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LESNIEWSKI’S TERMINOLOGICAL EXPLANATIONS
AS RECURSIVE CONCEPTS

JOHN THOMAS CANTY

In 1929 Les$niewski published terminological explanations for his
system of logic [5] where he used certain concepts from his system of
mereology along with others such as equiformity. In [1] Peano’s axioms
for arithmetic are shown to be derivable in Le$niewski’s system of
ontology extended by an axiom of infinity. In that exposition use is made of
a numerical epsilon, first defined in [2], in order to provide a character-
istically onotlogical model for the natural numbers. It is shown there that
analogues for the axiom, rule of extensionality, and rule of definition for
the primitive epsilon (&) of ontology are derivable for the numerical epsilon
(€w). Thus, one has available for the numerical epsilon analogues of every
thesis of ontology involving the primitive epsilon.

The numerical epsilon serves in this paper to reduce LeS$niewski’s
terminological explanations to numerical concepts. That is, each termin-
ological concept is shown to be definable as a numerical concept within
ontology extended by an axiom of infinity. Since the definitions to be given
are recursive, the incompleteness of this extension of onotlogy is readily
established.

1. Preliminary definitions In [5] Leéniewski defined whatever notions he
needed for his terminological explanations as name forming functors.
Here, we shall define only numerical name forming functors which are
primitive recursive in the sense that if & is the numerical name formed by
the functor from arguments x,, . . ., x,, then there is a primitive recursive
function ¥ such that

[Axy, . o %] ACe®@<Xy, o v v, %> S U<A Xy, oL ., XD = 0

is a thesis of ontology extended by the axiom of infinity. This will be
achieved by limiting definiens for the numerical name forming functor to
those propositional functions obtainable by primitive recursive methods. In
particular only the following methods will be employed: the limited quan-
tifiers, the effective minimal operator, proposition forming functors for
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propostional arguments, composition of functions, and recursive schemata
for defining primitive recursive functions.

In [1] it is explained how the recursive schemata for defining functions
can be represented in ontology. First these implicit definitions are
reduced to explicit definitions using Frege’s method employing ‘‘impre-
dicative'’ definitions. From these explicit definitions which-are prototheti-
cal in nature, one next obtains theses which are analogous to ontological
definitions, and with these given it is then possible to obtain the two theses
which represent the recursive definition of the concept in question. For
example, if addition were to be given in this way, one eventually obtains as
theses:

[®]: ®e, FIN.D. & = 0 d + 0
[6¥]: d e Fin. e, Fin. 2. +S<T>= ,S<d + I >

For brevity only these last two theses shall concern us: whichever defini-
tions they rely on being presupposed. Moreover, the hypotheses of such
theses will be omitted: throughout the paper it is-assumed that all relevant
variables have as their values finite numerals. Under this stipulation, if
addition were to be introduced, it would be given by exhibiting only the
following theses.

(#].2=.,®+0
[PT]. & + S<I> =0 S + T >
Given the above procedure, the method of defining a concept recur-
sively is readily available. But in order to further simplify the exposition
other conventions will be adopted. In particular, it is desirable to have the
use of the ‘“limited quantifiers’’. To this end, numervically less than or
identical with is defined

[AB].".A=wB.v.[3C].A+C=wB:=.A< B
and the following thesis is obtained:
[AB].".As B.=A=_,B.v.[3IC].CEB.A+C=,B

showing the relation fo be primitive recursive. With the availability of the
above, it is possible to introduce the use of limited quantifiers. Of course,
such quantifiers are mere abbreviations—as is the use of the particular
quantifier. Thus propositions of the form:

rne oo X ixiSy, .. L xnSy.D. 0
Bxy, ooy ix1S Yy, o, XpS Y2 d

will be abbreviated as:

vy, « ., xSy @
Axy, ..., %=y]:®
The (effective) minimal operator can be given in ontology as a numeri-
cal name forming functor. This is done by the following definitional thesis:
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[ABpp]::A € B.B ex Fin: [C]: 9(C).D.C €0 C.". BEx 0.~([3C]. o(C)).v:
p[C): o(C) . D. BEC. .=, Aew utBo $[ p]

Here the ‘u’ is the constant being defined' and the definidendum may be
read as ““A is the least B (for ¢) such that p’’. On the basis of the above,
the following is immediately derivable.

[ABp]::A e utBp+(o(B)].=.".A € B.Bew Fin: [C]: ¢(C) .D.CexC . .
B&w0.~([3C]. 0(C)).v:0B):[C]: ¢(C).D.B=C

That is, whenever A is the least B (for ¢) such that ¢(B), either A is zero,
if ¢ is not satisfied, or A is the least numeral satisfying ¢. A

Finally, it is necessary to establish a one-to-one correspondence
between (some subset of) the positive integers and the expressions of
ontology. Given such a correspondence, the relevant variables in the
numerical terminological explanations that are given in the next section can
be considered as relativized to this subset. That is, under the correspon-
dence the explanations given here refer to some given expression (of
ontology) as do Le$niewski’s original terminological explanations.

Ontology takes as basic semantical categories propositions and names.’
All other semantical categories are understood ultimately in terms of
these. In order to determine the semantical category of any term it is
only necessary to specify the number and types of its arguments and the

functor produced by it. For example: ¢‘it is not the case that...” is
completely determined by indicating that it is a propositional functor
formed from one propositional argument, while ‘... is unempty’’ is

determined by indicating that it is a propositional functor formed from one
nominal argument.

It is thus possible to establish a one-to-one correspondence between
the semantical categories and a subset of the positive integers. Proposi-
tions and names are assigned the numbers one and two respectively. If n
is the number of arguments used to form a function, # + 2 is associated
with that number of arguments. In this way prime factorizations of
numbers can be used to code the semantical categories and the number of
the semantical category can be used as a subscript to determine unique
parentheses for each semantical category. For example, if one writes ‘it
is not the case that p’’ as:

~(ab)a

where o = 2° x 3' x 5 then the sign of negation is determined to be a propo-
sitional functor formed from one propositional argument: the first exponent
indicating the number of arguments of the functor, the second the category
of the single argument, and the last the category of the functor formed by
the negation sign. Whereas, if one writes ‘‘the A is ’’ as:

e(gAb)g

where B = 2* x 3% x 5> X 7' then the epsilon is determined to be a proposi-
tional functor formed from two nominal arguments: the first exponent
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indicating the number of arguments of the epsilon to be two, the second and
third exponents indicating that each argument is nominal, and the last
indicating that the epsilon forms a proposition.

And in general, a type-{ functor forming functor of z-arguments is
represented by a prime factorization of the form:

P2 CyXCoyX .. . XCyXT

where each C; (and 7) is a prime factorization beginning with the next
prime in order of magnitude not yet appearing in the representation and
indicating the category of the argument (of #, that is, the cateogry of the
functor formed by the term in question). Thus, if one writes

&(5a)5(,b)y

where 6 = 2° X 3°x 5°x 7®x 11" and y = 2°® x 3% x 5!, this epsilon forms a
v-functor from one propositional argument and its semantical category is &.

Thus, prime factorizations (with primes in order of magnitude)
represent semantical categories in the following way: exponents one or two
indicate propositions and names, exponents greater than two indicate the
number of arguments used to form a functor—similar representations of
categories are to be found in the literature, see for instance, Curry [3] on
grammatical categories.

In order to attain a one-to-one correspondence between expressions of
ontology and some subset of the positive integers we shall standardize the
exposition of onotlogy. The formulas of ontology will employ, following
Les$niewski, square corners for quantification, but, unlike Le$niewski, for
semantical categories only one kind of parentheses (say ‘(’and‘)’) shall be
used—they will, however, always be given with some subscript appended.
The parentheses will continue to determine the semantical categories of
non-parenthetical expressions, but the determination shall now be formal
rather than lexicographical. That is, instead of introducing a new style of
parentheses whenever they are needed we shall introduce a new subscript
which codes the desired semantical category. For variables and constants
one may use any continuous symbol other than those selected to serve as
parentheses and corners. Thus the shortest possible axiom of onotlogy
given in [9], which would be written as

[a,b]: e{a,b}.=. [3c]. e{a,c}. e{c,b}
in an informal manner, and as
Lab_S(efa,b} (e Ji-(p(ela,clefe, b))
by Les$niewski, where ‘(’and‘)’ are used for proposition forming functors all
of whose arguments are propositional and ‘{’and‘}’ are used for proposi-
tional functors all of whose arguments are nominal, shall here be rendered
with 7 = 2*x 3" x 5" x 7' as
,_ab_,'_é(y, E(Bﬂb)ﬁ - (a LC__;_l— (a?(ns(ﬁac )B 8(ﬁcb )B)r])a-l)a)q-l

The square corners are used exclusively in association with quanti-
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fiers, and the subscripted parentheses in the above example indicate that
‘+’ and ‘9’ are propositional functors for two propositional arguments, ‘¢’
is a propositional functor for two nominal arguments, and ‘+’ is a propo-
sitional functor for one propositional argument. In effect then, the stand-
ardization envisaged is the adoption of LeSniewski’s formalization with the
sole exception of employing subscripted parentheses as single symbols
instead of a variety of kinds of parentheses.

We now set up a one-to-one correspondence of (some subset) of the
positive integers with the symbols of ontology in the following way:

L 1 r 1 - Ve

1 3 5 7 5™ e

where m is the number of a semantical category; variables and constants
being assigned prime numbers greater than seven.

Expressions shall correspond to numbers whose prime factorizations
have only the above Kkinds of exponents. Thus there is a one-to-one
correspondence between expressions and a subset of the positive integers.
Once definite prime numbers greater than seven have been assigned to the
functors and variables occurring in the above axiom a unique number
becomes associated with the axiom. This number shall be designated by
‘Axo’ which may be read as ‘‘the Gddel-number associated with the axiom
of ontology’’.

Starting now with the concepts of addition, multiplication, exponentia~
tion, less than or numerically identical with, numerical identity, and
numerical difference—each of which is primitive recursive, we define a
group of numerical name forming functors by the methods indicated above:
each of which will thus be primitive recursive.

D1.1 [AB]:<(AB).=.As B.A+.,B

A is strictly less than B. This functor will usually be written as
{‘A<B77.

D1.2 [AB]:Agw dis <B>.=. [IC<A]. A=w BXC
A is divisible by B.
D1.3 1=55S<0>

One 1is identical to the successor of zero. Any other particular
constants that are needed later shall be considered as defined, for instance,
two, three, etc.

D1.4 [A]l:A€wprim =.1< A . ~([3IBSA].B#,1.B#,A.At,dis <B>)
A is a prime number,
Di.5a [ABC]:$+#ACY(B).=. B&w prim .A€odis <B>.C<B.BsA.

This definition is given merely to facilitate the following. Whenever
the minimal operator is employed there will be occasion to have such an
auxiliary definition.
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D1.5b [A].pr<0A>=x0
D1.5¢c [ABn].pr<n+1A>=0utBd® A pr <nA >¥F[Beo prim .
Ag,dis <B>.pr<nA><B.BsA]

The above two theses indicate the value of the nth prime factor of A
presented in order of magnitude. With this single example given, we shall
for brevity ommit such auxiliary definitions and shorten expressions using
the minimal operator by ommitting its parameters. Under this convention
the nth prime factor is given by asserting:

D1.5a [A]. pr<04A>=40
D1.5b [ABn]. pr <n+1A> = u[BEw prim . A€ dis <B>. pr <nA>< B.BE A]

as will be the case for other definitions requiring the minimal operator.

D1.6a 1< 0>=x1
D1.6b [n].!<n+1>=w<n+1>X!<n>

The above two theses give the value of the nth factorial in order of
magnitude.

D1.7Ta pr<0>=,1 o
D1.Tb [An].pr <m+1>=y, u[A e prim . pr<n>+1SA. A 1<pr<n>>+1]

The above two theses give the value of the nth prime number according
to magnitude.

D1.8 [ABn].gl <nA>=w0 u[BA.A€.dis <pr <nA>B>.
~(A 8w dis < pr <nA>BT1>)]

This thesis gives the value of the nih tevm of the sequence of numbers
corresponding to A,

D1.9 [AB].L<A>=wu[BSA.15gl<BA> .0=wgl <B+1A>]

This thesis gives the value of the length of the sequence of numbers
corresponding to A—it is, in effect, the number of prime factors occurring
in the prime factorization of A.

D1.10 [ABC].A*B=, pu[C= pr << L<KA>+ LI B>>4B> [ns L<A>],
gl<nC>=wgl<nd>:[n=L<B>|:12n.D.
gl <n+L<A> B> =gl <nB>]

This thesis gives the value of the concatenation of A with B.
D1.11 [A].R<A> =424

This thesis gives the value of the sequence corresponding to A.

The above definitions are all given by Gd&del [4]. The remainder of
the introductory definitions are developed in order to produce the desired
terminological explanations. In each case, some concept that LeSniewski
took as undefined in [5] is defined here. Once these definitions are given it
is possiltie to reproduce Leéniewski’s terminological explanations (which is
taken up in the following section).
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D1.12 [AB]:A €wingr <B>.=.[3CD].C<B. D= B.B=w(C *< A% D>

A is an ingredient of B. Since the only concern here is with sequences
of symbols it is enough to define a numerical name which holds cnly for
such items even though LeSniewski uses the broader concept given in
mereology. However, from the above definition it is clear that 4 is an
ingredient of B if and only if A is identical to B (let C and D in the above
definition be identical with one) or A is a proper (and continuous) part of B.
Thus, this numerical ‘ingr’ is just the mereological ‘ingr’ restricted in
application to prime factorizations of numbers. In general, Lesniewski’s
defined names used in his terminological explanations will be reproduced in
the sense that they will be numerical names restricted in this way. Under
the Go&del-numbering this amounts to restricting the application of the
numerical concepts to expressions.

D1.13 [AB].A exwenf<B>.=. [ns A+ B].gl <nA>=w gl <nB>
A 1is equiform to B.

D1.14 [A]l: Aecexpr.=:1=L<A>::[IBSA]::Bewenf <A> ",
[1snsL<A>] . pr<nB>=0pr<n>. . gl<nB>=x1.v.
gl <nB>=w3.v.85gl<uB>.gl<nB>cwprim.v:| msL<A>]:
1sm:gl<mB>=w5".v.gl <uB>=x 7"

A 'is an expression. Assuming that #: is one or the number of some
semantical category, this numerical name indicates that subset of prime
factorizations which is the most interesting for the purposes at hand. For,
as will be seen in the next few definitions, expressions are just those prime
factorizations whose exponents correspond to the primitive symbols of the
system.

D1.15 [A]: Agwlst.=. [3BSA].Bewenf <A>.[ns L<A>].
pr <mB>=w pr <n>.gl <nB> &t~ expr.

A is a list of expressions. Lists of expressions are sequences of
primes whose exponents represent expressions. This concept was not given
by Leéniewski, but is useful in this exposition.

D1.16 [A]l: Acwvrb .= . Acwexpr.L< A> =01

A is a word. Thus words are represented by single prime factors
whose exponents corresponds to one of the symbols of the system.

D1.17 [A]:Acwprntl = [In = A]. A=, R<5">

A is a left paventhesis. Thus, assuming that » is the number of some
semantical category, a left parenthesis is the unique word whose exponent
indicates the particular semantical category with which the parenthesis is
associated.

D1.18 [A]: Acwprntr.=. [I=A]. A= R T">

‘A is a right parventhesis, assuming that #» is the number of some
semantical category (not given by Le$niewski).
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D1.19 [AB].".A cwoprntsym<B> .= [1n=2B]: B=w R<5"> . A= R<T"> . v.
[ sB].B=w R<T"> . A =R <5">

A is a symmetric parenthesis with B. Thus, assuming that » is the
number of some semantical category, symmetric parentheses are always
associated with the same semantical category.

D1.20 [A].".A cwprnt.=: Acoprntl.v. At prntr.
A is a parenthesis.

D1.21 [ABC]: Atwprcd<BC> .=. [Anm=C]. pr <L<KAD>A> =co pr<nC>.
pr<1B>=wpr<mC>.n<m

A is a predecessor of B in C. Thus, assuming that A and B are
ingredients of C, A precedes B if all of A comes before the beginning of B.
This name differs from Lesniewski’s ‘Aeprcd(B)’ in that the particular
context in which A precedes B has been made explicit. This is only a
minor difference—though necessary: the context is made explicit in order
to retain the limited quantification. And, for this purpose, it is very often
necessary to make explicit contexts which are only implicit in Le$niewski’s
terminological explanations. See for instance the next concept.

D1.22 [ABC]:A £xscd< BC>.=. B exprcd <AC >

A is a succeeder of B in C. Thus, A follows B in Cif all of B precedes
AinC.

D1.23 [AB].Uprcd<AB> =0 u[C< B.C ¢xprcd< AB>.Bewexpr. .
[D= B]:.D € prcd< AB>.D:D €0ptcd <CB>.v.D =« C]

This thesis gives the value of the last word preceding A in B. Thus,
the last word preceding A in B is the single word which comes immediately
before the beginning of A in an expression B.

D1.24 [An].Ingr <nA>=o u[BSA.B = pr <nA>g|<nA>

. Agw expr]

This thesis gives the value of the né% word in A. Thus, the nth word in
A is the unique word represented by the »nth term in an expression A.

D1.25 [A].Uingr<A>=u[B=A.B=wlngr<L <A >A>]
This thesis gives the value of the last word in A.

D1.26a [AB].Occ<O0AB> =« u[C< B. Cewcnf<A>. Cewingr< B>]
This thesis gives the value of the first occurrvence of A in B.

D1.26b [ABnr].Occ<n +1AB>= u[C €wecnf<A>.CsB.
Ingr < 1C > £ scd < Ungr <Occ< nAB>>B > |

This thesis gives the value of the n+1occurence of A in B, in terms
of the nth occurrence of A in B. Thus the value of the nth occurrence of A
in B has been determined. Notice that this concept is applicable to the nth
word in an expression or to the nth expression in a list. This concept and
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the remaining ones in this section were not given by Le$niewski, but are
useful in later developments.

D1.27 [AB].N<AB>=w u[msL<B>.0cc<mMAB> =u 0]

This thesis gives the value of the number of occurvences of A in B
(which is to be taken as zero if there is no occurrence of A in B). Notice
that the concept is applicable to the number of times a word occurs in an
expression or the number of times an expression occurs in a list.

The last concept to be considered in this introductory section, is given
in order to describe the rule of substitution in a manner similar to
Lesniewski’s original description. In that description, Leéniewski com-
pares a given expression with the expression that reaults from it by making
some substitution in the expression. Thus what is needed is a symbol by
symbol association of two expressions except in those places at which a
substitution may have occurred. Hence, it is indicated when a word A in a
given expression E is to be associated with a word B in a given expression
F where the association does not apply to certain segments, C of E and D of
F—these segments being the places for possible substitution.

D1.28 [ABCDEF]:: A gxassoc <BCDEF >
1) Eé&wexpr.
2) Fewexpr.
3) [IGEE].G =00cc<O0CE>.
4) N<CE >=wN<DF >,
5) Aewvrb.
6) Béew Vib.
7 Aewingr<E>.
8) Bewingr<F>:
9) [GHIJSE+F]: E=wG *H.G=00cc<0CE> =, F=ol xJ.
I =0Occ<O0DF>.".
10) [GHIJSE+F]. . L=w G*xH.F=ol xJ.
Ingr <1H> =wlngr <10cc<O0CE>>.
Ingr <1J> =w Ingt < 10cc< 0DF >> .D:
[nS G+ H]: A= Ingr <nG> .=. B=o Ingr <nd >
11) 25SN<CE > .D:: [GHIJKMS E+ F]::E = G * H¥I  F=d xK* M. .
[n =N <CE >].". Uingr <G > = Uingr <Occ <nCE>> .
Ingr <1I> =0 Ingr <1O0cc<n+1CE >>.
Uingr <J> =« Uingtr <Occ< uDF >>.
Ingr <1M> =c Ingr <1Occ <n+1DF>> .D.
[msH+K]: A= lngt <mH> .=, B=w Ingr < mK >
12) [GHIJSE+F]..E =G *H.F=wl xJ.[3nm = L+ F].
Mm+1=wN<CD>.n+1=wN< DF>,
Uingr <Occ < mCE>> = Uingr <G >.
Uingr <I > =o Uingr <Occ < nDF>> .D: [ns H+J|:
A=wlIngt <nH > .=. B=cw Ingt <nJ>

The above is the last of the introductory concepts needed in order to
give Le$niewski’s terminological explanations. Of the concepts that
Les$niewski originally took as primitive, we have defined the following:
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A € ingr<B> A-gingr(B)

Agncnf<B> A genf (B)

Acgow expr A gexpr

A€, vrb Aevrb

A € prntl A eprntl

A& prntsym< B> A eprntsym (B)

A £ prnt A-ceprnt

A €0 prcd<BC > (A gprcd (B)

A gwscd <BC > A gscd (B)

A €x:.Uprcd <BC > A g Uprcd (B)

A g Uingr <B > A g Uingr (B)

A €w Ingr <nB> A glingr(B)
A &2ingr (B)
etc.

As has been noted some of the above make explicit contexts only
implicit in the originals. With these terms at hand, Le$niewski’s termin=
ological explanations can now be reproduced exactly with only occassional
differences each of which will be noted.

2. Protothethetical terminological explanations In this section the first
forty-three terminological explanations of Lesniewski are given. In each
case LeSniewski’s terminological explanations define name forming func-
tors according to the methods of ontology. Here the terminological
explanations define numerical name forming functors according to the
methods of recursion. However, the concepts given below parallel as
exactly as possible those given by LeSniewski—commentaries following
definitions will note any important differences in exposition. The immedi-
ate advantage of this procedure is that it makes clear that Leéniewski’s
terminological explanations can be given by the methods of recursion. The
subsequent advantages of the procedure allow one to establish the incom-
pleteness of ontology (extended by the axiom of infinity) in a manner exactly
similar to G6del’s original work.

In order to facilitate comparison of the following terminological
explanations with Le$niewski’s, his numbering of terminological explana-
tions has been employed. And in order to make the following explanations
definite, reference will be made to particular axioms. The axiom for
ontology is given above and will be referred to by its G&del-number: Axo.
The axiom for protothetic will be that of Sobocifiski [8], which in the
informal notation of this exposition, is given as:

[pal:: p.=.q =2 [flu fof (plu]. w) =" r].". flar) = q.=. p
The G&del-number of this axiom will be designated by ‘Axp’, and the axiom
will be referred to by means of its G6del-number. Thus, in the formal
notation, Axp is given as:

r [ r r )
Lba, +(7]+(npq)17|__f_, +(71f(7]17f (q?LMJ u_')n)nL’V.J +(r,f(r] qV)n+(nQP)q-l)qj)n1
The only other axiom to be considered, is the axiom of infinity. The
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GGdel-number of this axiom will be designated by ‘Axinf’, and the axiom will
also be referred to by means of its Godel-number. Thus, in the formal
notation, where 6 = 2* X 3%x 5% x 7%, Axinf is given as:

La & (s & (oG oGNBD L (90, es Ba)g 9,b),)y
QD(y U (obB)o)y)n_,)n@(ya)y)n = (aLA_I *_(a?(n C(BAA)B -
(a S(BAa)B)a)n)a-l)a)n-l

Given the Gddel-numbers for the three axioms, it is now possible to
state LeSniewski’s terminological explanations.

D2.1 [A]:Aewvrbl .= A ewenf <Ingr <1 Axp >>

This thesis defines a. left lower corner as any word equiform to the
first word in the axiom of protothetic. Although left lower corners could
have been defined as words equiform to R < 1> in this exposition, in order
to parallel Le$niewski’s:

T.E.I [A]:Aevrbl.=. A e cnf(lingr(Al))

that is, the left lower corner is any word equiform to the first word in Al,
where ‘Al’ is the name he gives to the relevant axiom, the more compli-
cated definition is used. In the terminological explanations that follow, if
there is nothing to the contrary, it may be assumed that the only differ-
erences in notation from Le$niewski’s terminological explanations are as
minor as those that occur here.

D2.2 [A]l:Agw vib2 .=, Acwenf<Ingr <4 Axp>>

This thesis defines a 7ight lower corner as any word equiform to the
fourth word in the axiom of protothetic, that is, as equiform to R <3>.

D2.3 [A]:A €w vrb3 .=. A exenf<Ingr <5 Axp>>

This thesis defines a left upper corner, which are words equiform to
R<5>. ‘

D24 [A]:A €w vibd .= Aewocnf < Uingr < Axp>>
This thesis defines a »ight upper corner, which are words equiform to
RCT>.

D2.5 [A]: Atwirm .=  AEovib .~(Acoprnt).~(AEw vibl) .~ (A € vrb2) .
N(ASoo Vl'b3) .N(Aaoovrb4)

This thesis defines a term as a word which is neither a punctuator for
quantification nor a parenthesis for semantical categories.

D2.6 [ABl:A€wint<B>.=. BEw eXpr.A €wxVtb.A cwingt<B>.
~(A € Ingr <1B>).~(A € Uingr < B>)

Ais a wovd inside of B. Le$niewski’s T.E.VII is given- as:

T.E.VII: |A,a]::A eCmpl(a) .=.". Acexpr. .
[B]: B evrb.B eingr(4) .o.
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[3C].Cea.Beingr(C). .
[B,c,D]:Bea.Ceta.
D evrb.D eingr(B).D eingr(C) .D. Beld(C).".
[Bl:Bea .D.
B g expr N ingr(A)

where ‘Beld(C)’ and ‘Be exprningr(A)’ correspond to ‘B =« C’ and
‘B €w €XpPr.B £ ingr <A >’ respectively. Since this explanation involves
quantification over general names, it cannot be presented as primitive
recursive—our quantifiers must be restricted to individual (numerical)
names. However, it is clear from the above that complexes of things, as
defined in T.E.VII are only expressions of those things. Thus, LeSniewski’s
uses of ‘Cmpl’ can be avoided in favor of mentioning some specific con-
catenation. Hence no terminological explanation corresponding to T.E.VII
is given in this exposition.

D2.8 [A].. Agwqntf .=

1) Ingr <1A> g vibl .

2) Uingr <A > gwvib2.

3) @B A]. Bew int < A>:

4) [B2A]:Bewint<A>.D. BEw trm :

5) [BCsA]l:Béewint<A>. Cew int<A>.Bewcnf<C>.D. B=«C

A is a quantifier. Thus, quantifiers are unempty expressions bounded
by lower corners containing only non-repetitious terms.

D2.9 [A]:: Ag,, sbantf .=

1) [3B2A].Bewint<A>. .

2) [BEA]. .B=,Ingr<1A>.v.BEwint<A>:D:[CDS A]:C € vrb3.
Cewingtr<A>.Cewscd<BA>.Dgwvrbd. Dewingr < A>.
Dewscd< BA> . D.NCCA>INLDA> ..

3) [BSA]. .Bewint<A>.v.Bé&wUingr<A>:D:[CD= A]:C €w vrb4 .
Ceningr<A>.Cewprcd< BA>. D&wvrb3.D ewingr < A>.

D g prcd < BA> .D.N< CA> < NI DA>

A is a subquantifier. Clearly, all subquantifiers are unempty expres-
sions structured in such a way that all upper corners occurring in them are
uniquely paired. In this explanation, LeSniewski’s clause:

[B].".B elingr(A) . v . Beint(A) :D. (vrb3 Nningr(4) Nscd(B)) «
(vrb4 Ningr(4) N scd(B))

that is, upper left corners in A preceding B are strictly less in number
than upper right corners in A preceding B, has been rendered as the second
clause above, using the ‘‘number of times C occurs in A is strictly less
than the number of times D occurs in A’’ as will be the case for similar
clauses. Incidentally, it is necessary to avoid Le$niewski’s use of ‘‘g o b’
(as well as his use of ‘‘a«b’’) since it would introduce non-recursive
concepts. However, since the arguments of Les$niewski’s functor for less
equinumerosity (and equinumerosity) are always ingredients of expressions,
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the effect of his use of ‘‘less equinumerous’’ (or ‘‘equinumerous’’) is
always obtainable by comparing the specific count of the ingredients to be
compared. Such an approach keeps this exposition faithful to Le$niewski’s
explanations while allowing it to remain recursive.

D2.10 [A]:Agwgnrl.=. [IBCSA]. Bewqntf. C€o shqntf . A= B*C

A is a genevalization. Generalizations are expressions made up
entirely of some quantifier immediately followed by some subquantifier.
Le$niewski uses ‘Cmpl’ in his 7.E.X (given below), but this has been
avoided in favor of concatenation with subsequent simplification of the
explanation:

T.E.X [A]::Aegnrl.=.".[3B]. Beqntf. Beingr(4).
lingr(A) € ingr(B) :

[3B]. Besbantf . Beingr(A).
Uingr(A) eingr(B):

[B,C]: Beqntf . Beingr(A).
C eshbqntf . C eingr(4) .lingr(A4) eingr(B).
Uingr(A) eingr(C) .2. A eCmpl(BUC)

Thus, for Le$niewski as well, generalizations are expressions made up
entirely of some quantifier immediately followed by some subquantifier.

D2.11 [AB]:A€wQntf<B> .=, Bewgnrl .A€wqntf.A€wingt<B>.
Ingr <1B> € ingr <A>

A is the quantifier of B. The quantifier of a generalization is the
quantifier with which the generalization begins, and is to be distinguished
from a quantifier merely in the generalization. Thus, the numerical name
given here is unique (as its capitalization indicates).

D2.12 [AB]:A €xShantf < B> .=, Bew gnrl . A £ sbantf . A €e ingr < B> .
Uingr <B> €w ingr <A >

A is the subquantifier of B. The subquantifier of a generalization is
the subquantifier with which the generalization ends. Thus, a subquantifier
of an expression is unique and should be distinguished from a subquantifier
merely in a generalization.

D2.13 [AB].".A € Essnt< B> .=, Shqntf < B> =aovrb3 ¥ A % vrb4 . v . A €a expr .
A=5B.~(Aexgnrl)

A is the nucleus of B. The nucleus of an expression which is not a
generalization is the expression itself, while the nucleus of a generalization
is that expression which is generally said to fall within the ‘‘scope’’ of its
quantifier. In either case the nucleus of an expression is unique. In this
explanation, Le$niewski’s clause:

A £ Cmpl(int(Sbantf(B)))

is rendered in terms of concatenation.
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D2.14 [ABC].".Agwvar< BC> =

1) B &w int <Qntf < C>> .

2) Aewcnf< B>,

3) A g ingr <Essnt < C>>:

4) [DE=C]: Dewingt <C > .E £w int <Qntf <D >>,
AgoenfE> At ingt <D>.D.D=,xC

A is a wvariable bound by B in C. Here is a simple example of
Lesniewski’s use of contextual definition, since bound variables are defined
only in a given context, namely, as certain ingredients of a given expfes-
sion. This explanation also makes it clear that there is great freedom of
choice in selecting symbols as variables: a symbol that is a variable in
one expression need not necessarily be a variable in another expression.

D2.15 [ABC].A¢€w cnvar <BC > .= [IDs C]. A€wvar< DC>,
[3D = C]. Bewvar <DC > . Agwcnf< B>

A is a variable equiform with Bin C. That is, A and B are variables
bound by the same term of a given generalization. Thus, equiformity of
variables is context dependent.

D2.16 [A]:: Agw pmim .=, .

1) [3B2A]:B ey, int<A> ",

2) [BEA]. . Bewingr<lA>.v.Bé&wint<A>:D:[CDSA]: Cewingr<A>.
Cewscd<<BA>.C ewenf<Ingt <1A>>.DéEwingt <A>.D&wscd<< BA>.
De, prntsym <Ingr <1A>> D N CA><NIDA > ",

3) [BEA]. .Bewint<A>.v.Btw Uingr<A>:D:[CD=A]:C e ingr<A>.
Ce, prcd <BA> . Cew pratsym <Ingr <14>> . Dew ingr <A>.

Deow prcd < BA> . Dew pintl. Dewenf<Ingr <14>>.D.
N<CA > < N<DA>

A is a paventheme. Parenthemes are parenthetical clauses (including
their outermost parentheses) in which all words equiform to their outer-
most parentheses are uniquely paired.

In order to avoid LeSniewski’s use of ‘Cmpl’ in:
T.E.XVII [A,a,B]:: Agprntm(B,a).=[C]:C €a.>.C ¢ prntm

B eCmpl(lingr(B)Ua) .
lingr(B)etrm .A €a

and the quantification over general names in:
T.E.XVII [A,B]:A eprntm(B).=. [3a]. Aeprntm(B,a)
we define the nth parentheme of an expression recursively as follows:

D2.17a [AB]: Agwprntm<0B> .=. Atwpmtm.[C <B]. B=w Ingr < 1B > % AxC.
Ingr <1B> g trm

D2.170 [ABr]: Agwpmim< n+1B> =.A €wprim, [ICD = B].
B=uC *prntm<l nB> *A * D

A is the nth parventheme of B. Thus, the nth parentheme of an expres-
sion in unique.
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D2.18  [AB]: Agwpmtm<B>.= [InsL<B>]. Atwprtm< nB>

A is a parentheme of B. Notice that this explanation closely parallels
Leéniewski’s: in both cases parenthemes of expression are to be dis-
tinguished from parenthemes merely in expressions.

D2.18  [AB].". Acw Uprnim< B> .= A€wpmtm< B> : [nmCs BJ:
Acwpmtm< B> .C €wprntmI mB> . 2. m=n

A is the last parentheme of B.
D2.19 [A]:A4 €« fnct .=. [IBS A]. Bewpmtm< A>
A is a function.

D2.20a [AB].". Agwarg<0B>.=: Be€wpmtm.[IC = B]. B=w Ingr <1B>x A*C.
Agptim.v.AEwgnrl.v.AEx fnct

D2.20b [ABn]. .A €warg< n+1B> .= B €wprtm. [3CD < B].
B=wx Cxarg< nB> * A % C:Aeoofrm v.Ag€xanrl.v.Agcxs fnct

A is the nth arvgument of B. Thus the nth argument of an expression is
unique.

D2.21 [AB]: A¢xwarg< B> .=. [In= L<B>]. A€ arg< nB>

‘A is an argwment of B. Thus, arguments of parenthemes are to be
distinguished from arguments merely in parenthemes. As in D2.17 and
D2.18 the difficulties inherent in LeS$niewski’s use of ‘Cmpl’ are again
avoided in favor of concatenation.

D2.21 [AB].'. AgwUarg<B > .=t Agwarg <B>: [mmCs B]:
A&warg<nB>.C €carg< mB>.D.m=n

A is the last avgument of B.

D2.22 [AB]: Agw Sgnfent < B> .=.A €wexpr.[ICS B]. C€wprmtm< B> .
B=,A xC

A is the functor of B. Thus the functor of an expression is unique.
Since the functor of an expression is all but the last parentheme of some
given function, it may be many-linked, that is, its own function may have
parameters. In this explanation, concatenation replaces the use of “Cmpl’
in Le$niewski’s:

T.E.XXII [A,B]: AcSgnfnct(B).=. Acexpr.
Acgingr(B).
Cmpl(vrb Ningr(B) N
(ingr(A4))) e protm(B)

D2.23 [AB].". Agwsimprntm < B> .=

1) A€wprntm.

2) Bewprntm.

3) Ingr<1A>ewcnf<Ingr<1B>>:

4) [REL<A>+L<B>]:Uarg<A> €warg<nA>.=.Uarg < B> € arg< nB>
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A is a similar paventheme to B. Thus, similar parenthemes have
equiform outermost parentheses and the same number of arguments.
Here Le$niewski’s clause:

arg(A) « arg(B)

that is, the number of arguments of A is the same as the number of
B, is rendered as the last clause above, as will be the case with similar
clauses.

D2.24 [AB):: Acwgenfact < B> .=, .

1) Agwfnct:

2) [pm = L< B>].Upmim <A > €0 prntm< nd> |
Uprntm <B > € prntm < mB> D .n s m:

3) [CDnmy = A+ B]: C €w prntm< nA> .
Dew prntm< mB> | prntm< #+ ¥A> €00 Uprnim < A> .
protm < m+ ¥ B> €o Uprntm < B> .D. C €« simprntm < D>

A is a genevating function with respect to B. Thus A is a generating
function with respect to B if it is a function that has no more parenthemes
than B has; and whose parenthemes are similar to the terminal paren-
themes of B. Generating functions are very useful in determining the
semantical categories of newly defined functors (cf. D2.39). For instance,
‘Ha}’ is a generating function in respect to “*4 ¢ }¢b }{a}’ and thus deter-
mines the semantical category of “*{ o ¥{b}’.

D2.25 [ABCD] . A€w Anarg< BCD> .=.C gwsimpmtm<D >, Agwarg<C >.
Bewarg<D>:[n2L<C>+L<D>]:A €warg< nC> .=, Bewarg< nD>

A is the argument in C analogous to B in D.

D2.26 [ABCD]: A€o Ansgnfnct <BCD > .=, A€ Sgnfnct <B >,
BewSgnfnct <D >, [IEFS B+C].E €wpmtm< C> . E goscd< AC>.
F €wpmtm<D > .F €xscd < BD> . Egwsimprntm< F>

A is the functor in C analogous to B in D.

D2.27 [ABCD].". Agw An< BCD> .=: A€w Anarg< BCD> .v .
A €w Ansgnfnct < BCD>

A in C is the analogue of Bin D.

D2.28 [AB]:A €wargl < B>.=. [ICS Axp].C €xingr <Axp>.
A €0 Anarg < Ingr < 10 Axp>BC >
A is the fivst argument of B. Thus this explanation determines that the
last word preceding the first argument of B is a parenthesis of the
semantical category whose number is 2* x 3'x 5 x 7%
D2.29 [AB]: Aewarg2< B> .= [IC=Axp].C €x ingr <Axp>.
A€o Anarg < Ingr < 11 Axp > BC>

A is the second argument of B.
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D2.30 [AB]: A€wEqvll < B> .=, Sgnfnct <B > € cnf < Ingr < T Axp >> .
[3C=B].C cwpmim< B> . At Argl <C >

A is the coimplicans of B. Thus this explanation, together with the
next, can be considered as a stipulation for determining the shape of the
symbol to be used for complication.

D2.31 [AB]: Aew Equi2< B> .=, Sgnfnct < B>&w cnf< Ingr < 7 Axp >> .
[3C =B].C ewpmtim< B> . A€ Arg2<C >

A is the complicate of B.

D2.32 [ABC]: Agwthp< BC> .=. Ctewlst. Axp £w gl <1C >.
[Fm=L<C>]. A= gl <nC>.B=w gl <mC>.nsm.

A is a theses of protothetic relative to B in a list C (assuming that
every term in C is a thesis of protothetic). In order to retain limited
quantification, a thesis of protothetic must be explained relative to a given
list (of theses) instead of relative to a given thesis as is the case in:

T.E.XXXII [A,B].".Acthp(B).=: Acthp.
B ethp:
A gprecd(B).v.Aeld(B)

Thus, all explanations which depend on D2.32 will also be relativized
to a given list (of theses). Actually, LeSniewski takes ‘thp’ as primitive:
its first use occurs in his T.E.XXXII when he defines ‘A € thp(B)’. However,
the concept is only needed in an inductive caluse for the directive of
protothetic and so the concept given here suffices for the exposition.

D2.33 [ABB'].".Atw frp < BB'> .=:A € thp<BB'>.v.
[3ICD=B']. Cexthp<BB'>.Dtwingtr<C>.AEw Argl <D>.v.
[ACD = B']. Cewthp< BB'>.D € ingt <C > .A €0 Arg2< D> .v.
[HCDE B']C CoothP<BB'> D € sbqntf. Déex ingr< cC>.
D=o vrb3 * A x vib4

A is a propositional phrase relative to B in B'. The use of ‘Cmpl’ in
T.E.XXXIII is avoided in the same manner as in T.E.XIII,

D2.34a [ABCC']A €whomosemp< 0BCC' > .=.A €u frp <CC'>,
Beowfrp <CC'>.v.[IDE= C'].D € thp< CC'> . E€w ingr < D>.
Agwcnvar < BE>.v . [IDEFGS C'].D € thp<CC'> . Egwingt<D>.
Feothp<CC'>.G €ningt <F>.AEw An <BFG>

D2.34b [ABCC'n]: A €x homosemp < n+ 1BCC' > .=, [IDs C'].
A € homosemp < 0DCC' > . D g« homosemp< nBCC' >

A is the nth homosome of B relative to C in C'. That is, the semantical
category of A is determined to be the same as that of B (relative to C in C')
within #z-number of determinations. The inductive clause of this explanation
has been added to Le$niewski’s T.E.XXXIV, which is the first case in the
recursive definition, in order to avoid his quantification over general
names in:
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T.E.XXXV [A,B,C]::A ehomosemp(B,C) .= Ae Thomosemp(A4,C).
B e lhomosemp(B,C)

la]::[D]: De a.D.
Eea..Bea. .D.Aca

Now, in the place of the above, there is the following.

D2.35 [ABCC']: A €uwhomosemp<BCC'>.=.[ ns1<C>].
A €xhomosemp <nBCC'>

A is of the same semantical category as B relative to .C in C'.

D2.36 [ABB'CDE].". A€wconstp< BB'CDE > .=:
1) D € homosemp< EBB'>:
2) [FG=B']: G exthp<B,B'>. Fewingr <G >.D.~(D &wxconvar <DF >):
3) AgwcnflD>.
4) [AFGH= B']. Fewingr <C>.G &wthp<BB'>.H £« ingr <G >
Agw An < EFH>

A, in C and analogue of E, is suited to be a constant equisignificant to
D relative to B in B'. That is, any argument (or functor) A in some
expression C is suited to be a constant equisignificant to D, provided A is
equiform to D; D is not a variable; and A is the analogue of some E, where
E is of the same semantical category as D relative to B in B'. This
explanation is given in order to insure that symbols employed as constants
have some fixed semantical category—see the following explanation. =

D2.37 [ABB'C]: A€o constp < BB'C> = [ADE = B'|. A€w constp <BB'CDE >
A in C is suited to be a constant relative to Bin B'.

D2.38 [ABCC'DEF]: A €w quasihomosemp < BCC' DEF> .=.

1) Eé&whomosemp< FCC'> .

2) BGHI=C'].G ewingr<D>.Hewthp< BB'>.I €wingr <H>
Agw An <EGI > .

3) [IGHIZ C'].G ewingr <D>. Hewnthp < BB'>.I € ingt < H>

. Bé&w An<FGI> ' '

A is a quasihomoseme of B in respect to D,E, and F relative to Cin C"
That is, A and B are eligible to belong to the same semantical category as
their respective analogues F and F, relative to C in C'. This explanation is
useful in explaining protothetical definitions where it is necessary to speak
about the semantical categories of a pair of words.

D2.39 [ABB'CDE]: A €w fnctp < BB'CDE> .=,

1) D &whomosemp < EBB'>,

2) Aewgenfnct< D>,

3) [3FGH=B']. Fewingr<C >.Gexthp<BB'>.HE&xingr<G >.
A&w An < EFH>

A inC is suited to be a function belonging to the semantical category of
D and E relative to B in B'. This explanation and the remaining ones of
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this section are all useful in explaining protothetical definitions. In each
case what is needed is a way of determining the semantical categories of
the components of expressions.

D2.40 [ABCC'DEF): A€y varp <BCC'DEF > =,

1) Eeg, homosemp< BCC'>.

2) [IGHIZC'].G e ingr<D>.H ethp< BC'>.I €0 ingr < H >,
F 80 An< HGI> .

3) F &w ingr < Eqvil < Essnt< D>>,

4) A ewcnvar < FD>

A in D is suited to be a variable belonging to the same semantical
category as B,E, and F relative to C in C"'.

D2.41 [ABB'CDE}:: A€wprtmp< BB'CDE> =.",
1) D &owhomosemp < BBB' >,
2) E gwprntm< D>,
3) Aegwprntm< Eqvl2 < Essnt <C >>>:
4) [RSL<A>+L<E>]:Uarg< A> =warg<nA>.=.Uarg< E> = arg< nE>.".
5) [WFG=A+E].".F twarg<nA> .=.G ewarg<nE>:D. [IHIE B'].

F &o varp <GBB'CHI >

A in C is suited to be similar lo the parentheme E of the semantical
category of D relative to B'in B'.

D2.42 [ABB'CDE]: A gw lprntm < BB'CDE™> .=. A £ pratm< BB'CDE> ,
Uingr < D> ewingr< E>

A in C is suited to be similar to the last paventheme E of the
semantical category of D relative to B in B'.

D2.43 [ABB'CDEFG] :‘Aém'zpmrm < BB'CDEFG> .=, A € prntm< BB'CDE > ,
Fewprmtm< D> . Uprcd < FD> €xingtr < E> .G €« simprntm < F>

A in C is suited to be similar to the paventheme E of D which
immediately precedes an F similar to G relative to. B in B'.

This ends the preliminary explanations, and it is now .possible to
explain the rule of protothetic, which is taken up in the next section.

3. The rule of protothetic In this section, the terminological explanations
for the rule of protothetic are given and are numbered according to [5].
There are, thus, only five terminological explanations to list—one for each
part of the rule. However, since there are generally many defining
conditions in each explanation (eighteen for protothetical definition), each of
the five explanations has been sub-divided into its important components.

D2.44 [ABB']: A €wdefp <BB'> .=::
1) ~(Ingr <1Essnt < A>> €wcnvar <Ingr<14A>A>).
2) ~(Ingr <1 Eqvl2 < Essnt < A>>> Ewcnvar< Ingr<1 Eqvi2 < Essnt < A>>> A>),
3) ~(Ingr <1 Eqvl2 < Essnt <A>>> €woconstp< BB'A>)::
4) [C=A]..Cewtm .C €wingr< Equll < Essnt<A>>>.D:[IDSA].D €wqntf.
Déewingt< A>.C€wint<D>.v.[IDESA]. Dewingr < A> .
C eovar<E,D>.v.CéEwconstp<BB'A>::
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5)
6)

7

8)

9)
10)
11)
12)
13)
14)
15)
16)

17)

18)

JOHN THOMAS CANTY

[CD=A]: Dewqntf . Dewingtr < A>.C €w int < D> .D. [IEF < A] .
Eg, ingr <A> .F €ovar<CE> ",

[CDE=AT:C € int <Qntf <A >> | E oo prntm < Essnt < A>> |

D&w arg< E>.D.[IF= A]. Fewingr < D>. F&w var < CA> 1
[CDE= A].". Cewingr < Eqvil < Essnt< A>>> . E€wingr<A> .
Déewcnvar <CE> . Dewingt < Eqvil < Essnt<A>>> D1 D=w C. v,
[3FG = B']. D €« quasihomosemp < CBB'AFG> ::

[C=A]: Cewgnrl. Cemingr<A>.C#0A.,>. [3EDFGS B'],

D e homosemp< BBB'> . E€wthp< BB'> . Few ingr< E> .
Gewingtr <A>.DgwAnarg< CFG> ::

[CD= A].". Cewgnrl. CEwingr <A> . DewEssnt < C>.D: Dewvlb.v.
[3E= B']. E€w frp < BB'> . DEwgenfnct< E>::

[C=A].". Cewfnct. Cewingr < Equll < Essnt <A>>> O: [IDs A].
Dewgnrl . DEwingtr <A>. C&w Essnt< D>, v.[IDES B'].

C ewfnctp< BB'ADE>::

[c=A]: Cewprntm < Eqvi2 < Essnt <A>>> 5, [ID=C]. Dewarg< C>.".
[CD= A]: C&wprmtm < Equl2 < Essnt < A>>> . Do arg < C> 0.
[3E£A]. DEwvar< EA> . .

[CD= A]: Cewtrm. C€wingr < Equl2 < Essnt < A>>> . Do trm .
Déewingr < Equl2 < Essnt <A>>> . Cewenf< D>.D. C= D. .

[CD éA]: C € prntm < Eqvl2 < Essnt < A>>> .

D € prntm < Eqvl2 < Essnt <AD>>> | Cewsimprtm< D> .D. C=0 D ..,
[CDE= B']: Cewlprtmp< BB'ADE> . Uingr < Eqvl2 < Essnt < A>>> .
€w ingl <C > .D. C gw simprntm< E>:

[CDEFG= B']: C&w 2pmtmp < BB'ADEFG> , G g ingr <A> .
Uprcd < GA>ew ingr < C> .D.C gcwosimpmtm< E>:

[CDE = B'] . Cewprntm < Eqvl2 < Essnt <A>>>:

Uingr < Eqvi2 <Essnt <A>>> €oingr < C> . D€ thp < BB' >,
E€wingt< D> . Cewsimpmin< E> D, [IFGS B'].
Cewxlpmtm << BB'AFG>:

[CDEFé B']: Cewprntm < Eqvl2 < Essnt <A>>> . D €w prntm,

D gwingr <A> .Uprcd< DA> exingtr< C> . E€wthp< BB'>.
Fewingt<E>.Cé&wsimpmim< F> D, [IGHIZ B'].

C € 2prntmp < BB'AGHID >

A is a protothetical definition relative to B in B'. In discussing a
definition A, the coimplicans of the nucleus of A shall be called the
definiens of A, and the coimplicate of the nucleus of A shall be called the
definiendum of A. Thus, the first three clauses of D3.44 indicate that
definitions are generalizations of coimplications, where the first word of
the definiendum is neither a variable nor a previously defined or primitive
constant—it is in fact the constant which is being defined. The fourth clause
indicates that any terms occurring in the definiens are either variables in
quantifiers, variables bound by quantifiers, or constants which already have
a fixed semantical category. Clauses 5 and 6 indicate that any of the
quantifiers which occur in a definition (either as the quantifier of the

definition or merely as quantifiers in the definition) are not vacuous.
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Clauses 7 through 10 make certain stipulations about the definiens of a
definition. Equiform wvariables in the definiens must belong to the same
semantical category. Any generalizations must be propositional and their
nuclei must either be single words or generating functions for some
determined semantical category. Any function in the definiens is either
the nucleus of a generalization or belongs to some determined semantical
category.

Finally, the remaining clauses of D3.44 deal with the definiendum. In
clauses 11 through 14 it is stipulated that parenthemes in the definiendum
are unempty and contain only variables, while there is no duplication of
terms (and hence variables) nor of similar parenthemes. While the last
four clauses taken together stipulate that each parentheme occurring in the
definiendum can be assigned unambiguously a suitable semantical category.

D3.45 [AB]:: Agw cnsqrpriqntf < B> =.°,

1) Essnt < Eqvll < Essnt <A >>> gwocnf< Essnt < Eqvll < Essnt < B>>>> |

2) Essnt < Eqvl2 < Essnt < A >>> gwcnf< Essnt < Eqvi2 < Essnt < B>>>>

3) [C=A]: Cewint<Qntf<A>> D, [ID= B].Dewcnf<C>.

Dewingr <Qntf<B>>.",

4) [CDEFGHZ A+ B]:: F €00 prntm < Essnt <A >> | G gw prntm < Essnt < B>> .
C €w Anarg< DFG> .E gwvar < HB> .E €= ingr < D> D: [AI S A]:
TewcNf<E> ] €w int <QntFCADS> . v . 80 int <QntFC C>>.7,

5) [CDEFGE A+ B]: F e prtm < Essnt < A>> . G €w pratm < Essnt < B>>
C&w Anarg< DFG> . E€w int <Qntf< D>>D, [AH= C]. Hew enf< E>
Héew ingt <Qntf<C>>.".

6) [CDEFG= A+ B].". F €wprntm< Essnt <A>>. G€w prntm < Essnt <B >>,
CewAnarg< DFG> . E€w int <Qntf< C>> D: [IHE D]: Hewcnf< E>
Hewingr<D>.[AI£B]. Hewvar<IB>.v . Htw int <Qntf<D>> ",

7) [CDEFGHS A+ B]: F€wprntm < Essnt < A>> ., G €w pratm < Essnt < B>>,
C€w Anarg < DFG> , Hew int <Qntf<A>> . E€ocnf< H>,

E €w ingr <Qntf <C >>.D. [3I= D]. Iewenf < E> . I8 ingr < Qntf < D>>

A is a consequence by distribution of the quantifier of B. The first two
clauses of this explanation indicate that the result of distributing quantifiers
through a biconditional only effects the quantifier of the biconditional and
the quantifiers of its coimplicans and coimplicate. The next three clauses
indicate that any variable in the quantifier of A previously occurs in the
quantifier of B, every variable in A is bound by some quantifier, and any
variable bound by a quantifier in B remains so bound in A, Clause 6
indicates that variables bound by interior quantifiers in A either were so
bound in B or have become so bound by distribution of the quantifier of B.
Finally, the last clause indicates that the result of distributing the
quantifier of B shall not bind any variables already bound by interior
quantifiers of B.

D3.46 [ABC]: Agwcnsqeqvl < BC> .=.C ewenf< Eqvll < B>>,
Agwcnf< Eqvi2 < B>>

A is a consequence by detachment from B and C. It is worth noting
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that detachment under quantifiers is not officially allowed in protothetic,
though it can be justified as a derived rule of the system.

D3.47 [ABB'CDE ] Agwcnsqsbstp < BB'CDE> =::
1) [FSA)].. Fewingr < Essnt<A>>. Fewovrb.D: [3G= C].
Fewassoc < GED Essnt < A> Essnt < C>> . v. [InGE A]. Few ingt < G> .
G € Occ < nE Essnt <A>> ::
2) [F=A]..Fewint <Shgntf<C>> D, [IGsA].
Fewassoc < GDE Essnt < C> Essnt <A>>. v, [InsL <C>].
F &0 Occ<nD Essnt < C>> 1

3) Dewint <Qntf < C>>:

4) E€wtm.v.E€wgnrl.v.E€wfnct:

5) [FGEA+C]: Fewint< Shqntf < C>>,

Gewassoc < FED Essnt <A> Essnt < C>> D, Gewenf < F>:

8) [FGHIZ C]:: Fewingr < Essnt < C>> . Gew int <Qntf< F>>

Hewvar<IC> . Hewingt < F> D." . [JKLMs A]:

J Exassoc < GED Essnt < A> Essnt < C>>,

K €wassoc < HEDEssnt < A> Essnt < C>> . v . [Ans A].

K €00 Occ<nE Essnt LA>> , MEw ingtr <A> . L €wvar JM>:D,
~(L €oingr <K>)::

7 [FGEA+C].". Fewint <Qntf<A>> . GEwenf<F>. Gewingtr < C> D:
[3H2 C].Hewqntf. HEwingr < C> . Gew int< H>.v.[ HIZC].
Hewingt <C>.Geovar<IH>::

8) Bewlst::

9) [FsA]. .Féewtm.Fexningt <A >.D:[3GsA]. Gewantf. GEwingr <A> .
Fewint<G>.v.[IGHSA]. Gewingr<A>.Fewvar< HG>.v.
Féewconstp< BB'A>::

10) [FG=A]: Geowqntf. GEwingr <A> . Fewint <G> D, [FHISA],
Hewoingt <A> .l €wvar< FH> ::

11) [FGH=A]..Gewingt<A>.Hewcnvar <FG>.D:H=x F.v,
[317 £ B']. H € quasihomosemp < FBB'ALJ > ::

12) [FsA]:Fewgnrl,Fewingr <A> .~(F=,A).D.[3IGHIJ< B'],
G € homosemp < BBB'> . H €wthp<BB'> I ¢ ingl’<l{> .
J Ewingt <A > . G €w Anarg < FIJ > ::

13) [FGsA]. . Fewgnrl.Fewingt<A>.Gew Essnt <F>.D: GEwvib.v .,
[JHZ B']. Hew frp <BB' >, G €xgenfnct <H>::

14) [FSA]l . Fewfnct . FEwingt<A> D:F=wA.v.[1GSA].GExgnrl.
GEwingt < A> . FEwEssnt <G> .v.[IGHE B']. F €wfnctp< BB'AGH >

A is a consequence by substitution in C of E for D relative to Bin B.
The first, second, and fifth clauses of this explanation indicate that the
nucleus of the result of making a substitution in C is, symbol by symbol,
equiform to the nuclues of C, except where the substitution occurred.
While clauses 3 and 4 indicate that substitution is made only for variables
bound by the quantifier of C and only terms, generalizations or functions
may be substituted for such variables.

Clauses 6 through 10 make certain stipulations about quantification.
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No variable substituted into C is to be bound by some (previously present)
interior quantifier of C. Variables in the quantifier of A, if they are
equiform to words in C, must be equiform to variables in C. Every term
in A is either a quantifier, bound by a quantifier, or is a suitable constant.
Finally, no quantifier in A is vacuous.

The last four clauses of D3.47 guarantee that the result of substitution
is a proposition (compare . clauses 7 through 10 of D3.44). Thus, all
equiform variables must belong to the same semantical category. Gener-
alizations in A are propositional. The nucleus of any generalization in A is
either a word or a generating function for a propositional phrase. And
finally, any function in A is either identical with A, the nucleus of a
generalization in A, or belongs to some determined semantical category.

This explané.tion differs from Le$niewski’s in that the consequence by
substitution in C is relativized to given expressions in itself and C (namely,
E and D respectively), rather than to a general name. Thus, the first and
second clauses given here do the work of Le$niewski’s:

Essnt(A) € Cmpl(a)
and

a - int(Sbantf(C))
respectively, while his third and fourth clauses:

[D,E].". Deint(Sbantf(C)) . Eea.(a N pred(E)) « (int(Sbantf(C)) Npred(D)) .o:
[3F]. Devar(F,C).v . Decnf(E)

and

[D,E].". Deint(Sbantf(C)). E€ a. (aN pred(E)) « (int(Shantf(C)) N pred(D)) .D:
Eetrm.v.Eegnrl.v. FEefnct.v. Eccnf(D)

are replaced by the simpler third and fourth clauses above. Finally, in
Leséniewski’s fifth, sixth, and seventh clauses, the use of equinumerosity is
avoided by employing ‘assoc’ as could be done for his third clause above by
giving:

[FGE A+ C].". Féw int <Sbgntf < C>>,
G € assoc < FED Essnt < A> Essnt < C>> .0t
[3H= C]. Fewvar< HC>.v.Feocnf< G>

where D and E are the parameters in question.
The only other difference to be noted in this explanation and Le$niew-
ski’s is the eighth clause of D3.47, which .replaces:

Beexpr

but which implies the above and is needed because of the addition of ‘“B'”’
in this explanation. Hence, instead of Le$niewski’s:

T.EXLVIII [A,B,C]: A¢cnsgsbstp(B,C)
[3al. A ecnsqsbstp(B, C,a)
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this exposition uses:

D3.48 [ABB'C]: A €wcnsqsbstp< BB'C> .=, [IDE£A+C].
A €wcnsgsbstp < BB'CDE >

A is a consequence by substitution in C relative to B in B'. It should
be noted that LeSniewski’s original explanation allows simultaneous substi-
tution for one or more variables while the above does not.

D3.49 [ABB']:: Agowextnsnlp < BB'> =::

1) [3ICD=A].Céew int <Qntf<AD> . Do int <Qntf<A>>,
Cewoprcd <DA>.",

2) [CD=A]:Dewxqntf.DEwingtr<A>.Cewint <D>.D.[IEFSA].
Etwingt <A>.F €wvar < CE> .~(F € cnf <Ingr <1Essnt <A>>>).".

3) [3C§A].'. C g prntm < Eqvll < Essnt < Eqvi2 <Essnt<<A>>>>> [DE§A]:
D g prntm < Shantf < Equll < Essnt <A>>>>
E € pratm < Sbantf < Eqvll < Essnt <A>>>> D, D= E: [FGZC:
Feoint<C>.GE0 int<C>D.F=wG.
Ingr <1 Eqvil <D>>€wcnvar< FA>.".

4) [3C=2A].". Cewprnim< Equl2 < Essnt < Eqvl2 < Essnt <A >>>>>:
[DESC]: Dewint<C>.E€wint<C>.D.D=wkE,
Ingr <1 Eqvl2 < Essnt < Eqvll < Essnt <A>>>>> €wcnvar<DA> . .

5) [CSA].".Céewfnct.CEwingtr<A>.D:[IDSA].Dewgnrl.
Dewingr<A>.CtwEsnt<D>,v.[IDESB'],
C € fnctp < BB'ADE > ::

6) [CDEFéA]: D gwprntm< Eqvil < Essnt < Eqvll < Essnt <A>S>S>>>,
E ewprntm< Eqvl2 < Essnt < Eqvll < Essnt <ADS>>>> |
F €xAnarg CDE> D, F gwcnvar < C Eqvll < Essnt <A>>> 1

7) [CDESA]:Déewingt<A> . E gwcnvar< CD> D, [IFGS B'].
E g quasihomosemp < CBB'AFG> . .

8) [CD2A]:D gwcnvar< C Eqvll < Essnt <A>>> D, [IEFsA].
Etoingr<A>.F€wingt<A>.DEwAnarg< CEF>.",

9) [CDE=A].". Cé&wprmitm< Essnt < Eqvl2 < Essnt <A>>>>  DEwarg< C>.
E €w Sqnfnct <D > D: [FGEA]. F €oo int <Qntf < Eqvi2 < Essnt <A >>>>
G € int <Qntf < Eqvl2 <Essnt <ADS>>> D, . F= G,
E € var < FEqvl2 <Essnt <A >>>

A is a protothetical thesis of exlensionality relative to B in B'. The
first two clauses of this explanation indicate that there are at least two
variables in the quantifier of A, that no quantifiers in A are vacuous, and
that the first word in the nucleus of A4 is not a variable.

The remaining clauses indicate that A is a generalization of some
coimplication, while both the coimplicans and coimplicate of the nucleus of
A are themselves generalizations of coimplications. Let us call the
coimplicans of the nucleus of A the basis of A, and the coimplicate of the
nucleus of A the extension of A. Then, clauses 3 and 4 indicate that the
coimplicans (coimplicate) of the nucleus of the extension of A has a
single argument, which is an equiform variable with the first word in the
coimplicans (coimplicate) of the nucleus of the basis of A. Indeed, these
are the variables bound by the quantifier of A.
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Clause 5 through 8 indicate that, first of all, any function in A is either
the nucleus of some generalization or belongs to some determined
semantical category. And lastly, analogous arguments of the coimplicans
and coimplicate of the nucleus of the basis are equiform variables, and any
equiform variables in the basis are analogous arguments of the basis.

Finally, the last clause indicates that the quantifier of the extension of
A has only one variable and it binds the functor of the coimplicans
(coimplicate) of the nucleus of the extension of A.

This explanation differs significantly from Le$niewski’s only in its
third, fourth, and last clauses. Where for example Leéniewski gives:

[3C]. C e prntm(Eqv11(Essnt(Eqv12(Essnt(4))))) .
1ingr(Eqv11(Cmpl(int(Sbqntf(Eqvl1)Essnt(4))))))) € envar(Cmpl(int(C)), A)

the third clause of D3.49 is given, and the use of ‘Cmpl’ is avoided in the
the fourth and last clauses in a similar manner. With T.E.XLIX stated,
Leéniewski in [5] writes:

Unter der Voraussetzung, dass eine These A die letzte der Thesen ist,
die schon zu dem System gehdren, darf man zu ihm als neue These einen
Ausdruck B nur in dem Fall hinzufligen, wenn wenigstens eine der flinf
folgenden Bedingugnen erfiillt ist:

1) Bedefp(4)

2) [3C].C ethp(4). Be cnsqrprintf(C)

3) [3C,D].Cethp(A). D ethp(A). Becnsqeqvl(C,D)

4) [3C]. C ethp(4). Becnsqsbstp(4,C)

5) Beextnsnlp(A4)

Following this exposition, however, protothetic is legitimately devel-
oped under the following single rule.

Supposing that a thesis A is the last thesis which already belongs to a
list of theses A' of the system, then an expression B may be added as a new
thesis only in case at least one of the following given conditions is fulfilled:

1) Bewdefp< A44'>

2) [3IC=A'].Cewnthp<AA'>.B gwcnsqrprintf <C >

3) [ICD=A'].Cexnthp<AA'>.D €w thp< AA'>. BEw cnsqeqvl <CD>

4) [3C=A']. Centhp<AA'>. Bewcnsqsbstp<AC >

5) Bew extnsnlp < AA™>

Thus, if one wishes to give an exposition of protothetic, he asserts an
adequate axiom and then chooses which theses he will next assert—his
choice continually guided by the above effective rule. Clearly then,
Lesniewski ultimately understands a systematic as an individual expression
capable of being extended according to the choice of an author guided by
directives which are adequate for any stage of the development of the
systematic.

In this work it is enough to realize that the guiding directives are
primitive recursive at any stage in the development of their systematic
even though their significance is dependent upon the extent of the develop-
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ment. And just as LeSniewski would call theses only those things which are
individual expressions of a given exposition, in this work something is a
thesis if and only if there is a proof of it, where::a proof of an individual
expression is a list of expressions, each of ‘which is either the axiom of
protothetic or is a thesis of protothetic relative to a given expression in the
list. Thus, the concept of thesisis no longer primitive recursive, and this
is of importance (particularly) for the last section of this paper..

4. The vule of onotology The terminological explanations given in this
section follow Le$niewski’s’' [6] and are numbered identically to them.
Ontology is based on a given development of protothetic. Any expression
in such a development is called an effective thesis. of protothetic (efthp).
The axiom of onotlogy (assigned the number Axo under the assignment of
numbers of ‘this exposition) is the first thesis proper to ontology and the
terminological explanations for ontology follow below.®

D4.32 [ABC]::Aewtho <BC> .= .Atwthp <BC>.v.[IDE=C]:
C=wD*E. Etw Ist. Axo e gl <1E> [Inms L < E>].
A=xgl <nE>.B=wgl<mE>.nsm

A is a thesis of ontology relative fo B in a list C (assuming every
expression in C is a thesis of ontology or an effective thesis of protothetic).
Thus, this explanation, with minor exceptions, parallels LeSniewski’s

T.E.XXXII° [A,B].".Actho(B).=:Aecefthp.v .Actho:
Betho:
Agpred(B).v.A eld(B)

In what follows many of the terminological explanations for ontology
differ from those for protothetic only by relying on D4.32 instead of D2.32.
When that is the case they shall be given in an abbreviated form. For
instance:

D4.33 [ABB']:A & fro < BB' > .=, [D2.33: thp/tho]
is, in unabbreviated form:

[ABB'].".A €w fro <BB'> .=: A € tho<BB'>.v.[ICD=B'].

Cewtho<BB'>.Dtwingr< C>.Atw Argl <D>.v.[ICD=B"].
CExtho<BB'>.D twingr <C>.A€w Agr2 <D>.v.[ICD=B'].
C ewtho<BB'>.D g sbantf .D £ ingt <C>.D =c vrib3 xA * vrb4

which differs from D2.33 only by having ‘thp’ replaced by ‘tho’ throughout.
Hence, one may refer to sections 2 and 3 for the relevant discussions of
‘many of the following explanations.

D4.34a [ABCC']: A €whomosemo < 0 BCC' > .=, [D2.34a: frp/fro, thp/tho]
D4.34b [ABCC'n] 1 A €homosemp <1+ 1BCC' > .=, [D2.34b : homosemp /homosemo]
D4.35 [ABCC']:A £u homosemo < BCC'> .=, [D2.35 homosemp,/homosemo |
D4.36 [ABB'CDE]:A g« consto <BB'CDE > .=, [D2.36:

homosemp,/homosemo, thp/tho]
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D4.37 [ABB'C]: Agwconsto <BB'C > .=, [D2.37: constp/consto]
D4.38 [ABCC'DEF ]: A €« quasihomosemo < BCC' DEF> .=,
[D2.38 : homosemp/homosemo, thp/tho]
D4.39 [ABB CDE]: Agwfncto< BB'CDE > =, [D2.39:
homosemp/homosemo, thp/tho]
D4.40 [ABCC'DEF]:A g€wvaro< BCC'DEF> .=, [D2.40:
homosemp,/homosemo, thp /tho]
D4.41 [ABB'CDE]:A g propprntmo< BB'CDE > .=. [D2.41:
homosemp,/homosemo, varp/varo |
D4.42 [ABB'CDE]:A &« lpropprntmo <BB'CDE > .=, [D2.42 : prntmp /propprntmo |
D4.43 [ABB'CDEFG]:A £w 2proppmtmo < BB' CDEFG> .=,
[D2.43 : prntmp/propprntmo |
D4.44 [ABB']:A £wldefo<BB'] .=.[D3.44:
constp /consto, quasihomosemp /quasihomosemo, thp/tho, frp /fro, fnctp/fncto,
1prntmp /1 propprntmo, 2prntmp / 2propprntmo |

Notice that ‘ldefo’ is merely ‘defp’ adjusted to ontology. Since the
explanations for distribution of quantifiers and detachment require no
adjustment to ontology they have no proper counterparts in the ontological
explanations and the enumeration skips to:

D4.47 [ABB'CDE ]:A g€wcnsgsbsto <BB'CDE > .=, [D3.47:
constp/consto, quasihomosemp /quasihomosemo, thp/tho, frp /fro, fnctp/fncto]
D4.48 [ABB'C]: Agwcnsgsbsto< BB'C> .=, [D3.48: cnsqsbstp/cnsqsbsto |

Thus, ‘cnsqsbsto’ is merely ‘cnsqsbstp’ adjusted to ontology.

D4.49 [ABB']: Atwlextnsnlo < BB'> .=, [D3.49:
fnctp/fncto, quasihomosemp / quasihomosemo |

Here, ‘lextnsnlo’ is merely ‘extnsnlp’ adjusted to ontology. At this point
all of the protothetical explanations have been adjusted so that they are
applicable to ontology. This section concludes by giving those explanations
which are proper to ontology. In particular the explanations for ontological
definitions and extensionality will be given.

D4.50 [AB].". A€wcnjnct < B> .=: Sgnfnct < B> eocnf< Ingr < 21 Axo >>:
[3C=B]: Cewprntm < B>:A £w Argl < C>.v . Agw Arg2 < C>

A is a conjunct of B. This explanation fixes the shape of the symbol to
be used for conjunction of propositions.

D4.51 [AB]:Acgw Shict <B> .=, Sgnfact < B> gwenf< Ingr < 8, Axo >>
[3CD 2 B+ Axo]. C € prntm < B> . D €a ingt < Axo > .
A £ Anarg < Ingr < 10 Axo > CD>

A is the subject of B. This explanation fixes the shape of the primitive
symbol of ontology which is used to form a proposition from two name
arguments—as well as indicating that the first argument of its parentheme
is to be called the subject of the proposition.
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D4.52 [AB]: Agw Prdct < B> .=. Sgnfnct < B > €xcnf <Ingr < 8 Axo >>,
[ICD = B+ Ax0].C € pmim < B> .D €o ingtr < Axo>.
A€o Anarg <ingr <11 Axo >CD >

A is the predicate of B.

D4.53 [ABB'CDE]:: A € nomprntmo < BB'CDE> .=.".

1) D& homosemo <Ingr < 10 Axo > BB'>.

2) Egwoprntm<D>.

3) Agwprntm < Prdct < Eqvi2 < Essnt < C>>>>:

4) MEL<A>+L<E>]: Uarg <A >€o arg < nA> =,
Uarg < E> €warg <nE>.",

5) [WFGEA+E]. . Fewarg<nA>.=.Gewarg<nE>:D.
[3HI= B']. F €wvaro< GBB'CHI >

A in C is suited to be similar to the nominative paventheme E of the
semantical category of D relative to B in B'.

D4.54 [ABB'CDE]: A € lnomprntmo < BB'CDE > .=, A £« nomprntmo < BB'CDE>,
Uingr <D> e« ingr < E>

A in C is suited to be similar to the last nominative parentheme E of
the semantical category of D relative to B in B'.

D4.55 [ABB‘CDEFG]:A €0 2nomprntmo < BB'CDEFG> .=,
A gwnomprntmo < BB'CDE> . F € prntm<D > .
Uprcd < FD> € ingt <E> . G € simpmim < F >

A in C is suited to be similar lo the nominative paventheme E of D
immediately preceding an F similar to G relative to B in B'. This ends the
preliminary explanations proper to ontology and it is now possible to
explain the two proper parts of the rule of ontology.

D4.56 [ABB']:: A gw2defo< BB'> .=, .
1) ~(Ingr <1 Essnt <A>> ewcnvar<ingr < 1Essnt <A>>A>).
2) ~(Ingr <1 Eqvi1 < Essnt <A >>> ewcnvar< Ingr <
1 Eqvll <Essnt <A>>>A>).
3) ~(Ingr<1 Eqvl2 <Essnt <A >>> geocnvar< Ingr<
1 Eqvi2 < Essnt <TA>>>A>).
4) ~(Ingr <1 Prdct < Eqvl2 <Essnt <A >>>> g cnvar<
Ingr <1 Prdct < Eqvi2 < Essnt <A >>>>A>).
5) ~(Ingr <1 Prdct < Eqvl2 < Essnt <A >>>> gcoconsto< BB'A>.",
6) [C=A]..Cewtm .C ewingt < Eqvll <Essnt <A >>> .D:[1D=A].
D egntf .D ewingt CA>.CEwint<D>.v.[3DESA].Dewingr <A>.
Cewvar< ED> v .C gxconsto <BB'A> .".
7) [CD=A]:Dewantf.D €wingr <A>.C €w int <D>.D.[IEF £ A].
Etwingr <A>.F €nvar<CE>:
8) [CDE=A]:C gw int <Qntf <A >> . E o prntm < Essnt <A >> .
Dewarg<E>.D.[AFSA].Fewingr <D>. F€wvar<CA>.",
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9) [CDE= A].".C €wingr< Eqvll <Essnt <A>>> . E€w ingr< A> .
Dew cnvar < CE> . D £ ingr < Eqvll < Essnt <A>>> D:D=o C.v.
[AFG=B'].D € quasihomosemo < CBB'AFG> .".

10) [C=A]:Cewngnrl.C gwingr<A>.~(C=wA).D. [3IDEFGS B'].

D gwhomosemo <BBB'> .E €xtho <BB'>.F € ingr <E>.
Fewingt <E>.G ewingtr <A>.D g Anarg<CFG>.".

11) [CD=A]. .Cewngnrl .C €xingt <A > .D €wEssnt <A>.D:D € Vtb . v,
[IES B'].E €x fro < BB >.D €wgenfnct<E>. .

12) [C2A].C &wfnct.C ewingt < Equll < Essnt< A>>> .D: [IDs A].
Dewgnrl .D €wingr<A>.Cé&w Essnt<D>.v.[IDEZ B'].

Cewfncto< BB'ADE> . .

13) [3CS A).C €w Eqvil <Essnt<A>>.v.C €xcnjnct < Equl1< Essnt< A>>>:
Shjct < C> €wcenvar< Sbjct < Eqvl2 < Essnt <A >>>A>:

14) [C=A]: CEoprim< Prdct < Equvl2 < Essnt <A>>>> D,

[3ID=C]. Dewarg < C>:

15) [CD= A]: C&w prntm < Prdet < Eqvi2 < Essnt < A>>>> . Dewarg <C > 0.
[3EA]l. Dewvar<EA>:

16) [CD=A]: Cewtrm . Cewingt < Eqvi2 < Essnt <A>>> .
~(CéewlIngr<1Eqvi2 < Essnt <A>>>>), Dewtrm.

Dewingr < Eqvi2 < Essnt <A>>> | ~(Dew Ingr <1 Eqvl2 <Essnt <A>>>).
Cewenf<D> D, C=xD:

17) [CD= A]: Cewprtm< Prdct < Eqvi2 < Essnt < A>>>> .

D e pratm < Prdct < Eqvl2 <Essnt <A>>>> ., Cewsimprntm< D> .D. C=0 D:

18) [CDEs= B'].C €wlnomprtmo< BB'ADE> .

Uingr < Prdct < Eqvi2 < Essnt <A>>>> 80 ingr < C> 0.
C &0 simprntm <E>:

19) [CDEFGEZ B']: C&w2nomprntmo< BBPADEFG> , G&w ingr <A>,
Uprcd <GA > €w ingr < C> .D. C&w simpmtm < E> :

20) [CDEZ B']: Cewprtm< Prdct < Eqvl2 < Essnt <A>>>>,

Uingr < Prdct < Eqvi2 < Essnt <A>>>> €0 ingkr < C> .,
Dewtho<BB'>.Etwingr <D>. C&wsimpmtm< E> D,
[3FG= B']. Cewlnomprntm < BB'AFG>:

21) [CDEFZ B']: C € prntm < Prdct < Eqvl2 < Essnt <A >>>> . D €ao pratm .
Dewingr <A>.Uprcd<DA> gwingt <C>. Etwtho<BB'>.
Fewingtr <E>. C&wsimprtm <F> D, [IGHIZ B'].

C € w2promprntmo < BB'AGHID >

A is a nominative definition relative to B in B'. In discussing a
nominative definition A, the coimplicans of the nucleus of A shall be called
the definiens of A and the predicate of the coimplicate of the nucleus of A
shall be called the definiendum of A. Thus, the first five clauses in the
above explanation indicate that nominative definitions are generalizations of
coimplications where the first word of the definiendum is neither a
variable nor a previously defined or primitive symbol—it is in fact the
constant which is being defined. The second clause together with the
thirteenth indicates that the definiens either has a subject term itself or is
a conjunction which has a subject term, where this term is an equiform
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variable with the subject of the definiendum. Incidentally, this last
requirement could be relaxed whenever one is certain that the definiens
actually adopted implies the officially required definiens.

Clauses 6 through 12 make certain stipulations about the binding of
variables in nominative definitions and the structure of the definiens.
These clauses are in fact exactly analogous to clauses 4 through 10 for
protothetical . definitions. - Thus, as before; any terms occurring in the
definiens are either variables in quantifiers, variables bound by quantifiers,
or constants which already have a fixed semantical category. Any of the
quantifiers which occur in- a definition (either as ‘the quantifier of the
definition or merely as quantifiers in the definition) are not vacuous.
Equiform variables in the definiens must belong to the same semantical
category. Any generalizations must be propositional and their nuclei must
either be single words or generating functions for some determined
semantical category. Finally, any function in the definiens is either the
nucleus of a generalization or belongs to some determined semantical
category. .

Finally, the remaining clauses of D4.56 deal with the definiendum and
differ insignificantly from the concluding clauses of the explanation for
protothetical definition. As before, it is stipulated that parenthemes in the
definiendum are unempty and contain only variables, while there ‘is no
duplication of terms (and hence variables) nor of similar parenthemes.
While the last four clauses taken together stipulate that each parentheme
occurring in the definiendum can be assigned unambiguously a suitable
semantical category.

D4.57 [ABB']:: At 2extnsnlo < BB'> .=, ,
1) [ICD<A]. Cewint <QntF<A>> . Deo int <QntfF< A>> . Cew pred < DA>:
2) [CD=A]: Dewantf . Dewingtr <A>. Cew int < D>.D. [IEFS A].
Eeningt <A>.Fewvar < CE> . ~(FeocnfliIngr <1Essnt <A>>>) ..
3) ~(Ingr <1 Equvl1 < Essnt < Eqvil < Essnt < AS>>>> €0 cnvar < Ingr <
1 Eqvil < Essnt < Eqvll < Essnt <AD>>>>> [ A>) .,
4) [3C = A]Cewprtm<Eqvll < Essnt <‘Eqv12‘<’ Essnt < A>>>>S>
[DE=C]:Déwint <C>.E€0int<C>.D, D= E.
Ingr <1 Prdet < Eqvll < Essnt < Eqvil <Essnt <A>>>>>> €eo cnvar < DA> ",
5) [3C= A].". Cew pratm < Equl2 < Essnt < Equl2 < Essnt <A>>>>> ‘
[DESCliDewint<C>.E€wint<C>.D.D=w E.
Ingr <1 Prdct < Eqvl2 < Essnt < Eqvll < Essnt <A >>>>>> ecnvar <DA> .,
6) [C=A].". Cewinct.Cewingt <A> .D:[IDsA]. Dewgnrl .
Dewingr <A> . CewEssnt <D>.v:[IDES B']. C&wfncto < BB'ADE>.",
T) Sbjct < Eqvll < Essnt < Eqvl1 < Essnt <A >>>>> €00 cnvar < Sbjct < Eqvi2 <
Essnt < Eqvl1 <Essnt <A>>>>> Equil <Essnt <A>>>:
8) [CDEF=2A]: D ewprntm < Prdct < Eqvll < Essnt < Eqvil < Essnt <A >>>>>>
E €wprntm < Prdct < Eqvl2 > Essnt < Eqvll < Essnt <A S>>>>>> .
F € Anarg < CDE> D, F ewcnvar< C Eqvll < Essnt <A>>>:
9) [CDESA):Dewingt <A>.Egwcnvar< CD>.D. [3IFGS B'].
E €0 quasihomosemo < CBB'AFG>:
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10) [CD= A]:D ewcnvar< C Eqvll < Essnt<C A>>> D, [3EF = A].
Etwingt <A>.F € ingt <A>.D €w Anarg< CEF >’

11) [CDE=A].". C gwprtm < Essnt < Eqvl2 < Essnt < A>>>> . D gwarg <C>.
E€w Sgnfnct <D > .D: [FGEA]: F &w int <Qntf< Equl2 < Essnt < A>>>> |
G €oo int <QNntF< Eqvi2 <Essnt < AS>>> D.F =0 G
Egw var<F Eqvl2 <Essnt <A>>>

A is an ontological thesis of extensionality relative to B in B'. The
first two clauses of this explanation indicate that there are at least two
variables in the quantifier of A, that no quantifiers in A are vacuous, and
that the first word in the nucleus of A is not a variable.

The remaining clauses indicate that A is a generalization of some
coimplication, while both the coimplicans and coimplicate of the nucleus of
A are themselves generalizations of coimplications. Let us call the
coimplicans of the nucleus of A the basis of A and the coimplicate of the
nucleus of A the extension of A. Then clauses 3, 4 and 5 indicate that the
parentheme of the coimplicans (coimplicate) of the nucleus of the basis of 4
is nominative. Clause 7 indicates that the subjects of these parenthemes
are equiform- variables bound in the basis of A. In respect to- their
predicates: the coimplicans (coimplicate) of the nucleus of the extension of
A has a parentheme containing a single argument which is a variable
equiform with the first word in the predicate of the coimplicans (coimpli-
cate) of the nucleus of the basis. Indeed, these are the variables bound by
the quantifier of A.

The remaining clauses of this explanation closely parallel those for
protothetical extensionality:. Thus, as before, any function in A is either
the nucleus of some generalization or belongs to some determined
semantical category. Further, equiform variables in A belong to the same
semantical category. Analogous arguments of the predicates of the
coimplicans and coimplicate of the nucleus of the basis are equiform
variables, and any equiform variables in the basis are analogous arguments
of the basis. And finally, the last clause in D4.57 indicates that the
quantifier of the extension of A has only one variable and it binds the
functor of the coimplicans (coimplicate) of the nucleus of the extension.

This explanation differs significantly from Le$niewski’s only in its
fourth, fifth and last clauses and avoids the use of ‘Cmpl’ in these clauses
in a manner similar to that of T.E.XLIX. With T.E.LVII° stated, Leéniewski
in [6] writes:

Unter der Voraussetzung, dass eine These Adie letzte der Thesen ist,
die schon zu dem System gehlren, darf man zu ihm als neue These einen
Ausdruck B nur in dem Fall hinzufligen, wenn wenigstens eine der sieben
folgenden Bedingungen erfiillt ist:

1) Be1defo(A)

2) B e2defo(A4)

3) [3C].C etho(4) . Becnsqrpriqntf(C)

4) [3C,D].C etho(4).D etho(A) . B ecnsqeqvl(C,D)

5) [3C].C etho(A). B € cnsqsbsto(4,C)
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6) B¢ lextnsnlo(4)
7) B e 2extnsnlo(A)

Following this exposition, however, ontology is legitimately developed
under the following single rule.

Supposing that a thesis A is the last thesis which already belongs to a
list of theses A' of the system, then an expression B may be added as a new
thesis only in case at least one of the following seven conditions is fulfilled:

1) Bé&w ldefo<<AA'>

2) B . 2defo AA'>

3) [3C=A].Centho<AA'>.B g, cnsqrprigntf <C>

4) [3CD=A].Ce,tho<AA'>.D g, tho <AA'> Beg, cnsqrprigntf <C>
5) [3C=A].C e tho<AA'>.B & cnsgsbsto LAA'C>

8) B &s lextnsnlo TAA'>

T) B &w 2extnsnlo <AA'>

Thus, if one wishes to give an exposition of ontology, he asserts an
adequate axiom and then chooses which theses he will next assert—his
choice continually guided by the above effective (primitive recursive) rule.

5. Conclusion Just as the rule for ontology incorporates an adjusted rule of
protothetic, so too any extension of ontology will incorporate an adjusted
rule of ontology—see for instance [6] where a particular extension of
ontology, mereology, is discussed. All that is generally needed is an
adjustment in the concept of thesis. Thus, the thirty-second terminological
explanation is changed so that the concept of thesis for the extended system
includes effective theses of ontology as well as the new axiom, for instance,
the axiom for mereology or the axiom of infinity, etc. After that is done,
the rule for the extended system of ontology is generated merely by
replacing the previous concept of thesis, tho, by the new concept, thm or
thinf, throughout the remaining terminological explanations.

One may assume that such a program is accomplished for ontology
extended by the axiom of infinity, and that, therefore, there is available a
rule for this extension of ontology analogous to that given above.

In [7], Leéniewski’s original terminological explanations are presented
axiomatically. Here, the terminological explanations are reduced to recur-
sive concepts and are actually represented in ontology extended by the
axiom of infinity. Naturally, Gddel’s well known results of [4] follow for
this system—the interested reader can consult [2] for a fuller statement
of the incompleteness proof for ontology.

NOTES

1. Of course this is not a proper definition in the system of ontology, but only a
definitional thesis as was indicated. That is, the thesis in question is not justified
by the ontological directive for definitions although it is derivable in the system
and is analogous to a proper definition. But with this point clear, because the
availability of such theses is a direct result of there being an internal ontological
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model for the numerical epsilon, such theses can be referred to as (numerical)
definitions. See [1], especially section 2, for a fuller discussion of the internal
model and numerical definitions.

. The axiom of ontology used in this exposition introduces into the system of logic
‘being formed by its assertion, the following semantical categories as primitive to

ontology and not available in protothetic: names and proposition forming functors
for two name arguments. These categories are introduced by the single primitive
constant of ontology (£). Any other categories are introduced into the system by
defining a constant for the category in accordance with the definitional directives
of the system. However, the identification of “basic semantical categories of
ontology’’ with names and propositions is justified since all categories which can
be introduced into ontology are definable in meta-logic in terms of these two.

. As will become clear when the terminological explanations of this section are

completed, ontology is not based on protothetic merely by appending an axiom to
that system. Rather, ontology has its own single rule—parts of which are identical
to protothetical directives except that they are understood as adjusted to the
semantical categories available in ontology. Similarly, any extension of ontology,
for example, mereology, is most accurately described as a system incorporating
(some given development of) ontology within it.
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