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SOME EXAMPLES OF DIFFERENT METHODS OF FORMAL
PROOFS WITH GENERALIZATIONS OF THE

SATISFIABILITY DEFINITION

JULIUSZ REICHBACH

This paper1 is composed of three parts. In the first one we recall my
generalization of the usual satisfiability definition, we give a new general
variant of my truncated truth definition with it a syntactic picture of
sequents; we also construct a generalized diagram introduced here
according to the above semantics and [9], and analogous to [5], see also [2],
In the second part generalized sequent proof rules based on their semantics
of [3] with their generalized diagram are given, and general decidability
possibilities for formulas of the first-order functional calculus are
supplied; the last method restricts the number of variables to a finite
number but possibly with infinite many monadic relations. The third part
includes different examples solved by introduced generalized sequent proof
rules. The cited papers with our explanations prove the adequacy of the
semantic and syntactic considerations. Certain generalizations of the
above results will be included in my future papers.

We use notions and denotations of [3]-[12] and shortly: alternative +;
negation f; general quantifier Π; free variables x,xu...\ apparent vari-
ables a, ai, . . .; relations signs f\, . . . ,/<J, . . . ,/ί, . . . , / | (/* - of m
arguments); expressions E, F, Eh Fu . . . {£/} = iu . . . , iχ\ w(E) - the
maximal number of free variables (p(E) - apparent variables) occurring in
&) {ME)} - sequence of all indices of free variables occurring in E; i(E) =
max (fyw(E)}); n(E) = max {*(.£), w(B) + p(G)}, for each alternative indecom-
posable members G of E2; m(E) = ί(E) +p(E); {F'q} - the sequence F\, . . . ,
Fq, . . . , Fι, . . . , F\\ Q, Qi, . . . - non-empty sets of tables of the same
rank; Q(k) - elements of Q have the same rank k; A,Ai, . . . - sets of
indecomposable formulas (i.e. atomic formulas with their negation) whose
indices of free variables are ^k (k is named the rank of the sets) and for
such formulas: EzA .=. E'εA; Γ, ΓΊ, . . . - arbitrary sets of formulas;
X, YyXχ, Γx, . . . - models M or sets A described above; M/s1? . . . , s^/ =
< Dk, {φί} > .=. (M = < D, {ί|} » Λ (φ/(r1; . . . , n) .=. Fj(srv . .., sri),
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i = 1, . . . , t and j = 1, . . . , q); EεA/sl9 . . . , sk/ .=. E(pcSl/xγ) . . . (xsk/xk)
εA3 {A/slf . . . , Sk/ is restricted to indecomposable formulas); X/{sk} =
X/su . . . , sA/; XεY[k] =. (l{sk}) {X = Y/{sk}}; C{E} - the set of all parts
of E; Γ({z'/}) - the set of all formulas belonging to Γ whose free variables
have indices {z'/}; hA{E} = 0, i.e.E is true in the model M; hA{E{sk}} = 0, i.e.
{sk} are elements of the domain of M, XJ are names of SJ and {ŝ } do not
satisfy E in the model M; T is the description of A iff T = < Dk, {Fq}>,
T ,A - have the same rank and for each mu . . . , ra/ ^ k and j < £, e < #:
Fi(mh . . . , m/) .=. fί(xmv . . . , #«/) εA. A sequence of formulas is called
fundamental iff £ and £ ' occur in one; β(M) .Ξ. ( S l ) (S2) { ( M / S ^ = M/s2/) -»
(si = s2)}.

Of course:

L.I. X/{sk}/\jm} = X/{sim}, see [l].

L.2. If Tι is the description of Aι and T2 is the description of A2 and

both tables have the same rank, then: Tj{jm} = Tj{j^ .-.A1/{jm}=A2/{jm}.

For an arbitrary Q such that Q{n), for an arbitrary formula E, for an

arbitrary T = < Dn, {Fq} > εQ and for each k such that i(E) < k and

k + p(E) ^ w w e introduce the following inductive definition of the functional

V:

(Id) V{n, Q, T, k,ff(xrv . . . ,xTM)} = 1 =.F? (rλ, . . . , rm\
(2d) V{n, Q, T, k, F'}=1 .=.~V{n, Q, Γ, *, F} = 1 =. V{n, Q, T, k, F} = 0 ,
(Λί) φ , Q, Γ, .F + G} = J .=. V{n, Q, T, k, F} = 1 v 7{w, Q, Γ, A, G} = 1 ,
(4d) F{n, Q, Γ, A, ΠtfF} = 1 .=. (ί) {(* ^ *) - F[w, Q, Γ, *, F ( ^ /α)} = 1}

Λ(T1){(T1εQ)A(T1/{k} = T/{k}) - V{n, Q, Tl9 k + J, ^ A + 1 /f l ) } = 1} .

Z).I. iV(Q, n, G) . S . (*){(* + p (G) <^)A(Z(G) <*) -

(Γ)(7{n, Q, Γ, * + 2, G} = i .^. F{rc, Q, Γ, *, G} = 1)} .
Z).^. £ ε P ^ 5 Q, T, k) =. (3G){(GεC{E}) (N(Q, n, G) - V{n, Q, T, k, E}=2)}.
D.3. Eεp{n} =. (Q)(T){Q(n)Λ(TεQ) - (EεP(n, Q, T, i(E)))}.
DA. Eε P.=. (3n){(w > m(£))Λ(EεP{w})}.

The relation iV(Q, w, G) is invariant respectively to the number k and it
holds for all quantifierless formulas G.

Definitions (ld)-(4d) are - in a suitable meaning - generalizations of
the satisfiability definition in the domain of natural numbers 1, . . . , n; the
case is analogous and remains for readers, see [5], [7], [9],

If we assume that Q is one elementing, then (4d) is in a certain sense
the usual satisfiability definition in the domain 2, . . . , n.

If M is a model and Q = M[&], then elements of Q are submodels of M
in the meaning of homomorphism, the number i(F) + 1 in (4d) is the name of
an arbitrary element of the domain of M.

Of course:

(4tf ) V{n, Q, T, k, UaF} = 0 .s. (3z){(z ^ «A7{W, Q, Γ, k, F(x{/a)} = θ}
v(lT1){(T1εQ)A(T1/{k} = T/{k})ΛV{n, Q, Tl9 k + 1, F(xk+1/a)} = o}.
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(5d') V{n, Q, T, k, ΣaF} = 0 .=. (i){(i ^k)-* V{n, Q, Γ, k, F (xt/a)} = 0}
A(T1){(T1εQ)A(T1/{k} = T/{k}) - V{n, Q, Th k + 2, F ( W « ) } = 0}.

1.5. If Γ/{&} = Γ°/{&}, then:
V{n, Q, T, k , E } = l . = . F{rc, Q, Γ°, A:, E} = 1

The proof of L.3. is easy and inductive on the length of the formula E,
see, L.3. in [7] and L.2. in [9].

T.I. If E is an alternative of formulas of the form Σai . . . Σα7 -i ΐlajG,for
some quantifierless and variable-free G, FZC{E}, YA{E} = 0, k ^ m(E),
Q = M[k], TεQ, i(F) ^k, then:

(1) // k + p(F) < w, M{F(2, . . . , &)} = 6> α ^ M/{5fe} = Γ/{̂ }, then
V{n, Q, T, k, FJ = 0 and for each HZC{E} we have N(Q, n, H) and there-
EεP.

(2) //β(M), M/{sJ = T/{k}, then for an arbitrary formula F:
M{F{sk}} = 0 ^.V{n,Q,T,k,F} = 0 .

The inductive prrof of T.I. is almost identical with the proof of T.2. in
[8] and T.6. in [9] and remains for readers. In T.5. we also use the
property of the inductive proof of (1) that in this proof it sufficies to use the
second member of the alternative at (4d').

T.2. If Eι, . . . Er is a formalized proof of the formula E, and n ^ max
{m(Ei), . . . , m(Er)}, then Ej εP{n},j = 1, . . . , r.

The proof of T.2. is almost identical with the proof of T.2. in [9] and
analogous to the proof of Γ.5. in [7]. From T.I. and T.2. follows (see also
the construction of Skolem's normal forms):

T.3. A formula E is a thesis iff EεP.

For normal forms we received a more strong theorem given in [8], [9],
namely that for ones we can replace D.2. by:

Ώ 2 \ E ε P ( n , Q , T , k ) .^. N(Q , n , E)-> V{n, Q, T,k, E } = 1

and the second equivalence in D.I. we can replace by the implication.
In order to give sequent proof rules we introduce certain additional

definitions, see [6],
For each k, n, Γ, F\ x means the first variable Xi such that i^n and

F\xi/a)εT.
We consider equivalence sequent proof schemas—proof rules—which

we read in an usual manner with certain generalizations, see Figure I; we
read e.g.:

T-l

— from Γi follows Γ2 and from Γ2 follows Γ3, . . . such schemas
-~ are called diagrams and we assume Th Γ2, Γ3, . . . non-empty;
I3
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Γ
— r — from Γ follows Γx or Γ2; the rule determines two
1 2 diagrams; the prolongation of Γ in the first diagram is Γi

and in the second one is Γ2.
All above schemas determine one last line and the following:

Γ
1—— 1 determines many last lines according to the number

1 ^ 2 i ' * " of J, and it means: from Γ follows Γx and Γ2 and . . .
the prolongation of Γ is Γi and the prolongation of Γt is Γ.

Composition of such proof rules according to a diagram is called a
generalized diagram or a generalized tree; we apply all proof rules in a
generalized diagram which describes their use, see Figure I . . . Accord-
ing to the interpretation E and 0 and according to the generalized satisfi-
ability definition given above, we apply to an arbitrary formula E - called a
topformula - the following sequent proof rules depending on a given number
n:

/AX Γ> F + G (γ\ Γ, (F+GV . ,N* Γ , F " ,
{ A ) r, F, G ' ( κ ) r, F< I r, σ ' ( N ) ~Ύ7F~ '

( Π l ) Γ (U^aFY^ix/a) " i f * = n " M F ) + Λ t h θ n W Θ d ° Π θ t a p p l y f u r t h e Γ

' V ' ' V ι l } the rule to the formula (HaFV with explanations
given below;

( Π 2 ) Γ 1 Γ ΓF(T/a) 1 " k = ί{F) + *> ί{F) + 2>> > " - P W +1; l a s t
^ ' k/ > ό - - - lines of columns Γ, F\xk/a) here considered

must be equal with Γ on free variables with indices 1, . . . , k - 1 (it
suffices to assume the property for last lines of these columns).

A generalized diagram is correct if for two arbitrary columns J\, £Γ2

and each formula F:

1. If JΊ/{k} = ^V{£}4, i(F) ^k, k + P(F) < w, then F occurs in the column
^Ί iff F occurs in the column £Γ2>
For each FεC{E}, if m(F) < n, then either F belongs to 4ΓX or F' be-
longs to &x.

The above points 1 and 2 mean that if for a generalized diagram points
1 and 2 are not fulfilled, then we add to suitable columns respective
formulas, i.e. in point 1 we add the formula F and in point 2 forumlas F or
F τ and afterwards we act according to the introduced sequent rules; the
point 1 means also that if ϊlaG occurs in a certain column, then the rule
(Π2) must be fulfilled for this column.

In the following we consider only correct diagrams. In the classical
case we assume that all columns are equal, i.e. in the classical diagram we
have only one column; thus all assumptions about columns are less here
and we recieve an usual sequent proof, see [2]; the choosing of the column
in this case, i.e. the choosing of the number k in (Π2) is classical; therefore
our proof rules are generalizations of classical ones. According to the
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considered proof rules each formula E determines a generalized diagram

composed of columns with the main top E:

Work scheme of a generalized diagram

E

(π2)yr\(π2)

yS I (Π2) ^ V

S (Π.) X ^

(n2)y\ \ \
J/ \(π2) I \

y^ \ I (ΠϊΓΛsOia)

(π2κyj\(π2) I J ( ( ώ X ^
I ( I^1 (no ( π V N j ' (π/KlΠ2) I
I I I ? I ϊ ( T T ^ I T i l l I

Figure I

Each column determines a new last line; a line is denoted by a circle.
Signs (Πi) and (Π2) on the figure denote the application of rules (Πi) and (Π2)
respectively; every new circle is generated by application of a certain
proof rule. Dots denote prolongation of the diagram according to con-
sidered sequent proof rules and properties 1-2 of a correct diagram.

T.4. If for each n ^ m{E) all lines of each column of a certain generalized
diagram are not fundamental, then E is not a thesis.

Proof. In order to prove TA. for a given formula E we consider a
natural number n > m(E) and the generalized diagram of E with properties
described in the theorem. Each last line we consider as a set A of
formulas of the rank n (completion of the last line to the set A of the rank
n is here arbitrary) and to each set A we attribute the description T of
negated indecomposable formulas belonging to A (thus A and T have the
same rank n) and the family of all such T's creates the set Q of tables of
the rank n5. We point out each last line A determines the described table T
and a column & with the basis A and the top E. We prove by induction on
the length of a formula # :

(1) If Hεf, then V{n, Q, T,k,H} = 0, for each k such that i(H) < k,
k+ p(H) <w.

For atomic formulas and their negation, (l) holds by the assumption.
Let (1) hold for formulas of the length <r ; we shall prove it for formulas H
of the length r.
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We consider here three cases:

2. H = F + G, for some F, G;
2. H = F\ for some F;
3. H = UaF, for some F.

In the case H=F+Gε^Γ by v ir tue of (A) we receive F, Gε^Γ; t h e r e -

fore by the inductive assumption V{n, Q, T, kh F} = o, for each k1 > i(F),

ki + p(F) < n, and V{n, Q, T, k2} G} = 0, for each k2 > i(G), k2 + p(G) < n\

therefore by (3d1) V{n, Q, T, k, F + G} = 0, for each k > i(F + G),

k + p(F + G) < n, which proves (1) in the first case.
Tn the case H = F1 we consider three cases:

(2°) F = n
(J?°) F =F1+Gi;

(.3°) F = Παî L

In the case F = F[ we have by assumption H = F^ ε^Γ; therefore by (N)
we have Fλz£Γ. Hence by means of the i n d u c t i v e a s s u m p t i o n
V{n, Q, T, k, Fλ} = 0, for each k > z(Fi), ^ + p(Fχ) ^ w, and because {(F^ =
z(^), we have also V{w, Q, Γ, k, H} = 0, for each k => z(£T), ^ + />(^) < «,
which proves (I) in the case (1°).

In the case F = Fι + Gx we have by assumption // = {F1 + G i ) τ ε ^ ;
therefore by (K) or F[εf or G l ε ^

We consider here the case F\εS\ the case G[ε^ί is analogous.
From the above by means of the inductive assumption we have

V{n, Q, T, kl9 F[} = 0, for each k, > i(F[), kx + p(F[) < n; therefore by (2d)
V{n, Q, Γ, ku Fi} = I, for each kx > z'^i), ^ x + 0(2^) < w, and by (3d) and
(ϋί) we obtain respectively V{n, Q, T, k, (Fj^ + Gλy} = 0, for each
k > i(F1 + GO, fe + p((Fx + d ) τ ) ^ n, i.e. V{n, Q, T, k, H} = 0, for each
k > i(H), k + p(H) < n, which proves (1) in the case (2°).

In the case F = U.aFί we have by assumption H = (Παi^y ε^T"; therefore
by the property (2) of the correct diagram and (Πj.) for each k > ί'ί-Fi),
k + P(Fχ) < n, for every i < fe + 1 and for each ^ i if JΊ/{k} = ^/{^}, then
(ΠαjPi)τ ε έΓx and .Fi(^ /a) ε ^Γx; hence by the construction of Q, L.2. and the
inductive hypothesis for each k > ^(i^) fe + p(F^ < n? for every i ^k + 1 and
for each T.εQ, if Γ ^ } = T/{k}, then F{n, Q, Tu k + 1, F[(xi/a)} = 0 and
V{n,Q, T1,k+l,F[(xi/a)} = l. Therefore by virtue of (4d) V{n,Q, T,k, UaF^} =
1, for each k ^ ί ^ i ) , ^ + P(FX) ^ n, and therefore by (2d) we have
F{n, Q, T,k,H} = 0, for each fe > z(£Γ), fe + />(fl) ^ w, which proves (2) in the
case (5°).

In the last case H = UaF ε &. Hence in view of the construction of the
generalized diagram and (Π2) for each k>i(F),k +p(F) <w, there exists
JΊ such that έΓi/{k} = ^/{k} and F(xk+i/a) ε S\.

Hence in view of the definiton of Q, L.2., and the inductive hypothesis
for each k > i{F), k + p(F) < w, there exists Tx such that Tj{ty = T/{k} and
F{n, Q, Tu k + 1, F(xk+x/a)} = 0. Thus by virtue of (4d') V{n, Q, T, k, UaF} =
0, for each k > i(ΏaF), k + p(UaF) < w, and also V{n, Q, Γ, fc, ^} = 0, for
each k ^ z(i7), ^ + p(H) ^ n, which proves (2) in the last case 3.
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Thus we closed the inductive proof of (1). Therefore for formulas H
belonging to the generalized diagram we proved N(Q, n, H). If now HεC{E},
m{H) < n, then in view of the construction of a correct generalized diagram,
property 2, either H belongs to each column of the generalized diagram or
W belongs to the same column. Therefore in view of the above we have
N{Q, n, H) for each HεC{E}9 m{H) <n. Because E belongs to the diagram,
therefore even for each TεQ, we have V{n, Q, T, k, E} = 0, for each
k ^ i(E), k + p(E) ^n, and therefore EεP{k}. From the above and the as-
sumption we obtain EεP and therefore in view of T.2. E is not a thesis.

According to our explanation, see footnote 5 . . . , the proof also holds
in the classical case; then we only have one column, but we must consider
also n = tto
T.5. If a line of a certain column of each generalized diagram of E for
certain n ^ m(E) is fundamental, then E is a thesis.

Proof-. To the contrary, if E is not a thesis, then according to T.I.
EεP; therefore for each n ^ m{E) there exists such set Qx of tables of the
rank n and there exists a table TεQx such that for each k > i(E) we have
F{rc, Ql9 T,k, E} = o and for each GεC(E) we have N(Ql9 n, G) (according to
the remark given in the description of the inductive proof of T.I., using
(4df) we use here only the second member of the alternative of it). Then the
generalized satisfiability definition determines here a generalized diagram
analogous to sequent proof rules which correspond to the satisfiability
definition; according to the above, the diagram has no fundamental line
contrary to the assumption of T.5.

From T.4. and T.5. follows:

T.6. A formula E is a thesis iff each of its generalized diagrams has a
fundamental line for certain n ^ m(E).

We proved analogical theorems in [5] by replacing i(E) by means of
(ME)}; the proof was also analogous. In order to give sequent proof
examples we shall introduce also a second generalized diagram based on
[3] but first of all we recall certain definitions, lemmas and theorems with
their stronger modification and without additional explanations:

D.5. m(Q, k) =. Q(k)Λ({tk})(T){(tu . . . , tk <fc)Λ(ΓεQ) -> (T/{tk} εQ)}

D.6. N(Q,k) =.m(Q,k) (t) (T,) (Ta) (3 T3) (t+2*k){(Tu T2εQ)Λ
(T./it} = T2/{t}) - (T3εQ)*(Ts/{t + 1} = Tj{t + l})Λ(T3/{tl t + 2/
= T2/{t},t +2/)}.

L.4. If N{Q, k}, then for an arbitrary permutation* su - - > sr, sr+i, . . . ,
Sk-i, Sk of natural numbers ^ k we have:

(Γ1)(Γ2)(3Γ3){(Γ1/{s} = T2/{sr})*(Tu T2εQ) -> (T3εQ)Λ(T3/{sk-1} =
τAsk-S*(T3/{sr}, sk/ = T2/{sr}y sk/)} .

L.5. IfQ = M|>], then m{Q, k).
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D.7. R(U) . S . (t)(j){(M/t/ = M/j/) - (* = j)}

L.6. Each model Mi = < D, {FJ} > may be extended to a model M =
< D, {Fj\, {GJ} > such that R(M) [we extended the model by means of
monadic relations {G*}].

L.7. IfR(M) and Q = M[k], then N(Q, k).

L.8. If M = < D, {FJ} > is a monadic model and Q = M[k], then N(Q, k).

D.8. T°εQ\k\ .=. (3w)(3Γ){(w ^ k)ΛQ(n)Λ(TεQ)Λ(T° = T/l, . . . ,k/)}.

L.9. IfN(Q, n),n>k and Q° = Q\k\, then N(Q°, k).

L.10. If k ^ n, N(Q°, k), then Q° may be extended to such minimal Q (using
only the property defined in D.6.) that Q° c Q\k\ and N(Q, n).

We shall call the extension considered in L.10. the minimal extension
of <?° respective to the property N(Q°, k).

Assuming Q(n) we recall the finite interpretation of the general
quantifier of [3] and give a more strong definition of true formulas used in
the last paper, see footnote 5, p. 202 of [3]:

(d4) W{Q, T, UaF} = 1 =. (i)(Γθ {(i * w)A(Γ1εQ)A(Γ1/{vF)} = ^ / { M F ) } ) -

W{Q, T1,F(xi/a)}=l}.

D.9. EεP{n} =? (Q) {N(Q, n) - (FεP(Q, n))}

D.10. EεP .=. EεP{n{E)}.
P is the class of true formulas; we note here that though all Q's have

infinite many elements but with a certain regularity, see L.6. and L.7.

(d4') W{Q, T,ΏaF} = 0.=. (3t) (3 TJ {(i * n) ̂ T ,εQ) ^T Aiw(F)} = T/{IW(P)})A
W{Q, TU F(Xi/a)} = 0}

L.ll. Let E° result from E by replacing free variables with indices {iw(P)}
correspondingly by free variables with indices {jw(Eo)} and w(E) = w(E°)
(then E results from E° by an inverse substitution).

Let Γ, Γ°εQ, m(Q, k) and T/{iw{E)} = Γ°/{^(£0)}; then:

W{Q, T,E} = 1 .=. W{Q, 1°, E0} = 1.

L.12.' Let m(Q,k + 1), m(Q°, k),8 k ^ n{E), Q° = Q\k\, TεQ, T°εQ° and
T° = T/l, . . . , k/; then:

W{Q, T,E}=1 .=. W{Q, Ί», E0} = 1.

L.12. Let N(Q°, k) and let Q be of the rank k + 1 and be the minimal exten-
sion of Q° respective to the property N(Q°, k) (then according to L.10. also
N(Q, k + l))k > n(E), TεQ, T°εQ°, T° = T/l, . . . , k/ then:

W{Q, T,E} = 1 .=. W{Q°, T°, E} = 1.

T.7. If E is a thesis, then EεP.
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T.8. If E has Skolem's normal form for theses, FεC{E}, M{E} = 0,
n ^ n(E), Q = hA[n], TεQ; then:

If M(F{s/a<F)}) = 0, M/isiutp)} = T/{iw{F)}, then W{Q, T, F} = 0.

T.9. The formula E is a thesis iff EεP.

T.10. The formula E is true iff EεP.

T.ll. (Analogue to Skolem-Lόwenheim's theorem) If U is an arbitrary
class of formulas, then U is a class of true formulas in some model iff for
each finite sequence Ex, . . . , Erε\J there exists n -max {n(E^), . . . , n{Eι)}
and Q such that N(Q, n) and Ex, . . . , ErεP(Q, n). If for each EεU,
n{E) < n, then we can also assume that in the sequence Eu . . . , Er all
elements of U occur.

The definition (d4) creates sequent proof rules analogous to the case of
(4d); namely to an arbitrary formula F and n = n(E) we apply the sequent
proof rules (A), (K), (N), (Πj till i = n and the following:

( π 2 ) r 1 rlnxf/ay w h e r e Γ ( { ^ F > } ) = (Γ> W/β>><{w>})

they determine the third type of generalized diagrams of the paper.
To the definition of a correct diagram we add here that the set Q,

constructed in T.4. to a given formula Ef and its generalized diagram, must
also have the property N(Q, n(E)); if it has not the property, then we add all
suitable lines to the diagram one after another and in such way we rebuild
one, beginning with the greatest possible part of the diagram. The easy
translation of the property N(Q, n(E)) to the language of indecomposable
formulas remains for the readers. Then, of course, remain here true
theorems T.4., T.5. and T.6. with the additional assumptions =n(E). The
above, especially with the last sequent proof rules, give also the decid-
ability of the monadic first-order functional calculus and a general
decidabling possibility for arbitrary formulas; another stronger one built
also on sequent proof rules is given in [10], [12]. The picture of the
considerations in many valued propositional logic is also indicated in my
papers, see [3], [11]. Explanations to short writing of examples we leave
for the readers:

1) n(E) = 1: E = {naf(a) D f(xλ)}
Axi), (naf(a)V

f(xi), (Πα/α)f,/f(ΛΓi) - contradiction

Because the first generalization includes usual sequent proof rules
then simple examples as above have an usual sequent proof.
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In two following examples we name free variables by their indices:

2) n = n(E) = 2 E = {ΣaiΠa2.flgi, 2̂) ^ n^Σaifjai, ^2)}
τiaAnazfiau a2))', τia2ΣaιMi, 2̂)

1 (Πa2/U, α2))', ΠαzΣα^α!, a2)
/ ' ( i , D,f'(l, 2), Yla2Σaxf(ax, a2)

f'(l,l),f'(l, 2) 1 Σajjai, I)
f(l, 1), f(2, 1)

the last line | f'(l, 1), f(2,2)/D.5-6/
f'(l, D, f(2, 2), (na2Al, α2))'/correct/
f'(l, l),f(2,2),f'(l, 2)

the last line|/(J, l),f'(2, 2),p{2,1)/PJ^6/
the last line, ΐ,aιβ,ai., l)/correct/

f(l, l),f<(2, 2),f<(2, l),f{2,1)
contradiction

3) n{E)= 2 E = {Ua2Σaιf{ah a2) 3 ΣQiΠ 2̂/(<2b a2)}

{UazΣaifiax, a2))\ Σa1Ua2f(ah 2̂)
Ylaιf{ah 1), naif {a^ 2), Σayϊla2f(av a2)

1 f'{2,l), ΣaJίaJia^aάy^l^), Σa1Ua2f(aha2) ~
/'(2,1), Ila2f{l, a2), Ua2f(2, a2) analogic
~f'{2,1), na2f{2, a2)[ f(l, 2)77.
f'(2,l) I f(2,l) f(l,2)f<(l,2) f(2,l) f(l,2)

Therefore we received the following line-tables <f(l,2), . . . >,
<f(2,l), . . . >, <f(l,2), . . . >, <f{2,l), . . . >; the closing of the se-
quence of line-tables under the operations D.5-D.6. gives also:

<f(l,l),f(2,2), . . . >, <f(l,l),f(2,2), . . . > , <f(l,l),f(2,$, . . . >

with their permutation (with reiterations). In such way we described a
diagram without a fundamental line and it means that the formula in the last
example is not a thesis (true). Other examples remain for the readers,
see [10].

NOTES

1. The paper is connected with my lectures on J. Shipecki's seminar and on meetings
of Polish Mathematical Society at Wroclaw in 1955-7, [3].

2. e.g., if E = Ex + (E2 + E3) and Eίt E2, E3 are not alternatives of at least two
formulas, then 2^, E2, E3 are alternative indecomposable members of E and E2 +
E3.

3. E{x/y) - substitution x for y with known restriction.

4. i.e. columns £~ι and ^ 2

a r e equal on indecomposable formulas with indices ^k.

5. In the classical case we must also consider n = tf0 and then the diagram has only
one column and T is the description of negated indecomposable formulas belonging
to the column.
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6. A stronger lemma for permutation with reiterations is given in [3], proofs of the

paper hold without the stronger lemma.

7. We assume here the formal definition of P{Q, n) given in D.2.

8. If m{Q°, k), then the construction of Q with the property m(Q, k + 1) is immediate.

9. (Γ, F(xi/a)) denotes the second column.
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