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LESNIEWSKΓS TERMINOLOGICAL EXPLANATIONS
AS RECURSIVE CONCEPTS

JOHN THOMAS CANTY

In 1929 Lesniewski published terminological explanations for his
system of logic [5] where he used certain concepts from his system of
mereology along with others such as equiformity. In [l] Peano's axioms
for arithmetic are shown to be derivable in Lesniewski's system of
ontology extended by an axiom of infinity. In that exposition use is made of
a numerical epsilon, first defined in [2], in order to provide a character-
istically onotlogical model for the natural numbers. It is shown there that
analogues for the axiom, rule of extensionality, and rule of definition for
the primitive epsilon (ε) of ontology are derivable for the numerical epsilon
(βoo). Thus, one has available for the numerical epsilon analogues of every
thesis of ontology involving the primitive epsilon.

The numerical epsilon serves in this paper to reduce Leέniewski's
terminological explanations to numerical concepts. That is, each termin-
ological concept is shown to be definable as a numerical concept within
ontology extended by an axiom of infinity. Since the definitions to be given
are recursive, the incompleteness of this extension of onotlogy is readily
established.

1. Preliminary definitions In [5] Lesniewski defined whatever notions he
needed for his terminological explanations as name forming functors.
Here, we shall define only numerical name forming functors which are
primitive recursive in the sense that if Φ is the numerical name formed by
the functor from arguments χl9 . . . , χn, then there is a primitive recursive
function Ψ such that

[Axlf . . . , xn]: AεooΦ<xh . . . , xn>
 Ξ . Φ<A,xh . . . , xn> = ooO

is a thesis of ontology extended by the axiom of infinity. This will be
achieved by limiting definiens for the numerical name forming functor to
those propositional functions obtainable by primitive recursive methods. In
particular only the following methods will be employed: the limited quan-
tifiers, the effective minimal operator, proposition forming functors for
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propostional arguments, composition of functions, and recursive schemata
for defining primitive recursive functions.

In [l] it is explained how the recursive schemata for defining functions
can be represented in ontology. Firs t these implicit definitions are
reduced to explicit definitions using Frege's method employing " impre-
dicative" definitions. From these explicit definitions which are prototheti-
cal in nature/one next obtains theses which are analogous to ontological
definitions, and with these given it is then possible to obtain the two theses
which represent the recursive definition of the concept in question. For
example, if addition were to be given in this way, one eventually obtains as
theses:

fφ]: ΦCoo Fin . D . Φ = «*, Φ + 0
fφ^J: Φ ε ^ F i n . ^ ε w Fin . D . Φ + S < ^ > = 0 O S < Φ + Ψ>

For brevity only these last two theses shall concern us: whichever defini-
tions they rely on being presupposed. Moreover, the hypotheses of such
theses will be omitted: throughout the paper it is assumed that all relevant
variables have as their values finite numerals. Under this stipulation, if
addition were to be introduced, it would be given by exhibiting only the
following theses.

[φ].Φ = ̂  φ + 0

"[.ΦΨ]. Φ + S <Ψ> = oo S <Φ + Ψ >

Given the above procedure, the method of defining a concept recur-
sively is readily available. But in order to further simplify the exposition
other conventions will be adopted. In particular, it is desirable to have the
use of the "limited quantifiers". To this end, numerically less than or
identical with is defined

[AB].\A = ΰOB.v.[BC].A + C = ooB:=.ΛsB

and the following thesis is obtained:

[AB].'.A^,B .=:A.= „, B.v. [3C].Ci B.A+C^^B

showing the relation to be primitive recursive. With the availability of the
above, it is possible to introduce the use of limited quantifiers. Of course,
such quantifiers are mere abbreviations—as is the use of the particular
quantifier. Thus propositions of the form:

[Λ I, . . . , χn]:χi= y, ,χn = y .^ Φ
[ 3 * i , . . • . ; x ή ] : x 1 ύ y , . . . , x n ^ y : Φ

will be abbreviated as:

[xh : . . ,xn^ y\:Φ

[3*!, . . . , x»Zy]:.φ

The (effective) minimal operator can be given in ontology as a numeri-
cal name forming functor. This is done by the following definitional thesis:
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[ABφp]::A. 8oo B.B EOO Fin :[C]: φ(C) .D.CεcoCΛ BSoo 0 . ~([3C ] . <p(C)). v :
/>: [C]:φ(C).Ώ. B^ C.^. Atoo μ\;Bφ ^[p]

Here the 'μ' is the constant being defined1 and the definidendum may be
read as "A is the least B (for φ) such that £" . ' On the basis of the above,
the following is immediately derivable.

\ABφ]::A 8oo μf Bφ-} [φ(B)] .=.'.A 8oo B.B Coo Fin : [C]: (p(C) . D . C εooC .*.

• J5εooΌ.-([3G].^(C)).v:<5ί?(5):[C]:<^{C).3.5^C

That is, whenever A is the least -B (for φ) such that φ(B), either A is zero,
if φ is not satisfied, or A is the least numeral satisfying φ.

Finally, it is necessary to establish a one-to-one correspondence
between (some subset of) the positive integers and the expressions of
ontology. Given such a correspondence, the relevant variables in the
numerical terminological explanations that are given in the next section can
be considered as relativized to this subset. That is, under the correspon-
dence the explanations given here refer to some given expression (of
ontology) as do Lesniewski's original terminological explanations.

Ontology takes as basic semantical categories propositions and names.2

All other semantical categories are understood ultimately in terms of
these. In order to determine the semantical category of any term it is
only necessary to specify the number and types of its arguments and the
functor produced by it. For example: "it is not the case that . . . " is
completely determined by indicating that it is a propositional functor
formed from one propositional argument, while ". . . is unempty" is
determined by indicating that it is a propositional functor formed from one
nominal argument.

It is thus possible to establish a one-to-one correspondence between
the semantical categories and a subset of the positive integers. Proposi-
tions and names are assigned the numbers one and two respectively, lίn
is the number of arguments used to form a function, n + 2 is associated
with that number of arguments. In this way prime factorizations of
numbers can be used to code the semantical categories and the number of
the semantical category can be used as a subscript to determine unique
parentheses for each semantical category. For example, if one writes "it
is not the case that p" as:

~(aP)a

where a = 23 x 31 x 51 then the sign of negation is determined to be a propo-
sitional functor formed from one propositional argument: the first exponent
indicating the number of arguments of the functor, the second the category
of the single argument, and the last the category of the functor formed by
the negation sign. Whereas, if one writes "the A is δ " as:

ε(βAb)β

where β - 24 x 32 x 52 x 71 then the epsilon is determined to be a proposi-
tional functor formed from two nominal arguments: the first exponent
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indicating the number of arguments of the epsilon to be two, the second and
third exponents indicating that each argument is nominal, and the last
indicating that the epsilon forms a proposition.

And in general, a type-ί functor forming functor of ^-arguments is
represented by a prime factorization of the form:

2n+2 x Cx x C 2 x . . . xCnx τ

where each C/ (and r) is a prime factorization beginning with the next
prime in order of magnitude not yet appearing in the representation and
indicating the category of the argument (of t, that is, the cateogry of the
functor formed by the term in question). Thus, if one writes

ε(δ«)δ(yδ)y

where δ = 23 x 32 x 53 x 72 x I I 1 and γ = 23 x 32 x 51, this epsilon forms a
γ-functor from one propositional argument and its semantical category is δ.

Thus, prime factorizations (with primes in order of magnitude)
represent semantical categories in the following way: exponents one or two
indicate propositions and names, exponents greater than two indicate the
number of arguments used to form a functor—similar representations of
categories are to be found in the literature, see for instance, Curry [3] on
grammatical categories.

In order to attain a one-to-one correspondence between expressions of
ontology and some subset of the positive integers we shall standardize the
exposition of onotlogy. The formulas of ontology will employ, following
Lesniewski, square corners for quantification, but, unlike Lesniewski, for
semantical categories only one kind of parentheses (say '('and')') shall be
used—they will, however, always be given with some subscript appended.
The parentheses will continue to determine the semantical categories of
non-parenthetical expressions, but the determination shall now be formal
rather than lexicographical. That is, instead of introducing a new style of
parentheses whenever they are needed we shall introduce a new subscript
which codes the desired semantical category. For variables and constants
one may use any continuous symbol other than those selected to serve as
parentheses and corners. Thus the shortest possible axiom of onotlogy
given in [9], which would be written as

M ] : ε{α,δ}.=. [lc].ε{a,c}.ε{c,b}

in an informal manner, and as

Labjlf(ε{a9b} H (Lc > (?(ε{α,c} ε{c,δ}))Ί ))Ί

by Lesniewski, where '('and')' are used for proposition forming functors all
of whose arguments are propositional and '{'and'}' are used for proposi-
tional functors all of whose arguments are nominal, shall here be rendered
with η = 24 x 31 x 51 x 71 as

LβδJ~<j>(̂  ε(β«δ)β h ( α L c J ^

The square corners are used exclusively in association with quanti-
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fiers, and the subscripted parentheses in the above example indicate that
'<{>' and '<j>' are propositional functors for two propositional arguments, <ε'
is a propositional functor for two nominal arguments, and ζ\-' is a propo-
sitional functor for one propositional argument. In effect then, the stand-
ardization envisaged is the adoption of Leέniewski's formalization with the
sole exception of employing subscripted parentheses as single symbols
instead of a variety of kinds of parentheses.

We now set up a one-to-one correspondence of (some subset) of the
positive integers with the symbols of ontology in the following way:

L )m
1 3 5 7 5 W Ίm

where m is the number of a semantical category; variables and constants
being assigned prime numbers greater than seven.

Expressions shall correspond to numbers whose prime factorizations
have only the above kinds of exponents. Thus there is a one-to-one
correspondence between expressions and a subset of the positive integers.
Once definite prime numbers greater than seven have been assigned to the
functors and variables occurring in the above axiom a unique number
becomes associated with the axiom. This number shall be designated by
Άxo' which may be read as "the Gδdel-number associated with the axiom
of ontology".

Starting now with the concepts of addition, multiplication, exponentia-
tion, less than or numerically identical with, numerical identity, and
numerical difference—each of which is primitive recursive, we define a
group of numerical name forming functors by the methods indicated above:
each of which will thus be primitive recursive.

Dl.l [AB]:<(AB)=.Aί B.AΦ^B

A is strictly less than B. This functor will usually be written as
ί6A<B".

D1.2 [AB]:Aεoo dis <B> .=. [lCύA].A=oo BxC

A is divisible by B.

D1.3 l = o o S < 0 >

One is identical to the successor of zero. Any other particular
constants that are needed later shall be considered as defined, for instance,
two, three, etc.

D1.4 [Aj .Aεooprim .=.1<A.~{[3B ύ A]. BΦ^ 1 . BΦoo A . A εM dis < B»

A is a prime number.

Dl.δa [ABC]:φ1-{ACy(B).^.Bεoo prim . A εoodis < B> .C <B. B^ A .

This definition is given merely to facilitate the following. Whenever
the minimal operator is employed there will be occasion to have such an
auxiliary definition.
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D1.5b [A], pr <0A>=oo0
D1.5c [ABn]. pr <n+ 1 A> = <* μ {•£ Φ if A pr <nA>fi[Bεoo prim .

ACoodis <B> . pr <wΛ > <B.B%A]

The above two theses indicate the value Of the nth prime factor of A
presented in order of magnitude. With this single example given, we shall
for brevity ommit such auxiliary definitions and shorten expressions using
the minimal operator by ommitting its parameters. Under this convention
the nth prime factor is given by asserting:

D1.5a [A]. pr<(L4>=ooO

D1.5b [ABn]. pr <n+ 1A> =<*> μ[Bεoo prim . A Coo dίs <B> . pr <nA>< B .Bύ A]

as will be the case for other definitions requiring the minimal operator.

Dl.βa !<0>=ool

Dl.βb [n]. \<n+l>=oo<n+l>x \<n>
The above two theses give the value of the nth factorial in order of

magnitude.

Dl,7a pr<0>=ool
D1.7b [An], pr <n+ 1> =<* μ[A εM prim . pr <»>.+ 1^ A . Aμ ! < pr <n» + l ]

The above two theses give the value of the nth prime number according
to magnitude.

D1.8 [ABn].g\<nA> =00 μ[B^ A. AZx>d\s<pv <nA>B> .
- U ε o o d i s < p r < n A > β + 1 > ) ]

This thesis gives the value of the nth term of the sequence of numbers
corresponding to A.

D1.9 [AB]. L<A>=ooli[BύA. 1^ g\ <BA> .0=oo g\ <B+1A>]

This thesis gives the value of the length of the sequence of numbers
corresponding to A—it is, in effect, the number of prime factors occurring
in the prime factorization of A.

D1.10 [ABC].A*B=ooίi[C^ pr « L<A>+ 1<B»A+B> . [nύ L<4>].
gl<wC>=oogl<wΛ>: [nύ 1<B>]: l i w . D .
gl<W+L<A>J5>=oogl<wJ5>]

This thesis gives the value of the concatenation of A with B.

D l . l l [A], R<A>=oo2A

This thesis gives the value of the sequence corresponding to A.
The above definitions are all given by Godel [4]. The remainder of

the introductory definitions are developed in order to produce the desired
terminological explanations. In each case, some concept that Lesniewski
took as undefined in [5] is defined here. Once these definitions are given it
is possible to reproduce Lesniewski's terminological explanations (which is
taken up in the following section).
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D1.12 [AB]:A £<*> ingr < £ > . - . [lCD].C^B . Dί B.y:B=ooC *<A* D>

A is an ingredient of B. Since the only concern here is with sequences
of symbols it is enough to define a numerical name which holds only for
such items even though Lesniewski uses the broader concept given in
mereology. However, from the above definition it is clear that A is an
ingredient of B if and only if A is identical to B (let C and D in the above
definition be identical with one) or A is a proper (and continuous) part of B.
Thus, this numerical Ίngr' is just the mereological 'ingr' restricted in
application to prime factorizations of numbers. In general, Lesniewski's
defined names used in his terminological explanations will be reproduced in
the sense that they will be numerical names restricted in this way. Under
the Gδdel-numbering this amounts to restricting the application of the
numerical concepts to expressions.

D1.13 [AB].A εoocnf <B> .=. [n^A+B].g\ <nA> =oog\ <nB>

A is equiform to B.

D1.14 [A]y. Aεooβxpr .=:: l< L<A>:: [W^A]::Bεoccn1<A>.\
[lύn^ 1<A>]:\ pr <nB>=*> pr <w>.\gl < w#>=ool. v .
gl<nJ5>=oo3.v.8^g'l<rcJ3>.gl <nB > ε «> prim . v : [ m% L < A > ] :
1 ύ m: gl< nB> =00 5m . v . gl < nB> =<* Ίm

A is an expression. Assuming that m is one or the number of some
semantical category, this numerical name indicates that subset of prime
factorizations which is the most interesting for the purposes at hand. For,
as will be seen in the next few definitions, expressions are just those prime
factorizations whose exponents correspond to the primitive symbols of the
system.

D 1 . 1 5 [A}:Aεoo\sX.=.[^B^A].BZooCX\ί<A> ,[nύl<A>].

pr <nB> =00 pr <n> . gl <nBy Coo expr .

A is a list of expressions. Lists of expressions are sequences of
primes whose exponents represent expressions. This concept was not given
by Lesniewski, but is useful in this exposition.

D1.16 [Λj Aεoovrb.Ξ.Aεooβxpr . L< A>=oo 1

A is a word. Thus words are represented by single prime factors
whose exponents corresponds to one of the symbols of the system.

D1.17 [A]:Aεooprntl .=. [ln%A].A=*> R<5W>

A is a left parenthesis. Thus, assuming that n is the number of some
semantical category, a left parenthesis is the unique word whose exponent
indicates the particular semantical category with which the parenthesis is
associated.

.D.I.18' [A]:Aεooprntr .=.\ln^A].A=ooR<Ίn>

A is a right parenthesis, assuming that n is the number of some
semantical category (not given by Lesniewski).
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D1.19 [AB].'.A εooprntsym<5>.-: [ln£B]:B=ao R<5n>.A=oo R < Ίn> . v .
[ln^B].B =00 R<Ίn>.A=ooR<5n>

A is a symmetric parenthesis with B. Thus, assuming that n is the
number of some semantical category, symmetric parentheses are always
associated with the same semantical category.

D1.20 \A].'.A εoo prnt .=: Aεooprntl. v . Aεooprntr .

A is a parenthesis.

D1.21 \ABC]: Aεooprcd<BC> .=. [inmύC]. pr < 1<A>A> =«> pr <nC> .
pr < 1B> =00 pr <mC > . n < m

A is a predecessor of 5 in C. Thus, assuming that A and i? are
ingredients of C, ̂ 4 precedes B if all of A comes before the beginning of B.
This name differs from Lesniewski's Άεprcd(i?)' in that the particular
context in which A precedes B has been made explicit. This is only a
minor difference—though necessary: the context is made explicit in order
to retain the limited quantification. And, for this purpose, it is very often
necessary to make explicit contexts which are only implicit in Lesniewski's
terminological explanations. See for instance the next concept.

D1.22 [ABC]:A εoo scd< BC> .=.B Cooprcd<AC>

A is a succeeder of B in C. Thus, A follows B in C if all of B precedes
A inC.

D1.23 [AB}.\Jpγcά<ABy=ooμ[C^B.Cεoopγzά<AB> .Bzooexpv :.
[Dύ B]:.D εoo prcd< AB> .D:Z> εooprcd<C£> . v .D =ooC]

This thesis gives the value of the last word preceding A in B. Thus,
the last word preceding A in B is the single word which comes immediately
before the beginning of A in an expression B.

D1.24 [An].\ngr<nA>=ooμ[B^A.B=co pr <nA > g k w Λ > . As* expr]

This thesis gives the value of the nth word in A. Thus, the nth. word in
A is the unique word represented by the nth. term in an expression A.

D1.25 [A]. Uingr<A > = μ[B^A.B=oo Ingr< L <A > A>]

This thesis gives the value of the last word in A.

D1.26a [AB].Occ<0AB>=oo μ[C i B. Cεoocnf < A > . Czoo ingr< £ > ]

This thesis gives the value of the first occurrence of A in B.

D1.26b [AJBw].Occ<w + lAB> = /i[C εoocnf<A>. CύB .
Ingr< 1C> ε^scd<Ungr<Occ<nAB»B>]

This thesis gives the value of the n+loccurence oϊA in B, in terms
of the nth occurrence of A in B. Thus the value of the nth occurrence of A
in B has been determined. Notice that this concept is applicable to the nth
word in an expression or to the rath expression in a list. This concept and
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the remaining ones in this section were not given by Lesniewski, but are
useful in later developments.

D1.27 [AB].N<AB>=oo μ[m^ L <B> .Occ<mAB> =00 0]

This thesis gives the value of the number of occurrences of A in B
(which is to be taken as zero if there is no occurrence of A in B). Notice
that the concept is applicable to the number of times a word occurs in an
expression or the number of times an expression occurs in a list.

The last concept to be considered in this introductory section, is given
in order to describe the rule of substitution in a manner similar to
Lesniewski's original description. In that description, Lesniewski com-
pares a given expression with the expression that reaults from it by making
some substitution in the expression. Thus what is needed is a symbol by
symbol association of two expressions except in those places at which a
substitution may have occurred. Hence, it is indicated when a word A in a
given expression E is to be associated with a word B in a given expression
F where the association does not apply to certain segments, C of E and D of
F— these segments being the places for possible substitution.

D 1.28 [ABCDEF]:: A εooαssoc <BCDEF > >:

1) £εooexρr.
2) jPεooβxpr.
3) [1GU E].G =ooOcc<0CE> .
4) N < C £ > = O O N < C D J F > .

5) Azoovrb.
6) #εoo vrb.
7) Aεoo\ngr<E>.
8) .Bεooingr<.F>:
9) [GHIJύE+F]:E=ooG *H. G=ooOcc<0C£> .=. F=ool * J.

I=ooOcc<0DF> .'.

10) [GHIJUE + F].' .L=ooG*H.F=ooI * J .
Ingr < \H> =00 lngr< l O c c < 0 C £ » .
Ingr < 1J> =«> Ingr < lθcc< 0DF» .z>:
[nύ G+ H]: A =00 Ingr < nG> .=. B=oo Ingr < nJ> :•:

11) 2 ^ N < C £ > . D : : [GHIJKMύ E + F]::E =OOG *H*I. F = ΰOJ*K*M.\

[n^N<C£>]Λ Uingr<G>=ooUingr<Occ<rcC£>>.
Ingr < l/> =00 Ingr < 1 Occ< n+ ICE » .
Uingr<J>=ooUingr<Occ<nIλF>>.
Ingr < 1M> =00 Ingr < lOcc<n+ 1DF» .D.
[mύ H+K]: A =00 Ingr < mH> .=. B =00 Ingr < mK> x

12) [GHIJZE+F].'.E =ooG *H.F=ooI * J . [inm^L+F].
m+l=ooH<CD> .n+l=ooH<DF> .
Uingr <Occ< mCE» =00 Uingr<G > .
Uingr </ > =00 Uingr <Occ< nDF» .D: [nύ H+ J]:
A =00 Ingr <nH > .=. B =00 Ingr < nJ>

The above is the last of the introductory concepts needed in order to
give Lesniewski's terminological explanations. Of the concepts that
Lesniewski originally took as primitive, we have defined the following:
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ACooingr<£> Aεingr(2?)
A εαocnf<£> A εcnf (B)
A Coo expr A εexpr
A Coo vrb A εvrb
Aεoo prntl A εprntl
Aεoo prntsym< B> 4 εprntsym(£)
A εooprnt A εprnt
A εoo prcd <BC > A εprcd (B)
A εoo scd <J5C> Aεscd(£)
A εooΛJprcd <£C > A ε Uprcd (£)
A εoo Uingr < £ > A εUingr (B)

A εcx, Ingr < nB> A ^lingr(B)

A ε 2ingr (B)

etc.

As has been noted some of the above nϊake explicit contexts only
implicit in the originals. With these terms at hand, Lesniewski's termin-
ological explanations can now be reproduced exactly with only occassiόnal
differences each of which will be rioted.

2. Protothetheίical terminological explanations In this section the first
forty-three terminological explanations of Lesniewski are given. In each
case Lesniewski's terminological explanations define name forming func-
tors according to the methods of ontology. Here the terminological
explanations define numerical name forming functors according to the
methods of recursion. However, the concepts given below parallel as
exactly as possible those given by Lesniewski—commentaries following
definitions will note any important differences in exposition. The immedi-
ate advantage of this procedure is that it makes clear that Lesniewski's
terminological explanations can be given by the methods of recursion. The
subsequent advantages of the procedure allow one to establish the incom-
pleteness of ontology (extended by the axiom of infinity) in a manner exactly
similar to GodeΓs original work.

In order to facilitate comparison of the following terminological
explanations with Lesniewski's, his numbering of terminological explana-
tions has been employed. And in order to make the following explanations
definite, reference will be made to particular axioms. The axiom for
ontology is given above and will be referred to by its Gδdel-number: Axo.
The axiom for protothetic will be that of Sobociήski [8], which in the
informal notation of this exposition, is given as:

[pq]:: p =.q :^:: [f]::J(pf(p[u]. u)) =.'.[r]/./for) .=: ^.^.J>

The Gδdel-number of this axiom will be designated by 'Axp', and the axiom
will be referred to by means of its Gδdel-number. Thus, in the formal
notation, Axp is given as:

L̂ -J W ^ ^ L Λ I §(ηf(ηPf(ηP[uJ~U~i)rl)ηirrri {(ηfiηqr^iηqp)^)^1

The only other axiom to be considered, is the axiom of infinity. The
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Godel-number of this axiom will be designated by Άxinf, and the axiom will
also be referred to by means of its Godel-number. Thus, in the formal
notation, where θ = 24 x 32x 52 x 72, Axinf is given as:

L.aj$-(rlί_φ^§-(η(t(ηφ(γΛ)γ]_Bb_A ^(η^iη Z>{β Ba)β ψ(γb)γ)η

φ(γ U (βbB)θ)γ)η\φ(γa)γ)rι \- (αL^_Γ h(a<f(η ε(βAA)β h

(βε(^«)β)β)i?)β

Ί)α)»ϊ"1

Given the Godel-numbers for the three axioms, it is now possible to
state Leόniewski's terminological explanations.

D2.1 [A]:Azoovrbl.=.A Soocnf < I n g r < 1 A x p »

This thesis defines a, left lower corner as any word equiform to the
first word in the axiom of protothetic. Although left lower corners could
have been defined as words equiform to R < 1 > in this exposition, in order
to parallel Leέniewski's:

T.E.I [A]:Aεvrbl.=.Aεcnf(lingr(Al))

that is, the left lower corner is any word equiform to the first word in Al,
where Ά l ' is the name he gives to the relevant axiom, the more compli-
cated definition is used. In the terminological explanations that follow, if
there is nothing to the contrary, it may be assumed that the only differ-
ereixc.es in notation from Lesniewski's terminological explanations are as
minor as those that occur here.

D2.2 [A]:A zoo vrb2 .=. Aεoocnf < I n g r < 4 A χ p »

This thesis defines a right lower corner as any word equiform to the
fourth word in the axiom of protothetic, that is, as equiform to R < 3>.

D2.3 [A]:A εoo vrb3 .=.A εoocnf <Ingr < 5 A x p »

This thesis defines a left upper corner, which are words equiform to
R < 5 > .

D2.4 [A]\A Zoo vrb4 .=. Aεoocnf < Uingr< A χ p »

This thesis defines a right upper corner, which are words equiform to
R<7>.

D2.5 [A]: Azoo trm .=. ̂ 4εoovrb .~(Aεooprnt) ,~(Aεoo vrbl) ,~(A ε^ vrb2).
^(Aεoovrb3) .~(y4εoovrb4)

This thesis defines a term as a word which is neither a punctuator for
quantification nor a parenthesis for semantical categories.

D2.6 I A B ] : A ε^ m\<B> .=. Bz™ expr.Λ εop.vrb .A εoo i n g r < 5 > .
- (A εoo Ingr < 1B», - (A ε<» Uingr < B>)

A is a word inside of B. Lesniewski's T.E. VII is given as:

T.E.VII:. \A-,α]::A εCmpl(α) .=. ' . Azexpr .'.
[B]: B z vrb . B z ingr(A) . D .
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[1C].C εa .B εingr(C).'.

[B,C,D]:B εa .C εa .
D εvrb.Z) εingrtB) .D εingr(C) .=).£εId(C).'.

[B]:B εa .D.

5 εexpr Π ingr(A)

where ^ ε l d ί C ) ' and '5 ε expr n ingr(A)' correspond to 'B =oo C and
^ εoo expr.^ εoo ingr<A >' respectively. Since this explanation involves
quantification over general names, it cannot be presented as primitive
recursive—our quantifiers must be restricted to individual (numerical)
names. However, it is clear from the above that complexes of things, as
defined in T.E.VII, are only expressions of those things. Thus, Lesniewski's
uses of 'CmpΓ can be avoided in favor of mentioning some specific con-
catenation. Hence no terminological explanation corresponding to T.E. VII
is given in this exposition.

D2.8 [A].'. Aεooqnif .=:
1) lngr<lA>εoo vrbl .
2) Uingr<CA>εoovrb2.
3) [WύA], Bεoo int<A>:
4) [BύA]:B εoo int<A> .D.Bεoo trm :
5) [BCύA]:Bε*> int<A>. Cεoo ίnt < A> .B εooCnf < C > .D. JB= W C

A is a quantifier. Thus, quantifiers are unempty expressions bounded
by lower corners containing only non-repetitious terms.

D2.9 [A]:: Λεw sbqntf .Ξ :

1) [IB ύA].B Zoo int<Λ>.*.
2) [Bύ A].' .B =colngr <1A> . v .B ε«> int<A>:D: [CDύ A]: C ε^ vrb3 .

C ε^ ingr< A> .C εooScd<BA> .D εoovrb4 . Dεoo ingr< Ay .
Z)εooscd< 5 A > . D . N < C A > < H<DA> .'.

3) [BύA].'.Bε«> int <A> . v .B ε<*> Uingr< A> :=): [CD^A]:C ε» vrb4 .
C εoo ίngr<A> . Cεooprcd<BA> . Dεoovώ3 .D ε™ ingr<A>.
i)εooprcd<^^>.D.N< CA>< N< DA>

A is a subquantifier. Clearly, all subquantifiers are unempty expres-
sions structured in such a way that all upper corners occurring in them are
uniquely paired. In this explanation, Lesniewski's clause:

[B].'.Bεlingr(A). v. £εint(A) :D. (vrb3 ningr(A) Πscd(£)) oc
(vrb4 Π ingr(A) Π scd(£))

that is, upper left corners in A preceding B are strictly less in number
than upper right corners in A preceding B, has been rendered as the second
clause above, using the "number of times C occurs in A is strictly less
than the number of times D occurs in A" as will be the case for similar
clauses. Incidentally, it is necessary to avoid Lesniewski's use of "β oc b"
(as well as his use of "a°°b") since it would introduce non-recursive
concepts. However, since the arguments of Lesniewski's functor for less
equinumerosity (and equinumerosity) are always ingredients of expressions,
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the effect of his use of "less equinumerous" (or "equinumerous") is
always obtainable by comparing the specific count of the ingredients to be
compared. Such an approach keeps this exposition faithful to Lesniewski's
explanations while allowing it to remain recursive.

D2.10 [A]:Aεcognr\ .=. [IBC^ A]. BZoo qntf. CZoo sbqntf . A =oo B* C

A is a generalization. Generalizations are expressions made up
entirely of some quantifier immediately followed by some subquantifier.
Lesniewski uses 'CmpΓ in his T.E.X (given below), but this has been
avoided in favor of concatenation with subsequent simplification of the
explanation:

T.E.X [A]::Aεgnrl .=.\[lB].Bεqntf . Bεingr(A).
lingr(^4)εingr(£):

[IB]. B ε sbqntf . B ε ingr(A).
Uingr(A) ε ingτ(B):

[B,C]:Bεqntf . Bεingr(A).
C ε sbqntf. C ε ingr(A). lingr(A) ε ingr(B).
Uingr(A) ε ingr(C). D . A ε C mpl(B U C)

Thus, for Lesniewski as well, generalizations are expressions made up
entirely of some quantifier immediately followed by some subquantifier.

D2.ll [AB]:AεooQn\f<B> .=. £ εoo gnrl. A εooqntf. A εoo ingr<£> .
Ingr < 1B> ε^ ingr < A >

A is the quantifier of B. The quantifier of a generalization is the
quantifier with which the generalization begins, and is to be distinguished
from a quantifier merely in the generalization. Thus, the numerical name
given here is unique (as its capitalization indicates).

D2.12 [AB]: A ε M Sbqntf <J5> .Ξ.^εoognrl .A εoo sbqntf .A εoo ί n g r < £ > .
Uingr<jB>εoo ingr<A>

A is the subquantifier of B. The subquantifier of a generalization is
the subquantifier with which the generalization ends. Thus, a subquantifier
of an expression is unique and should be distinguished from a subquantifier
merely in a generalization.

D2.13 [AB].\ A Zoo Essnt<£> .Ξ. Sbqntf <B> =00 vrb3 * A * v r b 4 . v .Λεooexpr.
A =OOB . - (A εoo gnrl)

A is the nucleus of B. The nucleus of an expression which is not a
generalization is the expression itself, while the nucleus of a generalization
is that expression which is generally said to fall within the "scope" of its
quantifier. In either case the nucleus of an expression is unique. In this
explanation, Lesniewski's clause:

A εCmpl(int(Sbqntf(£)))

is rendered in terms of concatenation.
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D 2 . 1 4 [ABC].'.A Zoo var < BC> .=:

1) B εoo i n t < Q n t f < C » .

2) A εoocnf<£>.

3) A εoo ingr < Essnt < C » :

4) [DEύ C]:Dtoo mgr<C > .E too \nϊ<Qn\ϊ<D» .
A εoocnf < E> . A εoo ingr < D> .D . Z>=oo C

A is a variable bound by i? in C. Here is a simple example of

Lesniewski's use of contextual definition, since bound variables are defined

only in a given context, namely, as certain ingredients of a given expres-

sion. This explanation also makes it clear that there is great freedom of

choice in selecting symbols as variables: a symbol that is a variable in

one expression need not necessarily be a variable in another expression.

D2.15 [ABC]. A εoo cnvαr <BC > .=. [iDύ C] . A εoo vor <DC> .

[iDύ C]. Bεoovar<DC > .Aεoocn1<B>

A is a variable equiform with .BinC. That is, A and B are variables

bound by the same term of a given generalization. Thus, equiformity of

variables is context dependent.

D2.16 [A]:: A εoo prntm.Ξ.*.

1) [1B^A]\B Zoo ϊnt<A>Λ

2) [Bύ A].' .BZoo i n g r < 1 A > . v .BZoo int <A> : D : [CD ZA];C εoo i n g r < A> .

C εoo scd < BA> .C εoo cnf < Ingr < 1 Λ » . D εoo ingr < A> . 'bεoo .s.ςd< BA>.

D εoo prntsym< Ingr < 1 A » . D . N < C A > < N < D A > . \

3) [B^A]: .BZoo int<A>. v.5εooUίngr<A>:D: [CDύA]:C εoo ingr < A > .

Czvo prcd<BA> . Cεoo prntsym<lrigr< 1 Λ » .Dzoo ingr<A> .

Z>εooprcd<£A>..Dεooprntl. Dzoo cnf < Ingr < L 4 » . D .

N<CA><N<i)A>

A is a parentheme. Parenthemes are parenthetical clauses (including

their outermost parentheses) in which all words equiform to their outer-

most parentheses are uniquely paired.

In order to avoid Lesniewski's use of 'CmpΓ in:

T.E.XVII [A,a,B]::Aεprntm(B,a) .= [C]: C'εa.ό.C zprntm

B εCmpl(lingr(5) U«).

lingr(£)εtrm.A εa

and the quantification over general names in:

T.E.XVΠI [A,B]\A εprntm(J5) ,=. [la]. Aεprntm(£,α)

we define the nth parentheme of an expression recursively as follows:

D2.17a \AB]\ A εoo prntm < QB> ,=. AZoo prntm. [C ύB]. B=cά'lngr<lB>'*A*C.
Ingr < 1 5 > ε^ trm

D2.17b \ABn]: A Zoo prn\m<n+lB> .=. A εoo prntm. [ICDύ B].

B=ooC *prntm< flB> *A * D

A is the nth parentheme of B. Thus, the nth parentheme of an expres-

sion in unique.



LESNIEWSKΓS TERMINOLOGICAL EXPLANATIONS 351

D2.18 \AB]:Ά εoo prntm <B >.=. [in ̂  KB >]. Aεocprn\m<nB>

A is a parentheme of B. Notice that this explanation closely parallels
Lesniewski's: in both cases parenthemes of expression are to be dis-
tinguished from parenthemes merely in expressions.

Ώ2.1S [AB].'.Aεooϋprn\m<B> .=: Aε^pm\m<B> : \nmCύ B]:
Aέooprntm< nE> . C εoo prntm< mB> .D. m< n

A is the last parentheme of B.

D2.19 [A]:A εoo fnct .=. [IB^A], BZoo prntm< A>

A is a function.

D2.20a [AB\:. Aεooor^<J)B> .=\ £ εoo prntm. [3C % B\.B=«> lngr< 1B>*A*C.
A Coo t r m . v . A 8oo g n r l ,v.A.€oo f n c t

D2.20b [ABn].'.A εooαrg< n+ 1B>.=:BCoo prntm. [3CZ) i 5 ] .
J5 = oo C*αrg< fti?> *Λ * C: A εoo trm . v . A €oc gnrl . v . A ε=o fnct

4̂ is the nth argument of B. Thus the nth argument of an expression is
unique.

D2.21; \AB\\ Aεooαrg<Jβ> .=. [3nύ I < B>]. A ε^ org<nB>

A is an argument of B. Thus/arguments o/parenthemes are to be
distinguished from arguments merely in parenthemes. As in D2.17 and
D2.18 the difficulties inherent in Lesniewski's use of 'CmpΓ are again
avoided in favor of concatenation.

D2.21 [ΛB].'. Aεoo{Jarg<B>.=:Aεooar9 <B>: [nmC^B]:
Aεooarg<CnB> .C εooαrg< πiBy ,~D.m = n

A is the last argument of B.

D2.22 [AB]: A ε« Sgnfcήt < B> ,=.A ε^ expr. [3C^ B]. C ε^ pmtm< B> .
B=ΰOA * C

A is the functor of B. Thus the functor of an expression is unique.
Since the functor of an expression is all but the last parentheme of some
given function, it may be many-linked, that is, its own function may have
parameters. In this explanation, concatenation replaces the use of 'CmpP
in Lesniewski's:

T.E.XXII [A,B]:AεSgn£nct(B).=.Aεexvr.
A ε ingr(£).
Cmpl(vrb Π ingr(£) Π

(ingr(A)))εprntm(£)

D2.23 [AB].\Aεoosimprntm<-B>.Ξ:
1) A εoo prntm .

2) B εoo prntm .

3) lngr<lA>εoocnf<lngr<15»:

4) [« i L<A>+ L<5>]:Uαrg<A>εooαrg<wΛ>.Ξ.Uαrg<i5>εooαrg<w5>
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A is a similar parentheme to B. Thus, similar parenthemes have
equiform outermost parentheses and the same number of arguments.
Here Lesniewski's clause:

arg(A) oo arg(J3)

that is, the number of arguments of A is the same as the number of
B, is rendered as the last clause above, as will be the case with similar
clauses.

D2.24 [AB]:: Aεoogenfnc\<B> .=.'.
1) Aεoofnct:
2) \nm ̂  L < By}. Uprntm<yl > 8oo prntm < nA> .

Uprntrn <B > 8oo prntm < mB> .'D.nίk m\

3) [CDnmrύA+ B]:C 8OO prntm<nA> .
Dεoo prntm< mB> . prntm< n+ τA> 8oo Uprntm<A> .
prntm < m + rB> £<*> Uprntm < i?> .D. C 8oo simprntm< Z)>

A is a generating function with respect to B. Thus A is a generating
function with respect to B if it is a function that has no more parenthemes
than B has; and whose parenthemes are similar to the terminal paren-
themes of B. Generating functions are very useful in determining the
semantical categories of newly defined functors (cf. D2.39). For instance,
Ί{a}' is a generating function in respect to '*4<pM&Kα}' a n c ^ t l l u s deter-
mines the semantical category of '^φϊ^b }\

D2.25 [ABCD]. *. A 8oo Anαrg < BCD> .=. C 8oo sίmpmtm <D > . A Goo αrg < C > .
£εooαrg<Z>>: [ w ^ L < C > + L < / ) > ] : A 8ooαrg< rcC> .Ξ. J Bε o o αrg<wi)>

4̂ is the argument in C analogous to B in D.

D2.26 [ABCD]: Azoo Ansgnfnct<.BCD > .=. Acoo Sgnfnct<^> .

J Bε o o Sgnfnct<i)>. [ 3 £ F ^ 5 + C ] . £ εoo prntm<C> .E εooSCd< AC> .
F 8oo prntm <D> .F ZooSCd<BD> . £ε«> simprntm< F >

4̂ is the functor in C analogous to B in iλ

D2.27 [ABCD].' .Azoo An< BCD> .=: Azoo Anαrg < BCD> . v .

A 8oo Ansgnfnct < £CZ>>

A in C is the analogue of £ in Z).

D2.28 [AB]:A 8ooargl<£>.^. [3C ύ Axp]. C ε^ ingr <Aχp> .

AεOoAnarg<lngr<10Aχp>JBC>

A is the first argument of B. Thus this explanation determines that the
last word preceding the first argument of B is a parenthesis of the
semantical category whose number is 24 x 31 x 51 x 71.

D2.29 [AB]: A 8ooarg2< B> .=. [3C i Axp]. C 8oo ingr < Axp > .
A 8 o o A n a r g < l n g r < l l Axp> BC>

A is the second argument of 5.
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D2.30 [AB]: A εoo Eqvli <B> .=. Sgnfnct<£> εoocnf<!ngr< 7 A x p » .
[3CύB].C 8ooprntm<5>.A8oo Argl < C >

A is the coimplicans of B. Thus this explanation, together with the
next, can be considered as a stipulation for determining the shape of the
symbol to be used for complication.

D2.31 [AB]: A εoo Eqvl2<£> .=. Sgnfnct < £>8oo cnf < Ingr< 7 A χ p » .
[1C ύB].C SooprntnrK B> . A 8oo Arg2 < C >

A is the complicate of B.

D2.32 [ABC]: A εoo thp < BC> .=. C εoo 1st. Axp εoo gl< 1C> .
[3nm ^ L<C>].A=oogl<nC> . E=oogl<raC> .n^m.

A is a theses of protothetίc relative to B in a list C (assuming that
every term in C is a thesis of protothetic). In order to retain limited
quantification, a thesis of protothetic must be explained relative to a given
list (of theses) instead of relative to a given thesis as is the case in:

T.E.XXXΠ [A,£].\Aεthp(£).=:Aεthp.
B εthp:
A εprcd(£).v.AεId(£)

Thus, all explanations which depend on D2.32 will also be relativized
to a given list (of theses). Actually, Lesniewski takes 'thp' as primitive:
its first use occurs in his T.E.XXXΠ when he defines Άεthp(£)\ However,
the concept is only needed in an inductive caluse for the directive of
protothetic and so the concept given here suffices for the exposition.

D2.33 [ABB*].'. Aεoo hp < BB<> .=:A ε* thp <BB< > . v .
[ICD^ B< ] . C εoo thp <BBτ > . D εoo ingr < C > . A εoo Argl <D>.v.
[3CDύB<]. C εoo thp< BB' > .D εoo i n g r < C > . A εoo Arg2<Z>> . v .
[3CDύB'].C εoo thp <BB'>.D εoo sbqntf. Dεoo ingr< C> .
D=oo vrb3 *A * vrb4

A is a propositional phrase relative to B in B\ The use of cCmpΓ in
T.E.XXXIΠ is avoided in the same manner as in T.E.XIΠ.

D2.34a [ABCC]A εoohomosemp< OBCC > ,=.A 8oofrp < C C t > .

B εoo frp <CCτ > . v . [IDE^ C].D z«> thp < CC > . £ εoo ingr < D> .
A εoo cnvαr <BE>.V . [ΞZλEFG1^ Cτ ] .£> εoo thp <CC' > . E εoo ingr < D> .
F εoo thp <CO>.G εoo ingr < F > . A εoo An < BFG>

D2.34b [ABCOn]: A εoo homosemp < n+ \BCO > .Ξ. [3Z>< O ].
A 8oo homosemp < ODCO > . D 8oo homosemp< wBCCτ >

A is the nί/z homosome of £ relative to C in C\ That is, the semantical
category of A is determined to be the same as that of B (relative to C in Cf)
within 72-number of determinations. The inductive clause of this explanation
has been added to LeSniewski's T.E.XXXIV, which is the first case in the
recursive definition, in order to avoid his quantification over general
names in:
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T.E.XXXV [A9B,C]::Άεhoϊno8emp{B,C) .=:•: Aε lhomosemp(A,C).

B ε lhomosemρ(i?,C) :•:

[a]:: [D]\Dε α.D.

E εa.'.Bεa .V.3. Aε a

Now, in the place of the above, there is the following.

D2.35 [ABCC']\A εoo homosemp < £CCr >.=. [ n^ ! <€>].

A εoohomosemp<nBCC1>

A is of the same semantical category as B relative to C in Cτ>

D2.36 [ABB'CDE].'. Aε«>constp<BBrCDE> .=:

1) Dεoohomosemp<EBB'>:

2) [FG ̂ B']: G εoothp<B,B' > . Fεoo ingr.<G > . D .-(Z) 6ooconvar<DF>);

3) Aεoocnf<D>.

4) [3FG#i 'B]. Fεco ingr < O . G εoo thp<BB r> . # εoo ingr <G>

^εoo An<EFH>

A, in C and analogue of E, is suited to be a constant equisίgnifίcant to

D relative to B in J3\ That is, any argument (or functor) A in some

expression C is suited to be a constant equisignificant to D, provided A is

equiform to D; D is not a variable; and A is the analogue of some £, where

E is of the same semantical category as D relative to B in B\ This

explanation is given in order to insure that symbols employed as constants

have some fixed semantical category—see the following explanation.

D2.37 [AB&.C]: A ε™ constp < BB\C> .=.. [3.DE1 i 5T]. A ε«> constp <BB\CDE>

A in C is suited to be a constant relative to B in £\

D2.38 [ABCCDEF]: A εoo qυa$\homosemρ<BCCrDEF>.=,

1) £ εob homosemp < FCC•••>."

2) [3G^/i CT].G εcomgr<Z)>.^εoothp<5^>./εooίngr<F>
A ε^ An <EGI > .

3) [IGHIύ O].G εoo ingr <Z>> . Hεoothp<BB\> .1 ε* \ngr<H>

Bεoo An <FGI>

A is a quasihomoseme of £ in respect to D,E, and F relative to C in Cτ.

That is, A and B are eligible to belong to the same semantical category as

their respective analogues E and F, relative to C in C\ This explanation is

useful in explaining protothetical definitions where it is necessary to speak

about the semantical categories of a pair of words.

D2.39 [ABB'CDE]: A εoo ϊnc\p<BB<CDE>.=.

1) D εoo homosemp < EBB' > .

2) Aεoogenfnci<Z)> .

3) [iFGHύ B1 ]. F εoo mgr <C > .GεoothpK BB'> .H€oo\ngr<G> .

AεooAn<EFH>

A, inC is suited to be a function belonging to the semantical category of

D and E relative to B in B\ This explanation and the remaining ones of
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this section are all useful in explaining protothetical definitions. In each
case what is needed is a way of determining the semantical categories of
the components of expressions.

D2.40 [ABCODEF]: Aε^ vαrp<BCC'DEF> .Ξ.
1) Eε^ homosemp<BCC>.

2) [IGHI^C'].G εoo mgr < D>.H εoothp< BO >J Zoo \ngr<H>.
F εoo An <HGI> >

3) F εoo ingr< Eqvϊl < Essnt < Z ) » .

4) A 8oocnvar<FJD>

A in D'is suited to be a variable belonging to the same semantical
category as B,E, and F relative to C in C\

D2.41 [ABB'CDE]:: A εoo prnϊmp<BB<CDE>.=.'.
1) D 8oo homosemp < BBB1 > .

2) E 8ooprntm<Z>>.

3) Aεooprntm< Eqvl2 < Essnt < C > » :

4) [nύ L < Λ > + L<E>]:Uαrg<A>=ooαrg<wA>.Ξ.Uαrg<ΐ>=ooαrg<w^>.".

5) [nFG%A + E\.\F ε<>o arg < nA> .=.G εoo arg < nE> :Z). [iHI^B'].
Fεoo vαrp <GBBrCHI >

A in C is suited to be similar to the parenthemeE of the semantical
category of D relative to B in J3V

D2.42 [ABB' CDE]: A εoo 1 prntm < BB' CDE> .=. A εoo prntm < BB' CDE> .

Uingr<JD>εOoingr<£>

A in C is suited to be similar to the last parentheme E of the
semantical category of D relative to B in Bτ.

D2.43 [ABB'CDEFG]: A εoo 2prntm < BB'CDEFG> ,=.A εoo prntm< BB'CDE> .

Fεooprntm<Z)> . Uprcd<FD> εooίngr<£> .G εoo sίmpmtm < F >

A in C is suited to be similar to the par entheme E of D which
immediately precedes an F similar to G relative to B in B1.

This ends the preliminary explanations, and it is now possible to
explain the rule of protothetic, which is taken up in the next section.

3. The rule of protothetic In this section, the terminological explanations
for the rule of protothetic are given and are numbered according to [5].
There are, thus, only five terminological explanations to list—one for each
part of the rule. However, since there are generally many defining
conditions in each explanation (eighteen for protothetical definition), each of
the five explanations has been sub-divided into its important components.

D2.44 [AJ5JB
τ]: :,Aεoodefp<5JB

τ>.Ξ::

1) /-( lngr<lEssnt<A»εoocnvαr<lngr<lΛ>Λ>).

2) - ( l n g r < l Eqvl2 <Essnt<A>»εoocnvαr<lngr<l Eqvl2 < Essnt < A > » A».

3) ~ ( I n g r < l Eqvl2 < Essnt < A > » εoocons\p<BBΆ > ) : :

4) [C^Aj/.Cεootrm.C εoo ingr< Eqvll < Essnt<A>»'.p: [WύA].D εooqntf.

Z>εooingr<A>.Cεoo int<JD>Vv. [WEύA]. Dεoo ingr< A> .

C εoovαr<E,D> .v . C εOoconstp<JB.BtA > ::
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5) [CD^A]:Dεooqnϊf. Dεoo\ngr<A> .C εoo ίnt </».=>. [lEFύA] .
£εoo ingr<A>.Fεoovαr<CE>.'.

6) [CDEύA]:C ε<x> int <Qntf<A » . £8oopmtm< Essnt < A » .

jDεoo αrg < E> .D. [iFs A]. FZoo ingr < D> . FCoo vαr < CA> ::

7) [CZλE^A].'. Cεooingr< Eqvll < Essnt<A>» . Eεoo i n g r < A > .

Dεoocnvαr<CE> . Z>εooingr< Eqvll < Essnt<A>» .D: Z)=OO C.V .

[3FG ύB'].DZoo quαsihomosemp < CBBΆFG> ::

8) [ C ^ Λ ] : Cεoognrl. Cεoo ingr < A > . CψooA.^. [IEDFGSB'].

Dεoohomosemp< BBB1 > . Ez<* thp< BB'> . FZoo i n g r < E > .

Gεooingr<A>.JDεOoAnαrg<CJPG1>::

9) [CDύA].\ Cεoognrl. Cεooingr<A> .DZoo Essnt< C> .D: DZOO vrb . v .

[3E^ 5 1 ] . E εoo frp < BB' > . i)εoogenfnct< £ > ::

10) [C^A].'. Cεoofnct. Cεooingr< Eqvll < Essnt<A>» .D: [IDs A],

Z>εoognrl .DZoo i n g r < A > . CZoo Essn\<D>.v . [IDES &].

CZooϊnc\p< BBΆDE>::

11) [CSA]: Cεooprntm< Eqvl2 < Essnt <A»> .D. [32)^ C]. Dεoo αrg < C> .'.

12) [CD^A]: Cεoopmtm< Eqvl2 < Essnt < A > » .Z>εooαrg < C> .D.

[3E^A]. 2>εoovαr<EA>.'.

13) [ C Z ^ A ] : Cεootrm. Cεooingr< Eqvl2 < E s s n t < A > » . i)εootrm.

Z>εooingr< Eqvl2 < Essnt<A>» . Cεoocnf< D> .D. C=OO Z).\

14) [CD ^ A ] : Cεoo prntm< Eqvl2 < Essnt<A>» .

Dεoo prntm < Eqvl2 < Essnt<A>» . C εoosimprntm< D> .D. C=ooZ).'.

15) [CDE^B<]\ Cεoolprntmp<J5J5ΆZ)E>.Uingr< Eqvl2 < Essnt <A>» .

εoo ingr <C > .D. Cεoo simprntm<£<> :

16) [CDEFGSB1]: CZoo 2prntmp <BBΆDEFG> . Gεoo i n g r < A > .

Uprcd<GA>εoo ingr<C> .D.C εoosimprntm<£> :

17) [CZ)E^5 f]. Cεoopmtm< Eqvl2 < Essnt<A>» :

Uingr< Eqvl2 < Essnt<A>» εooingr< C> . DZoo thp<BB' > .

Eε^ ingr <D> . CεOosimpmtn<JE> .D. [SFG^.B1].

C ε oo 1 prntm < BB'AFG > :

18) [CDEFύB1]: Cεoo prntm < Eqvl2 <Essnt.<A>» .D εoo prntm.

D εooingr<A>.Uprcd< JDA>εooingr<C>.Eεoothp<5 JB t>.

F εoo ingr <E> . CεOosimprntm<iΓ> .D. [3G/7/i.Bτ].

C εoo 2prntmp < BBΆGHID>

A is a protothetical definition relative to B in B\ In discussing a
definition A, the coimplicans of the nucleus of A shall be called the
definiens of A, and the coimplicate of the nucleus of A shall be called the
definiendum of A, Thus, the first three clauses of D3.44 indicate that
definitions are generalizations of coknplications, where the first word of
the definiendum is neither a variable nor a previously defined or primitive
constant—it is in fact the constant which is being defined. The fourth clause
indicates that any terms occurring in the definiens are either variables in
quantifiers, variables bound by quantifiers, or constants which already have
a fixed semantical category. Clauses 5 and 6 indicate that any of the
quantifiers which occur in a definition (either as the quantifier of the
definition or merely as quantifiers in the definition) are not vacuous.
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Clauses 7 through 10 make certain stipulations about the definiens of a
definition. Equiform variables in the definiens must belong to the same
semantical category. Any generalizations must be propositional and their
nuclei must either be single words or generating functions for some
determined semantical category. Any function in the definiens is either
the nucleus of a generalization or belongs to some determined semantical
category.

Finally, the remaining clauses of D3.44 deal with the definiendum. In
clauses 11 through 14 it is stipulated that parenthemes in the definiendum
are unempty and contain only variables, while there is no duplication of
terms (and hence variables) nor of similar parenthemes. While the last
four clauses taken together stipulate that each parentheme occurring in the
definiendum can be assigned unambiguously a suitable semantical category.

D3.45 [AB]:: Aεoo cnsqrprtqntf < B > .= .'.

1) Essnt< Eqvli < Essnt<A>» 8ooCnf< Essnt< Eqvll < Essnt < £ » » .

2) Essnt< Eqvl2< Essnt<A>» SooCnf < Essnt < Eqvl2 < E s s n t < £ » » :

3) [C^A]: C εoo int<Qntf < A » .D. [IDϊ B]. D 8oo cnf <C > .

Dεoo i n g r < Q n t f < 5 » . ' .

4) [CDEFGH^ A + B]:: Fεoo prntm < Essnt<A» . G εoo prntm < Essnt < £ » .

C εoo Anorg< DFG> .E εoo vαr < HB> .E εoo ingr</».D: \3IύA]:

Iεoocni<E>:I εoo ί n t < Q n t f < A » . v ./εoo ίnt<Qntf< C » . \

5) [CDEFGύ A+B]:F Zoo prntm < Essnt < A » . G εoo prntm < Essnt < B » .

Cεoo Anαrg<ZλFG>.£εoo int <Qntf < D » . D . [3#^ C]. HZoo cnf < E> .

/ ίεooingr<Qntf<C».'.

6) [CDEFGύA + B]:. F εoo prntm < Essnt < A » . GSoo prntm< Essnt<B».

C εoo Anαrg< DFG> . E εoo int <Qntf < C » .D: [1HZ D]: Hεoo cnf < E> .

HZoo \ngr<D> . \βI^B]m Hεoovar<IB> . v . H&oo int<Qntf<Z>» . ' .

7) [CDEFGH^A + B]: F εoo prntm < Essnt < A » . G εoo prntm < Essnt < J B » .

Cεoo Anαrg < DFG> . HZoo int<Qntf<^4». EZoo cnf < H> .

EZoo ingr<Qntf<c » .=>. [3/^D]. /εoocnf <E> . /εoo ingr<Qntf < D »

A is a consequence by distribution of the quantifier of B. The first two
clauses of this explanation indicate that the result of distributing quantifiers
through a biconditional only effects the quantifier of the biconditional and
the quantifiers of its coimplicans and coimplicate. The next three clauses
indicate that any variable in the quantifier of A previously occurs in the
quantifier of B, every variable in A is bound by some quantifier, and any
variable bound by a quantifier in B remains so bound in A. Clause 6
indicates that variables bound by interior quantifiers in A either were so
bound in B or have become so bound by distribution of the quantifier of B.
Finally, the last clause indicates that the result of distributing the
quantifier of B shall not bind any variables already bound by interior
quantifiers of B.

D3.46 [ABC]: A εoo cnsqeqvl<£C>.=.C εoo cnf < E q v l l . < £ » .

A εoo cnf < E q v l 2 < £ »

A is a consequence by detachment from B and C. It is worth noting
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that detachment under quantifiers is not officially allowed in protothetic,
though it can be justified as a derived rule of the system.

D3.47 [ABB'CDE]:-: Aε<*cnsysbsϊp< BB'CDE> .=::

1) [F^A].\Fεooingr<Essnt<A».Fεoovrb.=): [3G^ C],

î 8ooassoc< GED Essnt < ,4 > Essnt < C » . v . [inG^A]. F&oo ingr< G> .

GεooOcc<wEEssnt<A» ::

2) [i?^A].*.JPεooint<Sbqntf<C».D.[3GiA].

Fεooassoc<GJDEEssnt<C>Essnt<A».y.[3w^L<C>].

F εoo Occ < nD Essnt < C » ::

3) i)Coo int<Qntf< C » :

4) £"εoo trm . v . ^Coo gnrl . v . ^εoo fnct :

5) [ i Γ G^Λ+C]:i Γ ε O oint<Sbqntf<C».

GZoooπoz<FED Essnt < A > Essnt < C » .3. GCooCnf <F>:

6) [FGHI^ C]::Fεoo ingr< Essnt < C » . Gεoo int < Q n t f < F » .

Hεoovar</C> . #εoo ingr < F > .D.\ [ J i ί l M ^ A]:

Jεooassoc< GED Essnt<A> Essnt < C » .

K Zooassoc<HED Essnt < A > Essnt < C » . v . [3w^A],

/ίεooOcc<nEEssnt<A» . Mεoo ingr<A> . Z,εoovar< JM> :D.

~(L εoo ingr < # » : :

7) [FG^ A+ C].". Fεoo int < Q n t f < A » . Gεoocnf <F> . Gεoo ingr< C> .3:

[iHύ C]. Hεooqntf. HZoo ingr < C> . G εoo int < H> . v . [ HI ύ C].

Fεooingr<C>. Gεoovar<W>::

8) £εoolst::

9) [Fύ A].'. F ε«>\rm . F ε*o Ingr <A>. D; [IG^A], G εooqntf. Gεoo ingr < ^ > .

î εoo i n t < G > . v . [iGHύA]. Gεoo ingr <A> . F εoo var< HG> . v .

F εooconstp < BBΆ> ::

10) [FGύA]: Gεooqntf.Gεooingr<A>.Fεooint<G>.D. [IHI^A],

H€oo\ngr<A> J εoovar<FH>::

11) [FGH^A].'. Gεo o ingr<A>.Fεo ocnvar<FG>.D://=oo F. v .

[3/J ^ 5 f ] . H εoo quasihomosemp < FBB'AIJ> ::

12) [2^i A ] : F εoo gnrl. F εoo ingr < Ay .~(F=OOA) .z>. [3GffiJ^ 5 ' ] .

G εoo homosemp<£££' > . H εoothp<5^τ > ./• εoo ingr < H>

Jεooingr<A > . GεOoAnarg<F/J>::

13) [FG^^J.'.Fεoognrl .Fεoo lngr.<A> .Gεoo Essnt<F> ,D:G εoo vrb. v .

[3iϊ^5 t].^εoofrp<-J5B t>.G.εoogeηfnct<^>;:

14) [FίA]S>Fεoofnc\ .Fεco\ngr<A> m D:F=«>Amv.. [BG^Λ]. Gεςognrl.
Gεoo ingr <A> .Fε<x> Essnt <G> . v . [ΊGHύ B'].Fεooϊnc\p<BB'AGH>

A is a consequence by substitution^ in C of E for D relative to B in B.
The first, second, and fifth clauses of this explanation indicate that the
nucleus of the result of making a substitution in C is, symbol by symbol,
equiform to the nuclues of C, except where the substitution occurred.
While clauses 3 and 4 indicate that substitution is made only for variables
bound by the quantifier of C and only terms, generalizations or functions
may be substituted for such variables.

Clauses 6 through 10 make certain stipulations about quantification.
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No variable substituted into C is to be bound by some (previously present)

interior quantifier of C. Variables in the quantifier of A? if they are

equiform to words in C, must be equiform to variables in C. Every term

in A is either a quantifier, bound by a quantifier, or is a suitable constant.

Finally, no quantifier in A is vacuous.

The last four clauses of D3.47 guarantee that the result of substitution

is a proposition (compare clauses 7 through 10 of D3.44). Thus, all

equiform variables must belong to the same semantical category. Gener-

alizations in A are propositional. The nucleus of any generalization in A is

either a word or a generating function for a propositional phrase. And

finally, any function in A is either identical with A, the nucleus of a

generalization in A, or belongs to some determined semantical category.

This explanation differs from Le&niewski's in that the consequence by

substitution in C is relativized to given expressions in itself and C (namely,

E and D respectively), rather than to a general name. Thus, the first and

second clauses given here do the work of Les"niewski's:

Essnt(A) εCmpl(#)

and

a °° int(Sbqntf(C))

respectively, while his third and fourth clauses:

[D,E].'. Z>εint(Sbqntf(C)). Eεa. (αΠprcd(£))°o (int(Sbqntf(C)) Πprcd(Z))) .D:

[IF], Z)εvar(F,C). v . Dεcnί(E)

and

[D,E].'. D εint(Sbqntf(€)). Eεa.(aΠ prcd(£)) °° (int(Sbqntf(C)) π ρvcά(D)) .3:

^ ε t r m . v . ^ ε g n r l . v .^εfnct. v .Eεcnί(D)

are replaced by the simpler third and fourth clauses above. Finally, in

Lesniewski's fifth, sixth, and seventh clauses, the use of equinumerosity is

avoided by employing 'assoc' as could be done for his third clause above bv

giving:

[FG^ A+ C].'. Fεoo ϊnt <Sbqntf < C » .

GZooassoc<FED Essnt<A> Essnt< C » .D:

]βHύ C].Fεoovαr< HC>. v . Fεoocnf < G>

where D and E are the parameters in question.

The only other difference to be noted in this explanation and Leόniew-

ski's is the eighth clause of D3.47, which replaces:

Bε expr

but which implies the above and is needed because of the addition of "B1"

in this explanation. Hence, instead of Lesniewski's:

T.E.XLVIΠ IA,B9.C]:A ε cnsqsbstp(5, C)

Ua\. A ε cnsqsbstp(£, C,a)
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this exposition uses:

D3.48 [ABB'C]: Aεoocnsqsbs\p<BB'C> .=. [IDE^A + C],
A Coocnsqsbstp < BB1 CDE>

A is a consequence by substitution in C relative to B in B\ It should
be noted that Lesniewski's original explanation allows simultaneous substi-
tution for one or more variables while the above does not.

D3.49 [ABB1]::Aεooex\nsn\p<BB'> .=::

1) [3CDύA].CZoo int<Qntf<A».Z>εoo int<Qntf<A».
Cεooprcd<DA> .'.

2) [CDύA]:Dεooqnϊf .Dεoo\ngr<A> .Cεoo int <£>.=). [lEF^A].
E εoo ingr <A > . F εoovαr < CE> . ~ (F εoo cnf < Ingr < 1 Essnt < A > » ) . ' .

3) [3C^A].\Cεooprntm< Eqvll < Essnt < Eqvl2 < E s s n t < A > » » : [DE^ A]:

2)8ooprntm<Sbqntf< Eqvll < E s s n t < A » » .

£εooprntm<Sbqntf< Eqvll < Essnt < A » » .D. D=oo E: [FGύC]:

Fεoo int<C> . Gεoo int<C>.D.F=oo G.

l n g r < l Eqvll < D » εoocnvαr<.FA> . ' .

4) [IC^A].'. Cεoopmtm< Eqvl2 <Essnt< Eqvl2 < E s s n t < A > » » :

[DE^C]:Z)εooint<C>.Eεoo int < C > .^.D=ooE.

l n g r < l Eqvl2 < Essnt < Eqvll <Essnt<A>»»εoocnvαr<i)A>/.

5) [c^Aj.'.Cεoofnct .Cεoo lngr<A>.D: [3Z)^A].Dεoognrl.

D εoo ingr < A >.C εoo Essnt <D>.v . [iDEύB'].

C ε^ fnctp < BB'ADE > ::
6) [CDEFύ A]: D εooprn\m< Eqvll <Essnt< Eqvll < Essnt < A > » » .

E εoopmtm< Eqvl2<Essnt< Eqvll < Essnt < A > » » .

F εooAnαrg<CDE>.D.F εoocnvαr<C Eqvll < Essnt < A > » : :

7) [Ci)^^A]:JDεooingr<A>.^εoocnvαr<Ci)>.D.[3FG^^ t].

E εoo quasihomosemp < CBBΆFO . ' .

8) [CDUA]: D€cocnvar<C Eqvll < Essnt < A > » .D. [lEFύA].

£εooingr<A> .Fεoo ingr<A> .Z)εooAnarg<CFF> . # .

9) [CDE^A].'. C εoopmtm< Essnt< Eqvl2 < E s s n t < A » » #JDεooarg<C>.

FεooSqnfnct<Z)>.D: [FGύA].Fε<>o int <Qntf < Eqvl2 < Essnt < A » » .

G εoo int <Qntf < Eqvl2 < Essnt < A » » .D. F =oo G .

Eεoovar<FEqvl2<Essnt<A>»

A is a protothetical thesis of extenstonality relative to B in B\ The
first two clauses of this explanation indicate that there are at least two
variables in the quantifier of A, that no quantifiers in A are vacuous, and
that the first word in the nucleus of A is not a variable.

The remaining clauses indicate that A is a generalization of some
coimplication, while both the coimplicans and coimplicate of the nucleus of
A are themselves generalizations of coimplications. Let us call the
coimplicans of the nucleus of A the basis of A, and the coimplicate of the
nucleus of A the extension of A. Then, clauses 3 and 4 indicate that the
coimplicans (coimplicate) of the nucleus of the extension of A has a
single argument, which is an equiform variable with the first word in the
coimplicans (coimplicate) of the nucleus of the basis of A. Indeed, these
are the variables bound by the quantifier of A.
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Clause 5 through 8 indicate that, first of all, any function in A is either
the nucleus of some generalization or belongs to some determined
semantical category. And lastly, analogous arguments of the coimplicans
and coimplicate of the nucleus of the basis are equiform variables, and any
equiform variables in the basis are analogous arguments of the basis.

Finally, the last clause indicates that the quantifier of the extension of
A has only one variable and it binds the functor of the coimplicans
(coimplicate) of the nucleus of the extension of A,

This explanation differs significantly from Lesniewski's only in its
third, fourth, and last clauses. Where for example Lesniewski gives:

[3C]. C εprntm(Eqvll(Essnt(Eqvl2(Essnt(A))))).
1 ingr(Eqvll(Cmpl(int(Sbqntf(Eqvll)Essnt(A))))))) ε cnvar(Cmpl(int(C)), A)

the third clause of D3.49 is given, and the use of 'Cmpl' is avoided in the
the fourth and last clauses in a similar manner. With T.E.XLIX stated,
Lesniewski in [5] writes:

Unier der Voraussetzung, dass eine These A die letzte der Thesen ist,
die schon zu dem System gehδren, darf man zu ihm als neue These einen
Ausdruck B nur in dem Fall hinzufugen, wenn wenigstens eine der fίinf
folgenden Bedingugnen erfullt ist:

1) 5εdefp(A)
2) [3C].Cεthp(A).JBεcnsqrprtnt£(C)

3) [3C,£]. C ε thpU) D ε thp(A). Bε cnsqeqvl(C,Z>)
4) [3C]. C εthp(A). £εcnsqsbstp(A,C)
5) i?εextnsnlp(A)

Following this exposition, however, protothetic is legitimately devel-
oped under the following single rule.

Supposing that a thesis A is the last thesis which already belongs to a
list of theses A' of the system, then an expression B may be added as a new
thesis only in case at least one of the following given conditions is fulfilled:

1) B εoo defp < AA >
2) [3C ̂  Aτ ] . C εoo thp < A A ' > . B εoo cnsqrprtntf < C >
3) [3CDύA'].C εoothp<AA'> .D εoothp< AA'> . Bε«>cnsqeqv\<CD>

4) [IC^A1]. Cεoothp<AA f>. £εoocnsqsbstp<AC>
5) Bεoo extnsnlp < AΛT>

Thus, if one wishes to give an exposition of protothetic, he asserts an
adequate axiom and then chooses which theses he will next assert—his
choice continually guided by the above effective rule. Clearly then,
Lesniewski ultimately understands a systematic as an individual expression
capable of being extended according to the choice of an author guided by
directives which are adequate for any stage of the development of the
systematic.

In this work it is enough to realize that the guiding directives are
primitive recursive at any stage in the development of their systematic
even though their significance is dependent upon the extent of the develop-
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ment. And just as Legniewski would call theses only those things which are
individual expressions of a given exposition, in this work something is a
thesis if and only if there is a proof of it, where a proof of an individual
expression is a list of expressions, each of which is either the axiom of
protothetic or is a thesis of protothetie relative to a given expression in the
list. Thus, the concept of thesis is no longer primitive recursive, and this
is of importance (particularly) for the last section of this paper.

4. The rule of onotology The terminological explanations given in this
section follow Le&niewski's [6] and are numbered identically to them.
Ontology is based on a given development of protothetic. Any expression
in such a development is called an effective thesis of protothetic (efthp).
The axiom of onotlogy (assigned the number Axo under the assignment of
numbers of this exposition) is the first thesis proper to ontology and the
terminological explanations for ontology follow below.3

D4.32 [ABC]:: A εootho <BC> .=.'. A εoothp <BC> . v . [IDE^C]:
C =oo'D'*E\ Etoo 1st. Axo Coo gl< 1 E> .[inm s- L <E>].
A =oo gl <nE> . B-oo gl < w E > .n = m

A is a thesis of ontology relative to B in a list C (assuming every
expression in C is a thesis of ontology or an effective thesis of protothetic).
Thus, this explanation, with minor exceptions, parallels Lesniewski's

T.E.XXXΠ0 \A,B].'.Άεtho(B).-:A ε e f t h p . v .Aεtho :

B ε tho:
AεprcdCB).v .Aεlά(B)

In what follows many of the terminological explanations for ontology
differ from those for protothetic only by relying on D4.32 instead of D2.32.
When that is the case they shall be given in an abbreviated form. For
instance:

D4.33 [ABB']: A εoo fro <BB< > .=. [D2.33 : thp/tho]

is, in unabbreviated form:

[ABB'].' .A εoo fro <BBX > .=:A εoo tho <BB' > . v . [iCDύB'].
C εoo tho <BB'> .Dεoo ingr< C > . Aεoo Argl <D> .v . [ICD^B'].
C εoo tho <BB' > . D εoo ingr < C > . A εoo Agr2 <D > . v . [1CD % B< ].
C ε o o t h 0 < B ^ t > .D εoosbqntf .D εoo ingr < C > .D=oovrb3 *A *vrb4

which differs from D2.33 only by having 'thp' replaced by 'tho' throughout.
Hence, one may refer to sections 2 and 3 for the relevant discussions of
many of the following explanations.

D4.34a [ABCC]: A εoohomosemo<0£CC\> .Ξ. [D2.34a: frp/fro, thp/tho]
D4.34b [ABCC'n]:A εoohomosemp<n+ 1BCC > .=. [D2.34b : homosemp/homosemo]
D4.35 [ABCC']:A ε*o homosemo<BCCr> .=. [D2.35 homosemp/homosemo]
D4.36 [ABB<CDE]:A £ o oconsto<BB'CDEy .=.[D2.36:

homosemp/homosemo, thp/thp]
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D4.37 \ABB'C]: AZoo cons\o< BB'C> .=. [D2.37 : constp/consto]
D4.38 \ABCC'DEF}:A Zoo quasihomosemo< BCODEF> . = .

[D2.38: homosemp/homosemo, thp/tho]
D4.39 [ABBCDE]: Azoofnc\o<BB'CDE> .=. [D2.39:

homosemp/homosemo, thp/tho]
D4.40 \ABCC'DEF]:A Zoo voro < BCO DEF> .=. [D2.40:

homosemp/homosemo, thp/thθ]
D4.41 \ABB'CDE]\A Coo propprntmo <_Rβ'CZλE> .=. [D2.41:

homosemp/homosemo, varp/varo]
D4.42 \ABB'CDE]:A εoolpropprntmo <BB'CDE> .=. [D2.42 : prntmp/propprntmo]
D4.43 \ABB'CDEFG]\A εoo 2propprntmo < BB CDEFG> . = .

[D2.43 : prntmp/propprntmo]
D4.44 \ABB']:A Zoo]όefo<BB' [| .=. [D3.44:

constp/consto, quasihomosemp/quasihomosemo, thp/thθ, frp/fro, fnctp/fncto,
lprntmp/lpropprntmo, 2prntmp/2propprntmo]

Notice that Ίdefo' is merely 'defp' adjusted to ontology. Since the
explanations for distribution of quantifiers and detachment require no
adjustment to ontology they have no proper counterparts in the ontological
explanations and the enumeration skips to:

D4.47 \ABB'CDE]:A Zoo cnsqsbsf o<BB'CDE > .=. [D3.47:

constp/consto, quasihomosemp/quasihomosemo,thp/thθ, frp/fro, fnctp/fncto]

D4.48 [ABB'C]: A Zoo cnsqshsϊo < BB'C> . = . [D3.48: cnsqsbstp/cnsqsbsto]

Thus, ^nsqsbsto' is merely 'cnsqsbstp' adjusted to ontology.

D4.49 [ABB']: A Zoo]ex\nsn\o< BB'> .=. [D3.49:
fnctp/fncto, quasihomosemp/quasihomosemo ]

Here, Ίextnsnlo' is merely 'extnsnlp' adjusted to ontology. At this point
all of the protothetical explanations have been adjusted so that they are
applicable to ontology. This section concludes by giving those explanations
which are proper to ontology. In particular the explanations for ontological
definitions and extensionality will be given.

D4.50 [AB].'. A Zoo cn\nc\ < B> .=: Sgnfnct<£> 8ooCnf < Ingr < 21 Axo » :
[iCύB]: CZoopvn\m<B>:A Coo Argl < C > . v .A Zoo Arg2 < C >

A is a conjunct of B. This explanation fixes the shape of the symbol to
be used for conjunction of propositions.

D4.51 [AB]: A εoo Sbjct < B> .=. Sgnfnct < By ε*ocnf < Ingr < 8, Axo » .
[BCD ^ J B + A X O ] . Cεooprntm <B> .DZoo ίngr < Axo > .
AεooAnαrg<lngr<10Axo> CD>

A is the subject of B. This explanation fixes the shape of the primitive
symbol of ontology which is used to form a proposition from two name
arguments—as well as indicating that the first argument of its parentheme
is to be called the subject of the proposition.
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D4.52 [AB]: Aεco Prdct < B> . = . Sgnfnct < B > 8ooCnf < l n g r < 8 A x o » .

[lCD^B + Axo].C Cooprntm.<JB> .D 8ooingr<Axo> .

A ε oo Anαrg < ingr < 11 Axo >CD>

A is the predicate of B.

D4.53 [ABB'CDE]:: A εoo nomprntmo <BB'CDE> .=.'.

1) Z)8oohomosemo<lngr<10Axo> BB'> .

2) EεQOprnfm<D> .
3) A 8oo prntm < Prdct < Eqvl2 < Essnt < C » » :

4) [rc^ L < A > + [ _ < £ > ] : Uαrg <A > εoo arg <nA> . = .

Uarg <E> 8oo arg <nE> . ' .

5) [WJFG^-A + E ] . ' . jFCooarg <?*A> .Ξ. G8oo arg<ft£>:D.

[IHI^ B1]. FZoovaro< GBB'CHI>

A in C is suited to be similar to the nominative parentheme E of the
semantical category of D relative to B in B\

D4.54 [ABB'CDE] AZooλnomprntmo < BB<CDE> .==. A 8oo nompmtmo <BB'CDR>.

Uingr<Z>>εooingr<£>

A in C is suited to be similar to the last nominative parentheme E of
the semantical category of D relative to B in B\

D4.55 [ABB'CDEFG]: A Zoo 2nompm\mo<BB'CDEFG> .=.

A εoo nomprntmo <BB'CDE> . î 8oo prntm<D> .

Όprcό<FD> εooingr<£> . Gεoosίmprntm<jP>

A in C is suited to be similar to the nominative parentheme E of D
immediately preceding an F similar to G relative to B in B\ This ends the
preliminary explanations proper to ontology and it is now possible to
explain the two proper parts of the rule of ontology.

D4.56 [ABB']:: A εoo2όefo<BB'>.=.'.
1) ~ (Ingr < 1 Essnt <A » εoocnvαr< Ingr < 1 Essnt < A » A » .

2) - ( l n g r < l Eqvll < Essnt<A>»εoocnvαr< Ingr <

•lEqvIl < E s s n t < A > » A » .

3) ~ ( l n g r < l Eqvl2 < Essnt <A>»εoocnvαr< Ingr<

1 Eqvl2 < Essnt < A > » A » .

4) - ( l n g r < l Prdct < Eqvl2 < Essnt <A » » 8oocnvar<

Ingr < 1 Prdct < Eqvl2 < Essnt <A » » A > ) .

5) ~ ( l n g r < l Prdct < Eqv 12 < Essnt <A»»εooConsto< BBΆ> .'.

6) [C^Aj.'.Cεootrm .Cεcoingr< Eqvll < Essnt<A>» .D: [ID^A].

D εooqntf .Z)εooingr<A> . C εoo int <Z)> . v . [WEsA].D ε w ingr < A > .

Cεoovar< EDy . v . C εooconsto <BBΆ> . '.

7) [CD^A]:D εooqntf .2) εoo ingr < A > . C εoo int <D> .3. [lEFύA].

Eεoo i n g r < A > .F ε^var<C£> :

8) [CDE ̂  A ] : C εoo int <Qntf <A » . E εoo prntm < Essnt <A » .

Z>8ooarg<E>.D. [lFύA].Fε*o \ngr<D> . F8oovar< CA> .'.
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9) [CDEύ A].\C too \ngr< Eqvll < Essnt < A > » . EEOO ingr< A> .
Z>εoocnvαr< CE> .D εoo ingr < Eqvll < Essnt< A > » .D:Z> =00 C. v .
[1FG^B'].D ε oo quasi homosemo < CBBAFG> .'.

10) [CύA]:C εoognrl.C εoo ingr< Ay .~(C=oo A) .D. [3Z>FFGi £ ' ] .
Dεoohomosemo < £ £ £ ' > .F εootho < BB > .F εoo ingr < F > .
Fεoo ingr <E> .G εoo ingr <Ay.D εoo Anarg< CFG > . ' .

11) [C#^A]. ' .C εoognrl .C εoo ingr < A > .Z> εoo Essnt < A> .D:D εoovrb . v .
[lEίB'].E εoo fro <B& >.D εoogenfnct<F > .'.

12) [CύA].C εoofnct.C εooingr< EqvlΊ < Essnt<A>» .D: [ID^A],
Dεoo gnrl .D εoo ingr<A> . Cεoo Essnt<Z)> . v . [iDEύB'].
C εoo fncto < BB1 ADE> .'.

13) [3CiΛ].C Soo Eqvll <Essnt<Λ».v .C Soocn|'nct< EqvlK Essnt<A>»:
Sbjct < C> εoocnvar< Sbjct < Eqvl2 < Essnt <A > » A> :

14) [CZA]: Cεooprntm< Prdct < Eqvl2 < Essnt < A » » .D.
[IDS C]. JDεooarg<C>:

15) [CD^Λ]: Cεoo pmtm< Prdct < Eqvl2 < E s s n t < Λ » » . Dεoo arg < C > .=).
[3£^Λ].Dεoovar<JBA>:

16) [CD^A]: Cεootrm. Cεooingr< Eqvl2 < Essnt < A > » .
-(Cεoo Ingr<1 Eqvl2 < Essnt < A » » ) . Dεootrm.
-Dεoo ingr< Eqvl2<Essnt<A>».-(Dεoo Ingr < 1 Eqvl2 < E s s n t < A » » .
CεooCnf<D>.D.C=ooi):

17) [CDS A]: Cεooprntm< Prdct < Eqvl2 < E s s n t < A » » .

JDεooprntm< Prdct < Eqvl2 < E s s n t < A » » . Cεoo simpmtm<Z)> .D. C=ooD:

18) [CDESBr].C εOolnomprntmo<JBjBtAZ)£;> .
Uingr< Prdct < Eqvl2 < E s s n t < A » » εoo ingr< C> .3.
C εoo simprntm <£"> :

19) [CDEFGύB']: Cεoo2nompmtmo<BB'ADEFGy . Gεoo ingr<A> .
Uprcd <GA > εoo ingr < C > .D. C εoo simprntm <E> :

20) [CDESB1]: Cεooprntm< Prdct < Eqvl2 < E s s n t < A » » .
Uingr< Prdct < Eqvl2 < Essnt < A » » εoo ingr < C> .
Z)εootho< BB' > . Eεoo ingr <D> . Cεoo simprntm<E> .D.
[1FGS Br ]. C εoo 1 nomprntm < BB'AFG> :

21) [CDEFύB']\CZoo pvn\m< Prdct < Eqv 12 < Essnt < A » » . Dεoo prntm .
D εoo ingr < A > . Uprcd < DA> εoo ingr < C > . E εoo tho < BB' > .

-F εoo ingr < £ > . Cεoo simprntm < F > . D . [3G#/^J3'].
C εoo2promprntmo < BBΆGHIDy

A is a nominative definition relative to 5 in B\ In discussing a
nominative definition A, the coimplicans of the nucleus of A shall be called
the definiens of A and the predicate of the coimplicate of the nucleus of A
shall be called the definiendum of A. Thus, the first five clauses in the
above explanation indicate that nominative definitions are generalizations of
coimplications where the first word of the definiendum is neither a
variable nor a previously defined or primitive symbol—it is in fact the
constant which is being defined. The second clause together with the
thirteenth indicates that the definiens either has a subject term itself or is
a conjunction which has a subject term, where this term is an equiform
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variable with the subject of the definiendum. Incidentally, this last
requirement could be relaxed whenever one is certain that the definiens
actually adopted implies the officially required definiens.

Clauses 6 through 12 make certain stipulations about the binding of
variables in nominative definitions and the structure of the definiens.
These clauses are in fact exactly analogous to clauses 4 through 10 for
protothetical definitions. Thus, as before, any terms occurring in the
definiens are either variables in quantifiers, variables bound by quantifiers,
or constants which already have a fixed semantical category. Any of the
quantifiers which occur in a definition (either as the quantifier of the
definition or merely as quantifiers in the definition) are not vacuous.
Equiform variables in the definiens must belong to the same semantical
category. Any generalizations must be prepositional and their nuclei must
either be single words or generating functions for some determined
semantical category. Finally, any function in the definiens is either the
nucleus of a generalization or belongs to some determined semantical
category.

Finally, the remaining clauses of D4.56 deal with the definiendum and
differ insignificantly from the concluding clauses of the explanation for
protothetical definition. As before, it is stipulated that parenthemes in the
definiendum are unempty and contain only variables, while there is no
duplication of terms (and hence variables) nor of similar parenthemes.
While the last four clauses taken together stipulate that each parentheme
occurring in the definiendum can be assigned unambiguously a suitable
semantical category.

D4.57 [ABB']:: AZoo2ex\nsn\o< BB\> .=.'.
1) [ICDUA]. C ε o o i n t < Q n t f < A » . i ) ε o o i n t < Q n t f < A » . Cεoo prcd< DA>:

2) [CDύ A]: D εoo qn\i. Dεoo ingr< A > . Cεoo i n t < £ > . D . [lEFύA].

£εooingr<A> . Fεoovαr< CE> .-(FεooCnf < l ή g r < l Essnt < A > » ) .*.

3) ~ ( l n g r < l Eqvl 1< Essnt< Eqvll < Essnt < A > » » εoo cnvαr <lngr <

lEqvIl <Essnt<Eqvll < Essnt < A » » > , A » .'.

4) [3C^A]Cεooprntm<EqvΠ < Essnt < Eqvl2 < Essnt < A > » » .

[DE^C]:Dεoo int < C> . EZoo int < C> .z>, D=ooE.

l n g r < l Prdct < Eqvll < Essnt < Eqvll < Essnt < A » » » 8oo cnvαr < DA> Λ

5) [ 3 C i Λ ] . \ C8ooprntm< Eqvl2 < Essnt < Eqvl2< Essnt < A > » » :

[DE^ C]: D εoo int < C> . E 8oo int < C> .D. D=oo E.

l n g r < l Prdct < Eqvl2 < Essnt < Eqvll < Essnt < A » » » 8oocnvar< DA> .'.

6) [CύA].\ Cεoofnct. Cεooingr < A > . D : [3Z>^ A ] . Z>εoo gnri .

£>εoo ingr < A > . C εoo Essnt < D> . v . [WE^ B'].C ε«» fncto < BB\ADE> .'.

7) Sbjct< Eqvll < Essnt < Eqvll < Essnt < A > » » . ε . « » cnvar < Sb jet < Eqvl2 <

Essnt< Eqvll < E s s n t < A » > » Eqvll < Essnt < A > » :

8) [CDEFS A]: D εooprntm < Prdct < Eqvl 1 < Essnt < Eqvll. < Essnt < A » » » .

£8ooprntm< Prdct < Eqvl2 > Essnt < Eqvll < E s s n t < A » » » .

Fεoo Anarg <CDE> .D. F εoocnvar< C Eqvll < E s s n t < A > » :

9) [CDE^A]:D 8oo ingr < A > . E 8oocnvar< C£».Z). [iFGύ B1].

Eε,ooqυas\homosemo<CBByAFG>:



LESNIEWSKI'S TERMINOLOGICAL EXPLANATIONS 367

10) [CD^A]:D εoocnvar< CEqvIl < Essnt< A > » .D. [3EF£ A].
Eεoo\ngr<A> .F εoo ingr< Ay .D ZooAnarg<CEF> ,'

11) [CZλE^A].\Cεooprntm< Essnt < Eqvl2 < Essnt< A > > » .D Coo αrg < C > .

Ezoo Sgnfnct <D > .D [FG^A ] : F e«> int <Qntf < Eqvl2 < Essnt < A » » .

Gβoo int<Qntf< Eqvl2 < Essnt < A » » . D . F = o o G.

EZoo vαr<F Eqvl2 < Essnt < A » >

A is ail ontological thesis of ex tens tonality relative to B in B%. The
first two clauses of this explanation indicate that there are at least two
variables in the quantifier of A, that no quantifiers in A are vacuous, and
that the first word in the nucleus of A is not a variable.

The remaining clauses indicate that A is a generalization of some
coimplication, while both the coimplicans and coimplicate of the nucleus of
A are themselves generalizations of coimplications. Let us call the
coimplicans of the nucleus of A the basis of A and the coimplicate of the
nucleus of A the extension of A. Then clauses 3, 4 and 5 indicate that the
parentheme of the coimplicans (coimplicate) of the nucleus of the basis of A
is nominative. Clause 7 indicates that the subjects of these parenthemes
are equiform variables bound in the basis of A. In respect to their
predicates: the coimplicans (coimplicate) of the nucleus of the extension of
A has a parentheme containing a single argument which is a variable
equiform with the first word in the predicate of the coimplicans (coimpli-
cate) of the nucleus of the basis. Indeed, these are the variables bound by
the quantifier of A.

The remaining clauses of this explanation closely parallel those for
protothetical extensionality. Thus, as before, any function in A is either
the nucleus of some generalization or belongs to some determined
semantical category. Further, equiform variables in A belong to the same
semantical category. Analogous arguments of the predicates of the
coimplicans and coimplicate of the nucleus of the basis are equiform
variables, and any equiform variables in the basis are analogous arguments
of the basis. And finally, the last clause in D4.57 indicates that the
quantifier of the extension of A has only one variable and it binds the
functor of the coimplicans (coimplicate) of the nucleus of the extension.

This explanation differs significantly from Les"niewski?s only in its
fourth, fifth and last clauses and avoids the use of 'Cmpi' in these clauses
in a manner similar to that of T.E.XLIX. With T.E.LVIΓ stated, Lesniewski
in [6] writes:

Unter der Voraussetzung, dass eine These A die letzte der Thesen ist,
die schon zu dem System gehoren, darf man zu ihm als neue These einen
Ausdruck B nur in dem Fall hinzufύgen, wenn wenigstens eine der sieben
folgenden Bedingungen erfullt ist:

1) £εldefo(A)
2) £ε2defo(A)
3) [3C]. C εtho(A). £εcnsqrprtqntf(C)
4) [3C,Z)].Cεtho(A).^εthθ(A).^εcnsqeqvl(C,Z))
5) [9C]. C ε tho(Λ) .B εcnsqsbsto(A,C)
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6) B ε lextnsnlo(A)
7) B ε 2extnsnlo(A)

Following this exposition, however, ontology is legitimately developed
under the following single rule.

Supposing that a thesis A is the last thesis which already belongs to a
list of theses A* of the system, then an expression B may be added as a new
thesis only in case at least one of the following seven conditions is fulfilled:

1) £εooldefo<A4 τ>
2) B εoo2defo<AA<>
3) [3C^A].CεOoth0<AA τ>.5ε o ocnsqrprtqntf<C>
4) [3CD ίA].Cεoo tho <AA< > . ΰ ε o o thO <AA' > JBεo o cnsqrprtqntf < C >
5) [3C£A]. C εoo tho<A4 T > . £ ε^ cnsqsbsto <AA'C>
6) jBεoolextnsnlo<A4τ>
7) B εoo 2extnsnlo<AA<>

Thus, if one wishes to give an exposition of ontology, he asserts an
adequate axiom and then chooses which theses he will next assert—his
choice continually guided by the above effective (primitive recursive) rule.

5. Conclusion Just as the rule for ontology incorporates an adjusted rule of
protothetic, so too any extension of ontology will incorporate an adjusted
rule of ontology—see for instance [6] where a particular extension of
ontology, mereology, is discussed. All that is generally needed is an
adjustment in the concept of thesis. Thus, the thirty-second terminological
explanation is changed so that the concept of thesis for the extended system
includes effective theses of ontology as well as the new axiom, for instance,
the axiom for mereology or the axiom of infinity, etc. After that is done,
the rule for the extended system of ontology is generated merely by
replacing the previous concept of thesis, tho, by the new concept, thm or
thinf, throughout the remaining terminological explanations.

One may assume that such a program is accomplished for ontology
extended by the axiom of infinity, and that, therefore, there is available a
rule for this extension of ontology analogous to that given above.

In [7], Lesniewski's original terminological explanations are presented
axiomatically. Here, the terminological explanations are reduced to recur-
sive concepts and are actually represented in ontology extended by the
axiom of infinity. Naturally, Godel's well known results of [4] follow for
this system—the interested reader can consult [2] for a fuller statement
of the incompleteness proof for ontology.

NOTES

1. Of course this is not a proper definition in the system of ontology, but only a
definitional thesis as was indicated. That is, the thesis in question is not justified
by the ontological directive for definitions although it is derivable in the system
and is analogous to a proper definition. But with this point clear, because the
availability of such theses is a direct result of there being an internal ontological
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model for the numerical epsilon, such theses can be referred to as (numerical)
definitions. See [1], especially section 2, for a fuller discussion of the internal
model and numerical definitions.

2. The axiom of ontology used in this exposition introduces into the system of logic
being formed by its assertion, the following semantical categories as primitive to
ontology and not available in protothetic: names and proposition forming functors
for two name arguments. These categories are introduced by the single primitive
constant of ontology (ε). Any other categories are introduced into the system by
defining a constant for the category in accordance with the definitional directives
of the system. However, the identification of ''basic semantical categories of
ontology" with names and propositions is justified since all categories which can
be introduced into ontology are definable in meta-logic in terms of these two.

3. As will become clear when the terminological explanations of this section are
completed, ontology is not based on protothetic merely by appending an axiom to
that system. Rather, ontology has its own single rule—parts of which are identical
to protothetical directives except that they are understood as adjusted to the
semantical categories available in ontology. Similarly, any extension of ontology,
for example, mereology, is most accurately described as a system incorporating
(some given development of) ontology within it.
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