓ)' If Π is a proof, all of whose assumptions are of the form Πψ and in
which φ is open, then HΠφ is a proof.

The resulting system is precisely the one called PN in [l]. (GΓ) is
analogous to Curry's sequent rule, [2], p. 361.

It is also of interest to point out that every theorem of ZO is also a
theorem of S4, S5 and the Brouwerian System and that every formula in LD
which is a theorem of S4, S5 or the Brouwerian System is a theorem of
/ D . Thus S4, S5 and the Brouwerian System agree on LD. This follows
from Kripke's soundness and completeness proofs for these systems with
the help of an easy theorem to the effect that for every S4 or Brouwerian
interpretation, i, there exists an interpretation aP such that, for all φε LD,
VaP{φ)=Ψ{φ).

3 Strong Completeness of -£DG; The strong completeness of .£GG is
proved by reducing the question to that of the strong completeness and
(strong) soundness of £Π. Notice that ZGG is an extension of £π in two
senses. Semantic extension: every interpretation aP of LG is an interpre-
tation of LOG and vice versa. Moreover, for every formula φε LG, aP is a
model of φ in the sense of «£D. iff aP is a model of φ in the sense of ^.DG.
Thus, for S, φ c LD, S\=φ in the sense of JjΠ iff S\=φ in the sense of
JLΠΏ. Consequently, the phrase "in the sense of . . . " is redundant—if
S, φ'Q LD, then the ambiguity of ζS)Fφ9 is inconsequential; if S, φ % LD,
then 'S\=φ' can only mean (S\=φ in the sense of .£DD\ Deductive exten-
sion: If Π is a proof in ZD then Π is a proof in ZGG. Hence, for S, φ c
LD, if S\-φ in the sense of / D then S\-φ in the sense of ZDG. NOW
suppose S, φ c LD and S \-φ in the sense of JiΠΏ. By soundness S\=φ. By
strong completeness of Z.G, S \-φ in the sense of -£D. Thus the phrase "in
the sense of . . . " is redundant here as above.

Let us introduce the usual definitions of &, v and =. For all φ and all
ψ, (φ&ψ) =~(φ ~>~Ψ), (φ v ψ) = (~φ Dψ) and (φ = ψ) = {{ψ Όψ)&(ψΏφ)).
The usual rules of inference for &, v and = are derived rules in SCX and
hence in JLU and ^.GG. The same holds for theorems involving the defined
symbols. In addition, we have

D3.0 \-U{φ & ψ) = {Πφ & Πψ)

h D ( ( ^ i & φ 2 & & φ n ) = (Πφ! & Πφ2 & . . . & Πφn)
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D3.1 If ψ and ψh ψ2, . . . , ψn are modal formulas then
\-Π(φ v ψ) = {Πφ v ψ)
\-D(φi v ςί?2 v . . . v φn v ψλv ψ2v . . . v ψn) = (π(<pi V <ρ2 v . . . v φn)

v ψ i v ψ 2 v . . . vψ β )

Zλ?.(9 and Zλ3.2 will not be used immediately.

Lemma 3.1: If for every φε LDΠ ί tere exists φ'εLΠ such that \-φ = φ\

then JLΠU is strongly complete.

Proof. Assume the hypothesis and let S \=φ. For each ψεS choose a ψ'ε LΠ
such that \-ψ Ξψ' and let Sτ be the set of such formulas. Let φ1 be a
member of LΠ such that \-φ = φ\ By soundness of -£DD, if \-η = τ]τ then
\=η =η\ Thus Sτf=<?τ. By strong completeness of ZD, ST h<ρτ. Let Π be a
proof in -£π of φ' from Sτ and let ψ[, ψ2, . . . , Ψn be the assumptions of Π.
By ?z applications of (DI) we have a proof Πo of h(ψί D {ψ2 D . . . 3 (Ψi=>
(^τ)) Let ψi, i//2, , Ψn be members of 5 provably equivalent to ψ[,
ψ2, . . . , ψn and let Πi, Π2? . . . , Πw and Πw+i be respectively proofs of
(ΦΊ D ψ[), (ψ2 ^ Ψ2), . . . , W'ra D ψ«) and ((/?τ D (p). These exist because of
the "derived ru le" : {η = η') implies (η D r]τ) and (τ]τ D η).

ΠoΠxΠs, . . . , Un+1[Ψl[ψ2, , [*»^i^2, . . . , ΨniΨl D ( ^ D, . . . ,

The above is a proof of <ρ from ι//i, ψ2 . . . ψn Thus S h f The above proof
is constructed as follows. The concatenation of Πo, Πi, Π2, . . . , and Πw+i
is a proof having no open assumptions and having (ψλ D ψ[), (ψ2 D ψ2), . . . ,
(ψw D ψ'n), (ψ[ D (ψ2 D, . . . , OK D ςp»), . . . ,- ) and ((/?τ z) ^) as open formu-
las. Thus after ψl9 ψ2, . . . , and ψw have been introduced as assumptions,
Ψh Ψl, , &nd i/4 can be added as open formulas by detachment ( D E ) .
Now (ψ2 D {ψl D, . . . , (ψi D ^Oj' , ) can be added by detachment. By
continuing to detach the consequent of the last formula added we ultimiately
add φ\ Now we detach φ from (φ* D φ).

It remains only to show that every formula in LDD is provably equiva-
lent to a formula in LD. For this we need "substitutivity of equivalence".
For this, in turn, we need the following.

D3.2 \-((φ = ψ) D(~φ=~ψ))
D3.3 \-{(φ = ψ ) D ({ηΏ φ) = (n 3 ψ))
D3.4 h((φ =ψ)Ώ ((φ D η) = (ψ D η))
D3.5 If \-(φ = ψ) then \-(Πφ = Πψ)

The first three of these are tautologies. D3.5 is essentially two
applications of D1.3. Incidentally, it is not true that \=({φ = ψ) D (Πφ=Πψ)).

Theorem 3.2 ("Substitutivity of Equivalence"). If ψ occurs at least once
Γφλ

in η and 77./, is the result of replacing one particular occurrence of φ in η

I \Ψ\\by ψ then \-(φ = ψ) implies \-iη = η I . 1.
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The proof of 3.2 involves a tedious induction on the subformulas of η in
which φ occurs. The smallest of these is φ itself and \-(φ = ψ) implies
\-(φ = ψ). Suppose that the theorem has been established for the nth largest
such subformula. Then one of D3.2, D3.3, D3.4 or D3.5 will apply to estab-
lish the theorem for the n + 1st largest. Since η is finite, the argument
terminates.

In order to proceed, we define the rank of a formula as the depth of
iterated boxes in it. Specifically, r(φ) = 0 for φε L, r(D<ρ) = r{φ) + 1,
r(~φ) = r(φ), r(φ D ψ) = max(r(φ), r{ψ)). Notice that LΠ contains all and
only formulas of rank <1. Let us call φ an atom of ψ iff φ occurs in ψ and
either (1) φεC> and at least one occurrence of φ in ψ is not inside of a
formula of the form Uη in ψ or (2) φ is itself a formula of the form Πη and
at least one occurrence of φ is not (properly) inside of a formula of the
form Πrf in ψ. E.g. if P, Q and R are in 0> then the only atom of ~D((DP D
Q) D R) is G((DP D Q) =) R) and the atoms of ((P D Q ) D (D(R D DP) z> DP))
are P, Q, D(R z> DP) and DP. Obviously, the rank of φ is the maximum of
the ranks of the atoms of φ.

Since SC2 is complete we have the normal form theorems. In particu-
lar, we have that every formula φ is provably equivalent to a formula φ' in
conjunctive normal form. If we adopt the convention that a conjunctive
normal form of a tautology is the disjunction of the atoms and the negations
of the atoms of the tautology, then we have that every formula φ of LDD is
provably equivalent to a conjunction of one or more disjunctions of its
atoms and (or) their negations. Every such conjunctive normal form of φ
has the same rank as φ.

Theorem 3.3 If r(φ) = n, n > 1 then there is a formula φ1 such that v(φ') - n

and hD</? = φ\

Proof\ Let r(φ) = n, n > 1. Then h p i ί Ί & ^ & , . & Ψn where ψl9

ψ2, . . . , and ψn are disjunctions of the atoms and (or) negations of atoms
of φ. By D3.0. y-πφ = Πψλ & Πψ2 & . . . & Πψn. Without loss of generality,
we may assume that each ψv = a± v a2 v . . . v an v β± v β2 v . . . v βm,
where each α ; has the form a or ^a for azθ and where each βj has the form
Dβ or ^Dj3, Πβ being an atom of φ. By D3.1 \-Dψ ^(0(0?! v a2 v . . . v an) v
(βi v β2 v . . . v βn)). Putting these together using substitutivity of equiva-
lence we have \-Πφ = φ\ where φJ is a truth-functional combination of
(1) the modal atoms of φ and (2) some new modal atoms of rank 1. Since φ
has rank n > 1, φ' has the same rank.

Theorem 3.4 (Reduction Theorem): For every formula φε LDD there exists

a formula φ'ε LD such that \-φ = φ\

Proof: By induction on rank. For r(φ) = 0 and r(φ) - 1 use φ itself. Now
assume that for every formula φ of rank n there exists c^τεLD such that
\-φ = φ\ Let v(φ) = n + 1. Then one or more atoms of φ are of rank n + 1
and the rest are of rank less than n + 1. Using substitutivity of equivalence
and 3.3, replace every atom of rank n + 1 in φ by an equivalent formula of
rank n obtaining ψ of rank n such that \-φ =Ψ. By induction hypothesis
\-ψ = ψ' where r(ψ') < 1. Thus \-φ = ψr where ψ'ε LD.
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Theorem 3.5: ZDD is strongly complete.

Corollary 3.5: Kripke's semantics for S5 is compact.

Putting 3.5 together with 1.4 we have the strong bridge result for /DD.

4 Some further conclusions. .£DD is an extension of Kripke's system S5.
The primary difference between the two systems stems from the fact that
Kripke's system handles only "logical truth" whereas ^DD handles both
"logical truth" and "valid arguments". Deductively, this means that \-φ is
defined in Kripke's system whereas \-φ and S\-φ are both defined in .£DD.
Semantically, this means that \=φ is defined in Kripke's system, whereas
both \=φ and S\=φ are defined in JLΠU. In order to define \=φ it is sufficient
to define interpretations of formulas. To define S \=φ it is much more
natural to define interpretations of the entire language. Our definitions of
"interpretation of LDD" is obtained by replacing the words 'a formula' in
Kripke's definition of "interpretation of a formula" by the word 'LDD'.
Since ^.DD is strongly sound and strongly complete, every other deductive
system which has these two properties relative to the above semantics is
essentially the same as the deductive system of JLΠΠ in the sense that for
every S, φ <Ξ LDD, φ is provable from S in the other system iff φ is prov-
able fromS in ZDD.

Some logicians (e.g. Feys, [6] p. 6) have expressed a special interest
in "superposed" or iterated modalistics. As a result of the above investi-
gations we can assert that iterated modalities are completely dispensable
within ^.DD. The reduction theorem (3.5) and the strong soundness
theorem (1.4) imply that iterated modalities are dispensable in regard to
expressive power in the sense that for every formula φ containing iterated
modalities there is another sentence φ having no iterated modalities and
having exactly the same models as φ, i.e. \=φ = φ'- Moreover, the method
employed in the proof of strong completeness also yields the result that
iterated modalities are dispensable in regard to deduction in the sense that
if S, φ contains iterated modalities and Sτ, φ" is a corresponding sem-
antically equivalent set of formulas not containing iterated modalities, then
5 \-φ implies that there is a proof of φ1 from S! none oί whose formulas
contain iterated modalities.

As Theorem 2.5 is stated it holds for ZDD as well for ZD. AS a
result of this theorem we have that (1) Πφ is provable in ^ D iff φ is a
tautology. Naturally, this latter result does not hold in -£DD, e.g. if P and
Q are in & then in ZDD we have ι-D(DP D D(Q D P)). Noticing that fact (1)
compares provability of a rank 1 expression to a semantical property of a
related rank 0 expression, we can generalize it as follows. Let LDwbe the

sent of formulas of rank n. Thus LD0 = L, LDX = LD, and U LDW= LDD.
n

Let JLun be the restriction of -£DD to LDwin the same sense that Z D is a
restriction of ^.DD to LD. The method used in proving strong completeness
for -£DD from the strong completeness of JSλ can also be used to prove,
for each n ^ 1, the strong completeness of -£DW+1 from the strong com-
pleteness of -£DW. Strong soundness of -£DW, for all n, is a corollary of
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strong soundness for /DD. Thus for all φ and all n, Πφ is provable in
JLUn+i iff φ is logically true in the semantics of £Πn. In case n - 1 we
have fact (1) above.

The novelty of our approach to modal logic has been two-fold. In the
first place, we emphasize the relation of logical consequence, whereas all
previous writers have restricted themselves to the consideration of logical
truth. In our opinion, this restriction is unnecessary and, moreover, it
effectively blocks utilization of insights which have been achieved from the
broader viewpoint. In the second place, our deductive system was designed
to embody semantical insights, i.e. the intuitions which would lead one to
guess that a given argument is valid will also lead one to discover a proof
of it in our system. This advantage saves an enormous amount of essen-
tially useless manipulation.
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