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THE NUMERICAL EPSILON

JOHN THOMAS CANTY

In this paper* Lesniewski's system of ontology extended by an axiom of
infinity is used to derive Peano's arithmetic. Section 1 gives the main
theses of this derivation which parallels the work of [6]. Using the
numerical epsilon, defined in section 2, Peano's arithmetic is given a
characteristically ontological model in section 3. Thus, the paper provides,
for Peano's arithmetic, the two ways of treating logical concepts in
ontology, the one, protothetical (section 1), the other, ontological (section 3).

1. Numerals as predicates The following proposition, in which the epsilon
is primitive and is a proposition forming functor for two name arguments,
is taken as the single axiom of ontology and is understood to be added to
some given development of protothetic.

[Ab] Λ Aεb.=: [3C].CεA:[C]:CεA.z>.Cεb:[CD]:CεA.DεA.Ό.CεD

There is no rule which determines the style of letters to be used for
variables, but throughout the paper capital Latin letters will be used for
proper name variables and lower case Latin letters for general name
variables; Greek letters will be employed for variables of higher semanti-
cal categories. Two types of definition, with the usual restrictions for
bound and free variables, are allowable in ontology; ontological definitions
which have the form:

[Aabc . . .]:[36].Aε5.Φ(Aα6c . . .) .=.Azτ<abc . . . >

and protothetical definitions which are of the form:

[abc . . ,]:Φ(abc . . ,).=.τ{abc . . .)

*This paper is part of a Thesis written under the direction of Professor Boleslaw
Sobociήski and submitted to the Graduate School of the University of Notre Dame, in
partial fulfillment of the requirements for the degree of Doctor of Philosophy with
Philosophy as major subject in June, 1967.
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where τ is the constant being defined and is a name forming functor in the
first case and a proposition forming functor in the second. The latter type of
definition is called protothetical since, although the directive for ontology
explicitly allows it as an acceptable form of definition, it is also allowable
as a form of definition in Lesniewski's system of protothetic.

Once a constant of a given semantical category is introduced into the
system, the principle of extensionality for that category is allowable as a
thesis of the system. A more complete explanation of the directives for
ontology and protothetic is found in [l], [4] and [5].

Two consequences of this axiom,

T1.2 \Ab\\Azb .-D.AzA

T1.3 \ABc]:AεB. Bεc .Ό.Aεc

serve to illustrate the difference between the primitive epsilon of ontology
and other epsilons (of, say, set theory), since the former is seen to be
semi-reflexive and transitive.

A list of well known basic definitions and theses follows, many of
which can be found in [2].

D1Λ [a]:[3A].Aεa.=. I {a}
D1.2 [σ].i.[BC]:£εc.Cεα.D.fiεC:=.-»{c}
T1.4 [A]:l{A}.->{A}.=.AεA
D1.3 [A]:AεA.=.AεV
D1.4 [A]:AεA.~(AεA).=.AεΛ
D1.5 [AB]:AεB.BεA.=.A=B
D1.6 [AB]:AεA.BεB.~(A=B).=.AίB
D1.7 [ab].'. [A] :Aεa .=.Aεb :=.aob
T1.5 [ab]:. [A] :Aεa .=.Aεb:=: [φ]:φ{a}.=. φ{b}
T1.6 [ab):.aqb ,=:[φ]: φ{a}.=. φ{b}
D1.8 [Aφ]:AεA.φ{A}.=.Aεstsi<φ>
T1.7 [AB]:.A=B.=:AεA.BεB:[φ]:φ{A}.=.φ{B}
D1.9 [ab]:.[A]:Aεa.'D.Aεb:=.atb
D1.10 [Aab]:Aεa.Aεb.=.Aεaf)b
Dl.ll [Aab].'.AεA: Aεa .v.Aεb :=.AεaUb
T1.8 [Aab]:.Aεa.v.Aεb:=.AεaUb
T1.9 [Aa]:Aεa.^.a\jAoa
D1.12 [Aab]:Aεa.~(Aεb).=.Aεa-b
T1.10 [Aa]:AεA.~(iAεa).^.(auA)-Aoa
D1.13 [flδ]:βΠδoΛ.Ξ.αV6

D1.14 [φ]:[3a]φ{a}.=. Uφ)
D1.15 [φψμ]:ψ(φ).μ(φ).^n<ψμ>(φ)
D1.16 [φψ]:.[a]:φ{a}.'D.ψ{a}:=.φc:ψ
D1.17 [φψ]:/[a]:φ{a}.=.ψ{a}:=. φoψ
Tl.ll [φψ]:.[a]:φ{a}.=.ψ{a}:^[μ]:μ(φ).=. μ(ψ)
T1.12 [φψ]:.φoψ.=:[μ]:μ(φ).=. μ{ψ)

As can be seen from the above, there are many parallels between
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ontology and other systems, for instance [6], though in onotlogy one obtains

two analogues of each logical concept, one ontological, the other proto-

thetical, see for instance, Dl.l with D1.14 and D1.9 with D1.16. Indeed, one

obtains a definition of cardinal number from that of equinumerosity as in

[6], and in section 3 an ontological, rather than protothetical, development

of this theory is given.

D1.18 [ab].'.[lφ]:[ABC]: φ{ΛCJ. φ{BC} .O.A = B:[ABC]: φ{CA}. φ{CB} .Z).

A =B : [A] :Aεa.=. [IB]. φ{BA} : [B] : Bε b .=. [3A]. φ{BA} :=. a oob

T1.13 [a].a*>a

T1.14 [ab] :a oob .D. b <*>a

T1.15 [abc] :aoob .b ooc ."D.a °oc

D1.19 [ab]:aoob.=.co<a>{b]

T1.16 [a\.oo<a >{a}

D1.20 [φ].' .[ab]: φ{a}.aoob.^. φ{b}:=.H(φ)

T1.17 [α].N(oo<α>)

D1.21 [φ].'.[ab]: φ{a}. φ{b} .D. a oob :=.Q(φ)

T1.18 [α].Q(oo<α>)

D1.22 [φ]:l(φ)M(φ).Q(φ).^HC(φ)

T1.19 [α].NC(oo<α>)

Definitions D1.20 and D1.21 provide the concepts of a proposition

forming functor (for one name argument) being numerical and quantitative.

These concepts, together with the condition that a given functor is unempty,

provide the defining characteristics for a cardinal number—see D1.22.

Finite names, zero, and the successor function are also definable,

though the definition of successor given here is that of Frege rather than

that of [6]. The definition of successor in [6] amounts to a particular case

of addition which is defined as the union of disjoint sets. However, this

definition is ambiguous as to type (the successor of a number is not

necessarily of the same type as the number) and is therefore not as good a

candidate for use in ontology as the Fregean definition. Of course the

Fregean definition is derivable as a theorem of [6]—see *110.63.

D1.23 [a]::[φ].\ φ{λ} : [Ab]: Aεa . φ{b} .3 . φ{b\jA}:Z). φ{a}.\ =. Fin {4

T1.20 Fin{Λ}

T1.21 [Aa]:AεA.Fin{a}.Z).Fm{a{jA}

T1.22 N(Fin)

T1.23 [αδ]:Fin{α}.δcα.~(αcδ).D. ~{a oob)

D1.24 [a]:aoA.=.θ{a}

T1.24 θ{Λ}

T1.25 [aφ]:θ{a}.φ{a}.^.φ{Λ}

T1.26 N(0)

T1.27 Q(0)

D1.25 [aφ]:[lA].Aεa.φ{a-A}.=.S<φ>{a}

T1.28 [φ].~([la].θ{a}.S< φ>{a})

T1.29 [aφψ] :N(φ) .S<φ>{a} .S<ψ>{a} .D. [36]. φ{b} . ψ{b}
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T1.30 [φ]:U{φ).^M(S<φ>)

T1.31 [φ]:Q(φ).^.Q(S<φ>)-

The following proposition is taken as the axiom of infinity,

[a]: Fπφ}.D. [3A].AεA.~(Aεa)

and given this axiom it is now possible to derive Peano's axioms. First,
one defines natural number,

D1.26 [Φ]:: [ μ ] . \ μ(0): [Ψ]: μ(ψ) .D. μ ( S < ψ » : D . μ(φ).' =.Hn(φ)

and then the following are derivable.

T1.32 Nn(0)
T1.33 [<ρ]:Nn(<ρ).D.~(0oS<<p>)

- T1.34 [<p]:Nn(<p).D.Nn(S<<p>)
T1.35 [φμ].'. μ(0): [Ψ]: Nn(ψ) . μ(ψ) .D. μ ( S < ψ » : Nn(<p) :D. μ(<p)
77.36 [<ρ]:Nn(<ρ) .D.<ρc Fin
Γ2.57 NncNC
77.3S [^ψ]:Nn(φ).Nn(^/).S<(^>oS<ψ>.D.^oι//

Of these theses, T1.32—T1.35 and T1.38 are Peano's axioms and T1.34
follows in the system banally since its consequent is a thesis, while only
T1.38 requires the axiom of infinity for its proof.

Given these axioms, it is possible to obtain the rest of Peano's
arithmetic by defining the various arithmetical operations and deriving
their consequences. The approach here is to use Frege's method of
reducing implicit definitions to explicit ones using "impredicative" defini-
tions. For instance, guided by the recursive definition of addition, one
defines,

Ώ1.27 [T] .*. [φ]: Hn(φ) . 3 . τ{φφθ) :=. sm(τ)
D1.28 [τ].*.[^ψμ]:Nn(^).Nn(ψ).Nn(μ).τ(^ψμ).D.

(S<φ>ψS< μ>):=.smm(τ)
D1.29 [φψμ].'~Nn{φ).Nn(ι//).Nn(μ): [r] : sm(τ). smm(τ) . D .

τ(φψ.μ):=.Sm{φψμ)

and then obtains,

T1.39 [<p]:Nn(<ρ).=>.Sm(<ρ<ρO)
T1Λ0 [ωψμ]: Sm(φψμ) .^.Sm(S<φ>ψS< μ>)
T1A1 [^]:Nn(<^).Nn(ψ) .=). [3μ].Nn(μ).Sm(μ^)
T1A2 [φψμr]:Sm(φμτ) .Sm(ι//μτ) .Ώ.φoψ

Now, given the definition of addition,

D1.30 [aφΨ]:Sm(°o<a>φψ) =.+<φψ> {a}

the uniqueness, closure and recursive properties of the operation follow.

T1A3 [φψμ].'Mn(φ) .Ό:Sm(φψμ) .=. φoψ+μ
T1A4 [φψ]:Mn(φ) .Hn{ψ) .^.Un(φ + ψ)
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T1A5 [φ]:Nn(φ) .D. <p + 0o φ
T1.46 [φψ]:Hn(φ) .Hn(ψ) .=). φ + S< ψ>oS< φ+ψ>

Clearly, all recursively definable concepts are obtainable in this
manner. But it is important to note that this is probably the only way they
are obtainable in this system. For instance, one cannot use the concept of
ordered pairs in order to define multiplication as is done in [6]. For
though ordered pairs are definable in ontology, an ordered pair of argu-
ments is of a different semantical category than its arguments. This
immediately leads to the problem of having non-homogeneous arguments
for arithmetical operations—a problem which cannot be ignored in ontology
because the system does not allow "typical ambiguity" (as does the system
of [6]): any variable appearing in a thesis is definite as to type in ontology.

However, it is clear that Peano's arithmetic is derivable in this
system in a way at least similar to [6]. Numerals are construed as
predicates, that is, proposition forming functors for names, and numerals
for finite numbers are characteristically inductive.

2. The numerical epsilon Consider the following definition of a higher
epsilon.

D2Λ [ΦφΨ].'. [la].Φ{a}.φ{a}: [ab]: Φ{a}.Φ{b}.^.ψ{ab}: [ab]:Φ{a}.
ψ{ab}.D.Φ{b}: [ab]: φ{a\. ψ{ab}.D. φ{b}:=. ε <ψ>(Φ<p)

In what follows interest will be limited to the particular case,

T2.1 [Φφ].'.[la].Φ{a}. φ{a}: [ab]:Φ{a}. Φ{b}.^.aoob: [ab]:Φ{a}.
a<χ>b .Z).Φ{b}: [ab]: φ{a}.aoo b .D. φ{b}:=. ε<°o >(Φφ)

and hereafter 'Φεoo<p' will be written for 'ε <oo>(Φ<ρ)\ This higher
epsilon will be called a numerical epsilon and could have been defined by
the following thesis.

T2.2 [Φφ]: [la]. Φ {a}. φ{a}. Q(Φ). N(Φ). N(φ) .=. Φε^φ
[T2.1, D1.20, D1.21]

In [l] the author gave T2.2 as the definition of his numerical epsilon,
but it is more perspicuous to view the definition as merely one instance of a
general form for defining higher epsilons. For instance, D2.1 also yields

T ε < o > [Φφ].'. [la].Φ{a}.φ{a}: [ab]: Φ{a}. Φ{b} .^.aob : [ab]:Φ{a\.
aob .D.Φ{δ}: [ab]: φ{a}.aob .D. φ{b}:=. ε <o>(Φ(p)

which is equivalent to the well known definition of a higher epsilon

D ε < o > [Φφ].'. [la]. Φ{a}. φ{a}: [ab]: Φ{a}. Φ{b}.^).aob :=. ε <o>(Φ(p)

since in this case T ε < o > contains subformulas, which by the principle of
extensionality are theses (see T1.6). Similarly one would have

T ε < = > [Φφ].'.[lA].Φ{A}.φ{A^:[AB]:Φ{A}.φ{B}.D.A=B:[AB]:Φ{A}.
A=B.Ό.Φ{B}: [AB]: φ{A}.A =B .D. φ{B}:=. ε <=>(Φ^)
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and equivalently

Dε<=> [Φφ].'.[lA].Φ{A}.φ{A}:[AB]:ΦltA}.Φ{$.D.
A=B:=.ε< = >(Φφ)

which is the usual definition given for the restricted higher epsilon. This
generalization and particularly its use for defining a numerical epsilon as
opposed to a higher general or restricted epsilon marks the author's
contribution to the theory of higher epsilons in the field of ontology. As
will be seen, the numerical epsilon is useful since it allows the construc-
tion of a characteristically ontological model for numerical concepts.

Firs t of all, on the basis of D2.1 it is possible to derive a thesis
employing the numerical epsilon which is analogous to the axiom of
ontology (which uses the primitive epsilon of ontology).

T2.3 [ΦφY.Φεcoφ.Ό.ΦεooΦ [T2.2]

T2A [ΦΦφ]: Φε^φ. ΨεooΦ .^.^Coo^
PF: [Φ*<p]ΛHyp(2).D:

3) Q(Φ)M(φ). [T2.2,l]
4)Q(Φ).N(Φ): [T2,2,2]

[3β]:
5) Φ{a}.φ{a}. [T2.2, l ]

[36].
6) *'{δ}.Φ{&} [T2.2,2]
7) aoob [D1.21, 3, 5, β]
8) φ{b}: [D1.20, 3, 5, 7]

Vεvoψ [T2.2, 3, 4, 6, 8]

In the demonstration of this thesis the first line abbreviates listing the
hypotheses of the conditional to be proved and the numeral indicates the
number of components in the antecedent of the conditional.

T2.5 [ΦΨXφ]: Φε oo(/?. Φε ooΦ . Xε ooΦ . D . Φε ooX

PF: [ΦΨX<p].\Hyp(3).D:
4) Q(Φ) [T2.2, 1]
5) Q(t t ) .N(¥). [T2.2,2]
6)N(X): [T2.2,2]

[3«]:
7) *{a}.Φ{a}. [T2.2,2]

[35].
8) X{b}.Φ{b}. [T2.2,Z]
9) aoob . [D1.21, 4, 7, 8]

10) ^{6}: [D1.20, 5, 7, 9]
Ψε^X [T2.2, 10, 8, 5, 6]

T2.6 [aφ]: φ{a}.N(φ) .=.<*><α> ε^φ
[T2.2, D1.19, T1.16, T1.17, T1.18, T1.14]

T2.7 [abφ].\a°°b .D: oo<α> ε^φ.^. °o<6> ε^φ [T1.14, T2.6]
T2.8 [ΦΨabj.'.^ε^Φ: [ΨXy.Vε^Φ .Xε^Φ.D. ΨεooX: Φ{a}. Φ {δ}:D.α <*>&
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PF: [ΦΦaδ].\Hyp(4):D.

5) N(Φ). [T2.2, 1]

6) °o< α >εooΦ. [T2.6, 3, 5]

7) ° o < δ > ε o o Φ . [T2.6, 4, 5]

8) oo<a> ε o o°o<5> . [2, 6, 7]

[3c].

9) o o < β > { c } . o o < δ > {c}. [T2.2, 8]

aoob [D1.19, 9, T1.14, T1.15]

T2.9 [ΦΦ]. .ΦεooΦ:[ΦX]:ΦεooΦ.XεooΦ.D.ΦεooX:D.Q(Φ) [Γ2.S, Z>2.£2]

Γ2.20 [ΦΦ<ρ].'.ΦεooΦ: [ΦXj .ΦεooΦ.XεooΦ.D.ΦεooX: [Φj .ΦεooΦ.D.

Φεoo(^:=).Φεoo^

PF: [ΦΦ(p].\Hyp(3):z>.

4) N(Φ). [T2.2, 1]

5) Q(Φ). [T2.9, 1,2]

6) Φ{α} [Γ^.2, 1]

7) ΦεooΦ. [T2.2, 6, 5, 4]

Φεooc^ [3,7]

T2.11 [ Φ ^ . ' . Φ ε o o ^ . s : [3Φ].ΦεooΦ: [ΦX]: ΦεooΦ .XεooΦ . 3 .

Φε^X: [Φj .ΦεooΦ.D.Φεco^ [T2.10, T2.3, T2.4, T2.5]

This thesis is the analogue of the axiom of ontology since it can be

expressed as a proposition identical in shape with the axiom except for the

parentheses which are generally associated with the primitive epsilon on

the one hand and the numerical epsilon on the other.

Under certain conditions, the principle of extensionality holds for the

numerical epsilon. The limitation imposed on employing extensionality for

the numerical epsilon amounts to restricting the principles's application to

numerical predicates. This is clear when one considers T2.14. On the

basis of the auxiliary definition,

D2.2 [Φφ]: Φεoo(p.=. εoo<Φ>(<?)

there follows,

T2.12 [φψ].\[μ]> β(Φ) Ξ β(Ψ) :=>: [Φ]: Φε «,<?.=. Φεooψ [D2.2]

T2.13 [φψ].'.U(φ)M(ψ): [φ]: Φε «>(? .=. Φε ooi//:D: [μ]: μ(φ) .=. μ(ψ)

PF: [<pιf/].\Hyp(3):z>:

4) [α]:oo<«> εooψ .=.°°<a> ε ooψ : [3]

5) [a]:φ{a}M(φ)=.ψ{a}M(ψ): [T2.6, 4]

6) [a]:φ{a}.=.ψ{a}: [5, 1 , 2 ]

[μ]: μ(φ)=.μ(ψ) [Tl.ll, 6]

T2.14 [^]::N(^).N(ι//).3.'.[φ]:ΦεOo^.=.Φεooι//:=: [μ]: μ(φ).=. μ(ψ)

[T2.12, T2.13]

The hypothesis of this thesis guarantees that for numerical predicates,

there is derivable a thesis analogous to the principle of ontological
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extensionality for the primitive epsilon: compare the consequent of this
thesis with T1.5. Next, identity for numerical names is defined and a thesis
analogous to the principle of extensionality for identical names is derived.

D2.3 [ΦΨ]:Φεoo*.*εooΦ.=.Φ = oo*
T2.15 [ΦΦJΛΦ = «,*.=>: [μ]:μ(φ).=. μ(¥)

PF: [Φ*]ΛHyp(l).D:
2) Φεoo^.ΦεooΦ. [D2.3, 1]
3) N(Φ).N(Φ): [T2.2, 2]

4) [X]:XεooΦ.=.XεooΦ: [T2.4, 2]
[μ]:μ(Φ) =. μ(Φ) [T2.14, 3, 4]

T2.16 [ΦΦ]. ' . [μ]: μ(Φ).= . μ(Φ):Φε 0oΦ.Φε 0 OΦ:Z).Φ = 0OΦ

PF: [Φ*]ΛHyp(3):D:

4) N(Φ) [T2.2, 2]
5) N(Φ): [Γ2.£, 3]
6) [X]:XεooΦ.=.XεooΦ: [Γ2.24, 1, 4, 5]
7) Φ ε w Φ . [6, 2]
8) ^εooΦ. [6, 3]

Φ=ooΦ [D2.3, 7, 8]

Γ2.27 [ Φ ^ ] . \ Φ = oo^. Ξ :ΦεooΦ.^ε o o Φ: [μ]: μ(Φ) .=. μ(Φ)
[Γ^.25, Γ2.25, D^.5]

It should be noted that in dealing with identical numerical names, the
condition imposed on the principle of numerical extensionality is always
fulfilled. Thus, this exact analogue of the principle of extensionality for
identical names is derivable, compare T1.7.

This section is concluded by establishing that under certain conditions
a thesis analogous to an ontological definition is always forthcoming for any
definable numerical name.

T2.18 [Φ^].*.ΦεooΦ.N(^):[«]:Φ{α}.3. <ρ{α}:D.Φεoo<ρ [T2.2]
T2.19 [Φ<p].".Φεoo<ρ.=>: ΦεooΦ M{φ)\ [β]:Φ{α}.D. φ{a}

PF: [Φ(^]::Hyp(l) .=).'.

2) ΦεooΦ.Q(Φ).N(<p).\ [T2.2, 1]

[ 3 * ] . ' .
3) Φ{b}.φ{b}: [T2.2,l]
4) [a]:Φ{a}.D.booa: [D1.21, 2, 3]
5) [a]:bcoa.o.φ{a}.\ [D1.20, 2, 3]
6) [a]:Φ{a}.Ώ.φ{a}: [4, 5]

Φε^Φ.N(<p): [a]:Φ{a}.Ώ.φ{a} [2, 6]

T2.20 [Φ^].'.Φεoo^.=:ΦεooΦ.N(<^):[α]:Φ{α}.D.^{α} [T2.18, T2.19]
T2.21 [μΦφψ].'. [φa]: μ < φ>(°°<a>) .= . ψ< φ>{a}\ Φzoo'ψ<φ>\^,

μ<φ>{Φ)
PF: [μΦ^]::Hyp(2):D.\

3) [ab]:Φ{a} .Φ{b}.Ό.aoob: [T2.2, 2, D1.21]
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4) [ab]: Φ{a}. aco b .Ό.Φ{b}: [T2.2, 2, D1.20]

[3α] .\
5) Φ{a}.ψ<φ>{a}: [T2.2, 2]
6) [b]:Φ{b}.Ώ.aoob: [3, 5]
7) [b]:acob.z>.Φ{b}: [4, 5]
8) [b]:Φ{b}.=.°o<a>{b}: [D1.19, 7, 6]
9) μ<φ>(Φ)=.μ<φ>(«><a».m. [Tl.U, 8]

μ<φ>(*) [1, 5, 9]

Γ2.22 [μψ].'. [φa]: μ< φ> (°o<α>) .=. ψ< φ>{a}:^: [Φφ]:Φε0Oψ<φ> .^>.
μ<φ>{Φ) [T2.21]

T2.23 [μΦφψ].'. [φa]: μ<φ>(^<a>) =.ψ< φ>{a}:
μ<(p>(Φ).ΦεooΦ .Φ{a}:^.ψ<φ>{a}

PF: [μΦφψ].'. Hyp(4):=>:
5) Q(Φ).N(Φ): [T2.2, 3]
6) [b]:Φ{b}.^.aoob: [D1.21, 5, 4]
7) [b]: αoo & . D . φ {6}: [2)1.20, 5, 4]
8) [b]:Φ{b}.= .«><a>{b}: [D1.19, 7, 6]

9) μ < ^ > ( Φ ) . Ξ . μ < ^ > ( o o < β » : [Γl.ll, 8]

ψ<^>{fl} [9, 2, 1]

Γ .̂̂ 4 [μΦ(^τ].'. [ψa]: μ <ι//>(°o<α>) .=. τ<ψ>{β}: *ε ooΦ. μ<(^>(Φ):D:

[α]: Φ {a} .D. T< (?> {«} [Γ2.25]
Γ .̂̂ 5 [μΦ^τ].'. [ψa]: μ<ψ>(oo<a> ) =. τ< ψ>{a}: N(τ< φ>).

μ<(^>(Φ).ΦεooΦ:=).ΦεooT<^> [Γ2.24, Γ2.^θ]
Γ2.25 [μr] : : [i//α]: μ<Ψ>(oo<a>) =. τ<ψ>{a}:Ώ.'. [Φφ] . ' .N(τ< φ» . D :

Φ ε o o τ < ^ > . = . Φ ε o o Φ . μ<(^>(Φ) [Γ2.22, Γ2.3, Γ2.^5]

This thesis guarantees that given (a) a protothetical definition of a
functor and (b) that the functor is numerical, then a thesis is derivable
analogous to an ontological definition of the functor—analogous in the sense
that the thesis is expressible as a proposition which has the form of a
proper ontological definition, compare the consequent of T2.26 with the
form of ontological definition given in section 1.

Actually, T2.26 considers as the functor to be defined only one which is
a single link numerical name forming functor (whose link is a proposition
forming functor for a single name argument). However, an inspection of
the above proof shows that similar theses can be established for numerical
names with any finite number of links, for instance,

T2.27 [μτ]::[φψa\: μ.<φψ>(oo<a>) =.τ<φψ>{a}:Ώ.\

[Φφψ].'.N(τ<φψ>) . 3 : ΦεooT<<ρψ> .Ξ,Φε w Φ . μ < ^ > ( Φ )
[similar to T2.26]

T2.28 [μr] : : [a]: μ(°o<β>) .= . τ{α}:D.\ [φ] . ' . N(τ) .=): Φ ε ^ r =. Φε^Φ . μ(Φ)
[similar to T2.26]

It should be noted that theses T2.26, T2.27, etc., provide an effective
means for obtaining theses which have the form of ontological definitions.
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In general, once an ontological definition of a numerical name forming
functor is decided upon, it is obtainable from an effectively given proto-
thetical definition. An application of this process is given in the next
section.

With the availability of ontological definitions for numerical names, as
well as extensionality and an ontological axiom, it is clear that the
numerical epsilon is completely analogous to the primitive epsilon. So, as
long as one restricts attention to numerical functors, all theses which
involve the primitive epsilon are also derivable for the numerical
epsilon. And given this basis, the means is available for providing an
ontological development of Peano's arithmetic in the system.

3. Numerals as names Peano's axioms expressed with the numerical
epsilon are given as T3.1, T3.3, T3.5, T3.6 and T3.15. The proof of T3.15
is of particular interest since it requires the use of an ontological defini-
tion for numerical names. In this development T3.5 does not follow banally
in the system as does its analogue T1.34: the antecedent of T3.5 is
required to establish its consequent.

T3Λ OεooFin [T2.2, T1.24, T1.26, T1.27, T1.20, T1.22]
T3.2 [Φ].\ [α]:Fin{α}.D. [3A].AεA.~(Aεa):Φε0oΈt]n:o.S<Φ>ε0o'Fin

PF: [Φ]/.Hyp(2):D:
3) Q(Φ).N(Φ) [T2.2, 2]

[3*]:
4) Φ{α}.Fin{β}. [T2.2, 2]

[*A].
5) AεA.~(Aεa). [1,6]
6) <fl\JA)-Aoa. [T1.10, 5]
7) AεaUA. [T1.8, 5]
8) Φ{(aUA)-A}. [T1.6, 6, 5]
9) S<Φ>{αUi}. [D1.25, 7, 8]

10) FinjtflM}: [T1.21, 5, 4]
S<Φ>εooFin [T2.2, 9, 10, T1.30, 3, T1.31, T1.22]

T3.3 [ φ ] : Φ ε o o F i n . D . S < Φ > ε o o F i n [T3.2, Ax Infin]

T3Λ [φ].~(0 = ooS<φ>) [T2.2, D2.3, T1.28]

On the basis of,

D3.1 [ΦΦ]: Φε .oΦ . Φε ̂ . ~(Φε oo )̂ .=. Φ * ^

we have the following.

T3.5 [Φ]:ΦεooFin.D.0*ooS<Φ> [T2.3, T3.3, T3.1, T3.4, D3.1, D2.3]
T3.6 [ΦΦ]: Φε ooFin . Ψε ooFin . S < Φ > = O O S < ^ > . D . Φ = OO^

PF: jWj:Hyp(3).=>.
4) Q(Φ).N(Φ). [T2.2, 1]
5) Q(Φ).N(Φ). [T2.2, 2]
6) S < Φ > ε o o S < ^ > . [D2.3, 3]
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7) [3α] .S<Φ>{z} .S<*>{α}. [T2.2, 6]

8) [3 δ].Φ {&}.*{&}. [T1.29, 5, 7]

9) Φ ε ^ Φ . [T2.2, 8, 4, 5]

10) * ε o o Φ . [ 7 ^ , 8, 4, 5]

Φ = oo* [iλ2.3, 9, 10]

In order to obtain the last of Peano's axioms, an ontological definition

of the intersection of numerical names is required. On the basis of the

following definitions,

D3.2 [Φ<ρι//]:Φεoo<ρ.Φεooi//.=. Π 0 O < ^ > ( Φ )
D3.3 [aφψ]:oo<a>εooφ .°°<a>ZooY .=. Π oo< φψ>{a}

the hypotheses of T2.27 can be obtained.

Γ3.7 [«(pi//]: Π 0 0< (^ι//>(oo<α>).Ξ. fλ oo< φψ> {a} [D3.2, D3.3]

T3.8 [abφψ]: noQ< φψ>{a}.a^b .D. Π ^ φψ>{b}

PF: M ^ ] : H y p ( 2 ) . D .

3) oo<a>εooφ.°°<a>εooψ. [D3.3, 1]

4) o o < δ > ε 0 0 ^ . o o < δ > ε 0 o i / / . [Γ^.7, 2, 3]

Πoo< <?•//>{&} [^>3.3, 4]

ΓJ.5 [ ^ ψ ] . N ( Π o o < ( ^ ψ » [D1.20, T3.8]

Now, on the basis of T2.27, the ontological definition of the intersection

of numerical names is derivable.

T3.10 [Φ^ι//]:ΦεooΠ00<(^ψ/>.Ξ.φεoo^.Φεooψ.ΦεooΦ [T2.27, T3.7, T3.9]

T3.ll [Φ^]:Φε0 0Π0 0<^ψ>.=.Φε0o^.Φεoo^ [T3.10, T2.3]

And given this thesis, Peano's last axiom follows.

T3.12 [Abφ].'.Oεooψ: [Ψ]: Ψε^φ . D . S<Ψ> ε ooψ-.AεA .φ{b}.~ (Aεδ):=).

φ{bUA}

PF: [Aδ^].".Hyp(5):D:

6) N(<^). [T2.2, 1]

7) °o<δ>εoo(p. [T2.6, 4, β]

8) S < o o < & » e o o ( ^ : [2, 7]

9) [a]:S<°o<b»{a}.Ώ.φ{a}: [T2.20, 8]

10) A ε δ u A . [ΓJ.δ, 3]

11) {bl)A)-Aob. [T1.10, 3, 5]

12) °o<b>{(buA)-A}. [T1.6, 11, ΓI.I5]

13) S<oo<δ»{δuA}. [i)i.25, 10, 12]

φ{bUA} [9, 13]

Γ3.i3 M . ' . O ε o o ^ : [φ]: ̂ ε oo(̂  . 3 . S< ^ > ε oo^ : D :

[Aδ]:AεA.<^{δ}.D.^{6uA} [T1.6, T1.9, T3.12]

T3.14 [Φ^]. ' .0εoo^: [Φ]: Φεoo<^.=>.S<Φ> εoo(^: Φε oo Fin : D . Φε ^φ

PF: [Φςp]::Hyp(3):D.'.

4) [Aδ]:AεA.^{6}.D. φ{buA}\ [T3.13, 1, 2]

5) N(<p). [Γ2.2, 1]
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6) N(Φ).Q(Φ). [T2.2, 3]
7) [lb].θ{b}.φ{b}. [T2.2, l ]

8) <?{Λ}.\ [T1.25, 7]

[3α] .\
9) Φ{α}.Fin{α}: [T2.2, 3]

10) [Ab]:Aεb . <p{δ}.D. φ{bUA}: [T1.2, 4]

11) <?{«}•'• [i)2.25, 8, 9, 10]
Φεoo^ [T2.2, 9, 11, 5, 6]

T3.15 [Φ<p].'.0ε «,</?: [Φ]: ̂ CooFin . #800 (? . D . S< Φ> εoo^rΦεooFin :D. Φε oo^
PF: [Φ<p].\Hyp(3):D:

4) H(φ). [Γ^.2, 1]
5) 0 ε o o Π o o < ^ F i n > : [T3.11, 1, Γ3.J]
6) [ Φ ] : Φ ε 0 O n 0 O < ^ F i n > . D . S > < Φ > ε 0 o Π 0 o < ^ F i n > : [Γ5.il, 2, Γ5.3]
7) Φ ε o o n o o < ^ F i n > . [T3.14, 5, 6, 3]

Φ ε ^ ^ [T3.U,Ί]

This thesis gives the principle of mathematical induction for finite
numerical names.

From an inspection of Peano's axioms as given in terms of the
numerical epsilon, the following equivalence could be expected.

T3.16 [Φ]: Φε^Φ .=.NC(Φ) [T2.2, D1.22, D1.14]

That is, cardinal numbers are just numerical individuals. Moreover, a
similar correspondence obtains for inductive cardinals (T3.28). As pre-
liminary theses, there are the following.

T3.17 [α].oo<α>εoooo<α> [T2.2, D1.19, T1.16, D1.20, D1.21]

T3.18 [α]:Fin{α}.s .oo<α>ε 0 O Fin
[T2.2, D1.19, T1.16, T1.17, T1.18, T1.22]

T3.19 [Φ]:Nn(Φ).D.ΦεooFin [T1.37, T1.36, T3.16, T1.22, T2.20, D1.16]

Now, the protothetical definition of a numerical satisfier,

D3.4 [μa]: [3Φ-]. Φε^Φ . Φ{a}. μ(Φ) .=. stsf oo< μ>{a}

is used in conjunction with T1.28 in order to obtain the ontological
definition of that functor {T3.25).

T3.20 [μα]:stsf oo<μ>{«}.=3. μ ( ° ° < α »
PF: [μfl]::Hyp(l).D. .

[3Φ]. .
2) ΦεooΦ.φfc}. μ(Φ): [D3.4, 1]
3) [b]:Φ{b}.= .°o<a>{b}: [T2.2, 2, D1.20, D1.21, D1.19]

4) [μ]: μ(Φ) .= . μ ( o o < α » . " . [Tl.ll, 3]
μ(oo<α>) [2,4]

T3.21 [μα]: μ ( o o < « » . D . s t s f 0 0 < μ > { « } [D3.4, T3.17, T1.16]

T3.22 [μβ]: μ(oo<α>).s.stsfoo<μ>{«} [T3.20, T3.21]
T3.23 [μab ]: stsf o o<μ>{α}.«c 5oδ.D. stsf oo< μ > {b}



THE NUMERICAL EPSILON 59

PF: [μαδ]:Hyp(2).D.

[3Φ]

3) ΦεooΦ.Φ{α}.μ(Φ). [D3.4, 1]

4) Φ{b}. [T2.2, 3, D1.20, 2]

stsfoo<μ>{δ} [D3.4, 3, 4]

T3.24 [μ].N(stsfoo<μ» [D1.20, T3.23]

T3.25 [Φμ]:ΦεooStsf oo<μ>.= .ΦεooΦ. μ(Φ) [T2.28, T3-24, T3.22]

Given this ontological definition of a numerical satisfier of a predicate

(compare D1.8), the desired equivalence is derivable.

T3.26 [Φμ]:Φε o o Fin. μ(0): | > ] : μ(Φ) . 3 . μ ( S < * > ) : 3 . μ(Φ)

PF: [Φμ].\Hyp(3):=>:

4) OεooStsfoo < μ > : [T3.25, 2, Γ3.2, Γ2.3]

5) [Φ]: *ε ooFin . * ε ^stsf ^ < μ > .D. S< * > ε ooStsf oo< μ > :

[T3.25, T3.21, T2.3, 3]

μ(Φ) [T3.15, 1, 4, 5, T3.25]

T3.27 [Φ]: ΦεooFin . D . Nn(Φ) [T3.26, D1.26]

T3.28 [Φ]: ΦεooFin.Ξ.NΠ(Φ) [T3.27, T3.19]

That is, natural numbers are just finite numerical individuals. The

equivalence of the axiom of infinity and one of Peano's axioms is now

shown.

T3.29 [a].'. [Φ]:ΦεooFin.D.S<Φ>εooFin:Fin{α}: [A]:AεA .D.Aεα D.

[lA\.AzA.~(Aza)

PF: [fl]/.Hyp(3):D:

4) α o < β > ε o o F i n . [T3.18, 2]

5) S < o o < e » C o o F i n : [1, 4]

[36]:
6) S<oo<a»{b}.Fin{b}. [T2.2, 5]

[35].

7) Bεb .oo<a>{b-B}. [D 1.25, 6]

8) b-Baa. [D1.9, D1.12, T1.2, 3]

9) aob-B. [T1.23, 8, 2, D1.19, 7]

10) £ ε £ . [ΓJ.^, 7]

11) £εα. [10, 3]

12) - (5εJ5) : [ΓI.5, 9, D2.12, 11]

[3A].AεA .-(Aεα) [12, 10]

Γ3.3ί? [Φ]: ΦεooFin.D.S<Φ>ε o oFin:=): [a]: Fin{a}.D. [3A].AεA .~(Aεa)

[T3.29]

T3.31 [φ]:ΦεooFin.D.S<Φ>εooFin:=.AxInfin [T3.30, T3.3, Axlnfin]

Naturally, theses analogous to the ontological definitions of arithmeti-

cal operations could be given and the properties of the operations are all

derivable on the above basis: the requisite definitions for the operations

having already been given in the introductory section. For example, in
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respect to addition, one has uniqueness, closure, and the recursive
properties of the operation,

T3.32 [Φ(pψ].\ΦεooFin.D:Φ = oo ̂  + ψ.=. Sm(Φ^ψ)
T3.33 [ΦΦ]: Φε ooFin . * ε ooFin . 3 . [3 X]. Xε ^Fin . X = „ Φ + Φ
T3.34 [ Φ ] : Φ ε o o F i n . = ) . Φ = OoΦ + 0
T3.35 [ΦΦ]:ΦεooFin.*εooFin.D.Φ + S<Φ>=ooS<Φ + * >

and similarly for any other arithmetical operation which can be defined
recursively.

4. Concluding remarks In section 1, as in section 3, an analysis of the
cardinality of (finite) names is given. These sections differ in style: the
former treats numerals as predicates, the latter as names. Consider the
following.

T1.32 Nn(0)
T3.1 OεooFin

Under the intended interpretation both of these propositions state that zero
is a natural number. Naturally the numeral in these propositions belongs
to but one semantical category, for the numeral is a unique constant (of the
category of proposition forming functors for one name argument). But the
first proposition corresponds in a simple way to,

*120.12. h.OeNC induct

of [6], while the second proposition does not.
For the authors of [6], classes are but "fictitious objects" and their

use of an epsilon and class abstractor is but a notational device for
speaking extensionally about predicates. But the logic of section 1 is
completely extensional, and this is achieved without the introduction of
"fictitious objects" via notational devices. Section 1 gives, then, a develop-
ment of cardinality closely akin to [6], but without the fictions of that work.

On the other hand, the numerals of section 3 can clearly be considered
to be names. Section 2, in providing an internal ontological model for the
numerical epsilon, justifies this claim. Recall that in section 2 analogues
of the ontological axiom, extensional theses and definitional theses of the
primitive epsilon were derived for the numerical epsilon. This guarantees
that an analogue of each thesis derivable for the primitive epsilon is
derivable for the numerical epsilon. In this exposition, unlike [6], there is
no question of numerals being "really" predicative and only "conven-
tionally" nominative—since there is an internal ontological model for the
numerical epsilon, its arguments are by analogy nominal.

Thus, if one wishes to construe numerals as predicates there is the
exposition of section 1 without the disadvantages of [3], while if one wishes
to construe numerals as names, there is the exposition of section 3. In the
latter case there is, as has been seen, formal justification for considering
numerals as names, while in the former case, one can at best consider
them fictitious names—they are indeed only predicates.
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Though an analysis of the cardinality of names has been given, what is
lacking in this exposition is an analysis of cardinality in general. There is,
for instance, a definition of a constant number (zero) for names, but
nowhere has the definition of the constant number zero for proposition
forming functors of one name argument (or two, or three name arguments,
etc.) been given. Only the cardinality for the primitive semantical category
of names has been investigated, while the cardinality of the non-primitive
categories remains to be discussed.

Consider the following definition.

[Φφ].'. [3α]. Φ{α}. φ{a}\ [ab]: Φ{a}. Φ{b} .D.aob:=. Φε φ

Here a higher (ontological) epsilon is defined. With this definition slight
adjustments in the exposition of section 2 would establish the existence of
an internal ontological model for this epsilon. Higher epsilons of this type
are well known, and it can be shown, in fact that a higher epsilon exists for
each and every semantical category definable in ontology.

Since there is a higher epsilon for each category of ontology, the
exposition for the cardinality of names which has been given serves as an
exposition for the cardinality of any particular category of ontology. The
cardinality of any given category is to be developed in exactly the manner
in which the cardinality of names has been given, employing the higher
epsilon peculiar to the category in question in place of the primitive
epsilon.

It is important to note that the axiom of infinity is reproducible at
higher levels. It is already clear that the ontological directives and axiom
are available for any category, but the axiom of infinity must also be avail-
able. However, it can be shown that the axiom of infinity for proposition
forming functors of one name argument is implied by the axiom of infinity
for names, and in general, that the axiom of infinity for any non-primitive
semantical category ultimately definable in terms of the primitive category
of names is implied by the axiom of infinity for names.

At this point a precise exposition of arithmetic for each category of
ontology has been attained. No doubt this is a far cry from the standpoint
of ordinary arithmetic which ignores differences of type in numbers, but on
the basis of these different types of arithmetic one can safely reach the
standpoint of ordinary arithmetic.

The only remaining requirement in the quest for arithmetic is the
ability to handle arithmetical operations whose arguments are non-
homogeneous. The possibility already exists of producing, for instance, the
sum of homogeneous cardinals. But consider the problem of adding the
cardinality of a name to the cardinality of some other semantical category.
Since the operation of addition has homogeneous arguments, it is necessary
to secure elements of the same category in order to perform the operation.
But this can always be done in a satisfactory manner by producing an
element of the higher category equinumerous with the element of the lower
category.
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Of course, this requires expanding the notion of equinumerosity so that
it countenances non-homogeneous arguments. But the higher epsilons
afford a precise basis for such an extension of the notion. It can be seen
that it is possible in the presence of the higher epsilons, to perform
arithmetical operations, now, for arguments from any semantical category
whatsoever. One simply finds a representative from the higher category
for the element of the lower category and performs the operation in the
arithmetic of the higher level.

And it is now clear in what sense the standpoint of ordinary arithmetic
which ignores the difference in type among numbers can be attained in
ontology. A sufficiently high semantical category is selected and all work
is carried on in the arithmetic of that level. It is not that numbers are
ambiguous as to type, as the authors of [6] would have it, but that any given
arithmetical problem can be handled in a single sufficiently high semantical
category.

At this point, the work of deriving arithmetic is finished. Indeed, the
above discussion closely parallels section *126 of [6] which discusses
"typically indefinite inductive cardinals " . The advantage to this exposition
lies in the fact that the standpoint of ordinary arithmetic has been achieved
without any of the ambiguities latent in the development of [6]. By relying
on the theory of higher epsilons, the effect of employing typically ambigu-
ous symbolism as in [6] can be obtained in ontology without however
exhibiting theorems which are ambiguous.

Finally, having supplied an ontological model for Peano's arithmetic in
ontology (extended by an axiom of infinity), the incompleteness of this
system will follow, if its directives are recursive. In this respect, the
numerical epsilon proves very useful. The directives for ontology were
given by Lesniewski [3] in a list of terminological explanations which are
developed by employing his mereological concepts. Now, the numerical
epsilon provides an efficient means of modeling Lesniewski's original
terminological explanations in Peano's arithmetic as given in section 3,
thus showing the applicability of Gόdel's incompleteness result to ontology.
The details of this work are left for another paper.
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