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A SUBSTITUTION FREE AXIOM SET FOR
SECOND ORDER LOGIC

NINO B. COCCHIARELLA

In what follows we present an adequate formulation of second order
logic by means of an axiom set whose characterization does not require the
notion of proper substitution either of a term for an individual variable or
of a formula for a predicate variable. The axiom set is adequate in the
sense of being equivalent to standard formulations of second order logic,
e.g., that of Church [1]. It is clear and need not be shown here that every
theorem of the present formulation is a theorem of the formulation given by
Church. It of course will be shown here, however, that each of Church's
axioms are theorems of the present system and that each of his primitive
inference rules is either a primitive (and only modus ponens is taken as a
primitive rule here) or a derived rule of the present system.

The importance of obtaining an axiomatic formulation such as herein
described lies partly in the significance of reducing any axiom set to an
equivalent one which involves fewer metalogical notions, especially such a
one as proper substitution. However, of somewhat greater importance, it
is highly desirable that we possess a formulation of both first and second
order logic which can be extended without qualification to such areas as
tense, epistemic, deontic, modal and logics of the like. Now proper substi-
tution especially has been the main obstacle to such unqualified extensions
of standard logic, and we take it to be of no little significance that at least
for first order logic (with identity) a substitution free axiomatic formula-
tion has been provided.1 The present system extends this earlier result to
the level of second order logic.2

A second difficulty in unqualified extensions of standard logic concerns
the form which Leibniz' law, i.e., the law regarding interchangeability
salva veritate, is to take. Generally, in the extensions of standard logic to
modal logic, this law has been formulated in an unqualified form applicable
to all contexts, thereby lending credence to the questionable view that only
''intensions" or the like can serve adequately as values of the variables for
such systems. In the substitution free formulations of first order logic
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cited, however, Leibniz' law is axiomatic ally formulated only for atomic
contexts, and the qualified form or forms the law takes for contexts
involving non-standard formula operators is given in the statement of
metatheorems.3 But again, it is a far different matter having such qualifi-
cations stipulated in the form of metatheorems as opposed to having them
built directly into the characterization of the logical axioms. As we have
said, it is desirable that the standard logical axioms for either first or
second order logic be so that axiomatic extensions of standard logic can be
made without qualification.4 This desirable feature of the substitution free
formulations of first order logic mentioned is retained in our present
second order system.

§1. Terminology In what follows we shall take a language to be a set of
predicate and operation constants of arbitrary number of places. We
assume, for each natural number n, the existence of a denumerable
sequence of n-place predicate variables as well as a denumerable sequence
of individual variables. We shall speak of both predicate constants and
predicate variables of a language C as being predicate expressions of C,
We note that a propositional constant or a propositional variable is a 0-
place predicate constant or variable, respectively. Where C is a language,
we take the set of terms of Q to be the intersection of all sets Γ such that
(1) every individual variable is in Γ, and (2) if n is a natural number,
ζo, , ζn-i are in Γ and δ is an n-place operation constant in C, then
δ(ζo, . - , ζ«-i)eΓ. We say that φ is an atomic formula of a language C if
there are a natural number n, an n-place predicate expression π of C1, and
terms ζ0, , ζ«-i of δ such that φ = τr(ζ0, . . . , ζ»-i) The set of formulas
of a language & is understood to be the intersection of all sets Γ such that
(1) all atomic formulas of Q are in Γ, and (2) iφ, (φ —» ψ), ΛμφeΓ when-
ever φ, ψeΓ and μ is an individual or predicate variable. By a term or
formula we understand a term or formula of some language. For con-
venience we shall use 'φ', 'ψ', 'X' to refer to formulas, 'a9, 'β\ V to refer
to individual variables, V, (p\ < σ ' to refer to predicate variables, ζξ', 'η'
to refer to terms, and <μ', V to refer to both individual and predicate
variables. We say that ψ is a generalization of a formula φ if there are a
natural number n and predicate or individual variables μ0, . . . , μ«-i such
that ψ = Λμ0 . . . hμn^xφ.

We shall understand bondage and freedom of occurrences of terms,
individual variables and predicate variables to be defined in the usual
manner. Similarly, we presuppose the notion of a formula ψ being obtained
from a formula φ by replacing a free occurrence of the term ζ by a free
occurrence of the term η as having already been defined in the usual
manner. We say that ψ is obtained from φ by proper substitution of a term
ξ for the individual variable a if ψ is like φ except for having free occur-
rences of ζ wherever φ has a free occurrence of a. Where φ is a formula,

Γal
a is an individual variable, and ζ is a term, we identify φ , the result of
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(properly) substituting ζ for a in φ, with that formula ψ which is obtained
from φ by proper substitution of ζ for a if there exists such a formula ψ;

Γal
and otherwise φ is to be φ. If there is a formula ψ which is obtained

from φ by proper substitution of ζ for a, we say that ζ can be properly
substituted for a in φ. Where n is a natural number, a0, . . . , an^1} β0, . . . ,
ft,-! are pairwise distinct individual variables, φ is a formula, ζ0, . . . ,
ζVi are terms, β0, . . . , βn_! are the first n individual variables which do
not occur in φ, ζ0, . , ζ»-i, we define the result of the simultaneous
proper substitution of ζ0, . . . , ζVi for α?0, . . . , #„_!, respectively, in φ, in

— £ : : : t : ] ">-*]•••[:::] [a [ t : ] ( — t e

iterated applications of proper substitution are associated to the left) if

ζo, . , ζn-i c^n be properly substituted for α0, . . . , c^^1? respectively, in

= (̂7. Regarding proper substitution of formulas

ζo ζ»-ij
for predicate variables, we adopt the definition given in Church [l], p. 192f.
However, we shall utilize the notation

pτ(α0, . . , α^-iί]

in place of Church's notation

£ τr(α?o, . . . , <2»-i) |̂

For convenience we state here the following useful lemmas regarding
this notion of substitution. It is assumed in the statement of these lemmas
that n is a natural number, π is an n-place predicate variable, and
α0, . . . , αw-i are pairwise distinct individual variables.

Lemma 1: // τr(ζ0, . . . , sV-i) \^{<X°9 * ' * ' ^ " l } ] ^ π(ζ0, • • • , S,-i), Λen

τr(?o, . . , ?w-i) Γ π K * ' ' ' ^ l } ] = φ\a; * * * M « ί ζOf - , 5..ic«i be

properly substituted for a0, . . . , o^-i, respectively, in φ.

Lemma 2: If either β is an individual variable which does not occur free in

ψ or, for some natural number k < ny β = <%, then (Aβ^) Of ' ' ' ' w" =

Lemma 3: If σ is a predicate variable distinct from π9 and σ does not occur

free in ψ, then (Aσφ) [π(α°- ' ' ' *"*>] = Λσ^[* ( β * " " " ' ^ - ι ) ] ) .

Lemma 4: If σ is a predicate variable which has a free occurrence in ψ,

tken(Aσφ)^{ao' φ'
an-^=Aσφ.
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§2. Substitution Free Axioms for Second Order Logic In our statement of
the second order logical axioms and theorems to follow we shall utilize
some syntactically defined or abbreviatory notation for purposes of
perspicuity. Accordingly, where φ, Φ are formulas and μ is either a
predicate or individual variable, we set the following as (syntactical)
definitions:

(φ<->φ) = i((φ -» ψ) -> i(φ —φ))
Vμφ = iΛμ-ι<p

Definition: A formula θ is a {second order) logical axiom if and only if
there are a natural number n, individual variables aQ, . . . , αw_i, β, an
n-place predicate variable π, a 1-place predicate variable σ, a predicate or
individual variable μ, terms ζ, 77, and formulas φ, φ, X such that θ is a
generalization of one of the following formulas:

(Al) φ->(φ-+φ),
(A2) (φ->(ψ-> X)) - ((φ -> ψ) -> (φ - X)),
(A3) (iφ-> iψ)-+(ψ-+ φ\
(A4) Aμ(φ ->-ψ) -> (Aμφ-> Aμφ),
(A5) φ —> Λμφ, where μ is a predicate or individual variable which does

not occur free in φ,
(A6) VTΓ Aa0 . . . Aon-jfaiao, . . . , α»-i) <-></>), where a0, . . . , an-ι are all

the distinct individual variables that occur free in φ and π is an
^-place predicate variable which does not occur free in φ,

(A7) Vβ Λσ(σ(j3) —> σ(ζ)), where β is an individual variable which does not
occur in ζ,

(A8) Λσ(σ(ζ) ~* σ{η)) -* (φ —> ψ), where φ, φ are atomic formulas and φ is
obtained from φ by replacing an occurrence of ζ by an occurrence of

V-

We shall have only one inference rule in the present system, viz.,
modus ponens. Proofs are understood in the usual sense of being finite
sequences every constituent of which is either a logical axiom or is
obtained from preceding constituents by an application of modus ponens.
Theorems are, of course, formulas for which there are proofs. We express
the fact that φ is a theorem by writing '\-φ\

We presuppose the notion of a tautology or tautologous formula without
going into the definition here.5 Because of (A1)-(A3) and the completeness
of sentential logic, we have the following theorem:

Theorem 1: If φ is a tautologous formula, then \-φ.

Where proofs are not given for the remaining theorems, it is under-
stood that they proceed in the standard fashion. We utilize our convention
of having specific groups of Greek letters for the different kinds of
expressions in what follows by not bothering to specify in each case the
kind of expression involved.
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Theorem 2: If hφ and \-(φ -* ψ), then hψ.

Theorem 3: // v-φ, then h Aμφ.

Theorem 4: If ψ is obtained from φ by replacing a free occurrence of ζ by

a free occurrence ofη, then κΛπ(π(ζ) -* 77(77)) -*(φ —> ψ) and K Λπ(π(ζ) -*

ir(y)) ~> (Ψ'-+ φ).

Proof: Assume the hypothesis and let $ be the language whose predicate

and operation constants a re just those of φ, ζ, or η. Let Γ be the set of

formulas φ of δ such that for all formulas ψ of β and all t e r m s ζ, η of β, if

ψ is obtained from <ρ by replacing a free occurrence of ζ by a free

occurrence of η, then h Λπ(π(ζ) —• π(η)) —> (φ —> ψ) and hΛπ(π(ζ) —» π(η))-*

(ψ -* φ). It suffices to show that every formula of C is in Γ. That all

atomic formulas of £ are in Γ is an immediate consequence of (A8).

Moreover, by Theorems 1 and 2, ~\φ and (φ —* X) belong to Γ whenever

φ, XeΓ. Assume then that φeT and that α, σ are an individual and a

predicate variable, respectively. The proof of Theorem 4 is completed if

we show that Λα<ρ, AσφeT. Assume therefore that X is obtained from Λaφ by

replacing a free occurrence of ζ by a free occurrence of η and that θ is

obtained f r o m Λ σ ^ by replacing a free occurrence of ξ by a free occurrence

of η. Then, by definition, there is a formula φr of S such that X = Aaφ\

θ = Aσφ\ φ% is obtained from φ by replacing a free occurrence of ζ by a

free occurrence of 77, and α does not occur in either ζ or η. Accordingly,

h Λτr(π(ζ) -* 77(77)) ~~* (<P -"•*• <PT) since <peΓ,

H Λσ [Λπ(π(ζ) —•• 71(77)) -+ (φ -+ φr)~\ and

I- Λα [Λτr(π(ζ) -»77(77)) — (φ — φ1)~\ by Theorem 3,

h Λ σ Λπ(π(ζ) —> π(η)) ~* ( Λ σ ^ —* Λσ^O and

HΛα Λπ(π(ζ) -• π(τ7)) - » ( Λ α ^ - » Aaφ1) by (A4) and Theorems 1 and 2,

hΛπ(ττ(ς) —71(77)) ~* ΛσΛττ(π(ζ) -^π(η)) and

I- Λπ(π(ζ) -> π(τ7)) -* Aα Aπ(π(ζ) -> 77(77)) by (A5), and therefore

h Aπ(π(ζ) -• π(τ7)) -> ( Λσ<^ -> Λσ^') and

hΛττ(77(ζ) —» π(τ7)) —• {Aaφ —• Aaφ1) by Theorems 1 and 2.

By an entirely s imi lar argument, h Λπ(π(ζ) —• 77(77)) —> ( Λσφ' —• Aσφ) and

h Λπ(π(ζ) -*π(η)) — ( A α ^ ' -^ Aaφ), and therefore Λα^, AσφeT. (Q.E.D.)

Theorem 5: // a does not occur in ζ and ψ is obtained from φ by proper

substitution of ζ for a, then I- Aaφ —* ψ.

Proof: Assume the hypothesis. Then,

h Λπ(π(α) —> π(ζ)) —> {φ —> ψ) by repeated use of Theorems 4, 1, and 2,

\- Aa(iψ -» [_φ -> Ί Aπ(π(a) -> π(ζ))]) by Theorems 1, 2, and 3,

h-Λαπ ψ —» [Aaφ —» AanA77(77(a) —*π(ζ))] by (A4) and Theorems 1 and 2,

h Ί ψ -> Aaiψ by (A5),

\-iAai Aπ(π(a) —* π(ζ)) —* (Aaφ —> ψ) by Theorems 1 and 2,

h Ί ΛoίΊ Λ77(π(α) —» π(ζ)) by (A7), and therefore

\-Aaφ->ψ by Theorem 2, (Q.E.D.)
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Theorem 6: If β is an individual variable which does not occur free in φ

and ψ is obtained from φ by proper substitution of βfor a, then Y- Aaφ —»

Λβψand \- Aβψ -» Aaφ.

Proof: Assume the hypothesis. If a has no free occurrences in φ, then, by

definition, ψ = φ, and Theorem 6 holds trivially by (A5) and Theorems 1, 2,

and 5. Assume therefore that a has free occurrences in φ. Then a Φ β;

and, accordingly,

h Aaφ -> ψ by Theorem 5,

h- Aβ(Aaφ -> ψ) by Theorem 3,

h Aβ Aaφ —> Aβψ by (A4) and Theorem 2,

)r- Aaφ —> Aβ Aaφ by (A5), and therefore

\- Aaφ —• Λβψ by Theorems 1 and 2.

By a similar argument it is shown that t- Aβψ —• Λα#>. (Q.E.D.)

Theorem 7: If a is an individual variable which has no free occurrences in

φ, β is an individual variable which does not occur in φ, and ψ is obtained

from φ by replacing each occurrence of a by an occurrence of β, then

h φ —* ψ and h ψ —• φ.

Proof: Theorem 7 is easily seen to hold by a simple inductive argument

using Theorems 1, 2, and 6. (Q.E.D.)

Theorem 8: If i//τ is obtained from ψ by replacing an occurrence of φ by an

occurrence of φ\ \-φ —> φ1 and hφ1 —> φ, then \-ψ —* ψf and f-ψτ —> ψ.

Proof: Assume the hypothesis and let 8 be the language consisting of all

the predicate and operation constants occurring in ψ, φ, or φ\ Let Γ be

the set formulas ψ of 8 such that for all formulas ψ\ φ, φr of 8, if ψ1 is

obtained from ψ by replacing an occurrence of φ by an occurrence of φ\

hφ -* φ1 and \-φy —> φ, then \-ψ —> ψ1 and hψ τ -» ψ. By a simple inductive

argument using Theorems 1, 2, 3, and (A4)-(A5), it is easily shown that

every formula of 8 is in Γ. (Q.E.D.)

Theorem 9: (Rule of alphabetic change of bound individual variables):

If a is an individual variable which has no free occurrences in φ, β is an

individual variable which does not occur in φ, φ1 is obtained from φ by

replacing each occurrence of a by an occurrence of β, and ψ' is obtained

from ψ by replacing an occurrence of φ by an occurrence of φ\ then

\-ψ -> ψ1 andhψ' -> ψ.

Proof: Theorem 9 follows trivially from Theorems 7 and 8. (Q.E.D.)

Theorem 10: // ψ is obtained from φ by proper substitution of ξfor α, then

h Aaφ —• ψ.

Proof: Assume the hypothesis. If a does not occur in ξ, then the desired

result follows from Theorem 5. Assume therefore that a occurs in ζ. Let

β be an individual variable which does not occur in either ξ or in φ, and let
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ζ' be the result of replacing in ζ each occurrence of a by an occurrence of
β. Finally, let ψτ be the result of properly substituting ζτ for a in φ. Then,

)r-/\aφ —> ψ1 by Theorem 5,
Y-/\β(/\aφ -> ψ') by Theorem 3,
h Λβ(Λaφ -> ψ1) —• (Λaφ —> ψ) by Theorem 5, and therefore
f- Λaφ -> ψ by Theorem 2.

(Q.E.D.)

Corollary: If \-φ, then Y-φ\ .

Proof: By Theorems 3, 10, and 2. (Q.E.D.)

§5. Proof of Adequacy We note at this point that Church's first inference
rule *500, viz., modus ponens, is a primitive rule of the present system.
His inference rules *501-*503 are all derived rules here according to
Theorems 3, 9, and the Corollary to Theorem 10, respectively. Church's
axioms |505-f 507 are, of course, all theorems here by (A1)-(A3). Every
instance of Church's schematic axioms *508w, for each natural number n,
as well as his axiom |508, are easily seen to be theorems of the present
system by (A4), (A5), and Theorems 1 and 2. Church's axiom |509 is, of
course, an instance of our Theorem 10. It remains therefore to show that
each instance of Church's schematic axioms *509w, for each natural number
n, is a theorem of the present system. The remainder of the (meta)
theorems shown here all lead to establishing this result in the form of
Theorem 16.

We remark that Theorems 11, 12, and 16, and their development from
one to the other, are the obvious analogues of Theorems 4, 5, and 10,
respectively, and their development from one to the other. This is note-
worthy since the manner in which we justify our specification principle for
predicate variables (Theorem 16) parallels that in which we justify our
specification principle for individual variables (Theorem 10); and, ac-
cordingly, the novelty of our major result, viz., a substitution free axiom
set for second order logic, is derived from the novelty of this parallel
reasoning.

We remind the reader of our convention of having specific groups of
Greek letters for the different kinds of expressions, a convention we
continue to use in what follows. In addition, for the remainder of this
paper it will be assumed that n is a natural number, π is an n-place
predicate variable, and a0, . . . , an-ι are pairwise distinct individual
variables.

Theorem 11: If a0, . . . , an_1are all the individual variables that have free
occurrences in ψ, then \- Aa0 . . . ΛQ^.X (π(a0, . . . , an_ί)<r->ψ) -» (φ ->

(cp^{a°9 ' ' ' an"l)J) and h Λ f l o . . . Λ α ^ O Γ ί α o , . . . , c ^ ) ^ <//)->

(•["••- - ^ N
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Proof: Assume the hypothesis and let δ be the language consisting of the
predicate and operation constants occurring in φ or ψ. Let Γ be the set of
formulas φ of Q such that for all formulas ψ of C, if α0, . . , 0»-i are all
the individual variables occurring free in ψ, then

H Λ α 0 . . . Aaw.x (ir(α0, . . . , an^)^ψ) -> (φ ^ φ^{a°> ' " ' α w " l } ] )

and

h Λα0 . . . Λαw-X (π(α0, . . . , α ^ . J ^ ψ ) - ( c ^ 0 ' " ^ ' ^ j - <?).

It suffices to show that every formula of Q is in Γ. Suppose φ is an
arbitrary atomic formula of 8. Then cp = p(ζ0, . . . , ζfe-i) for some natural
number k, some &-place predicate expression p of Q, and some terms

ζo, • , ζ*-i of Q. If p * π, then for all formulas ψ, φΓ^*0' ' ', J ^ " ' Ί = φ;

and therefore φeΓ by Theorem 1. Assume then that p = π and that ψ is an
arbitrary formula of Q whose only free individual variables are α0, . . . ,
a*-!. Accordingly, fe = n and <p = π(ζ0, . . . , ζ«-i). If τr(ζ0, . . . , ζw-i)
Γπ(α0, . . . , α ^ J l = π ( ζ ^ ^ ̂ ^ ^ t h e n ^ e Γ b y τ h e o r e m χ Assume

therefore that τr(ζ0, . , ζw-i) [π(α°' ' ψ* ' ^ " ^ J * τr(ςθ5 . , ζ«-i). Then,

by Lemma 1, π( ζ o , . . . , ?„_,) Γπ ( α o ' ' ' * ' ^ ^ l = ψ\a° ' ' ' *?'*] and
L ψ J IΛo ς«-iJ

ζo, . . , ζ«-i can be properly substituted for α0, . . . , αw_ l 5 respectively, in
ψ. Let j30, . . . , βnmml be the first n individual variables which do not occur
in ψ, ζ0, . . . , ζw_! and which do not belong to {a0, . . . , c^.j}. Then by
repeated application of Theorems 10 and 3, (A4), Theorems 1 and 2, and
(A5),

Y- Λα0 . . . ΛαB-! (π(α0, . . . , α B . 1 ) ^ ^ ψ ) -» Λβ0 . . . ΛβB_i ίτr(β0) , β»-i) <->

L̂βoJ I Λ - J /

Moreover, by repeated application of Theorems 10, 1, and 2,

H- Λ β 0 . . . Λ f l , . ! Aτ(β 0 , . . . , β B - i ) ^ ^ t / / M . . . Γ β " ' 1 ] ) ^ Uζo, -.., ? . - i ) < - >

C I ••[?;:] K] • ••[?::])•'

therefore,

h Λβ 0 . . . Λft,-i Ufa, ••-, A.- i )<-»>ψί^] .. [ " " " ) ] ) - ( f f(?o, , &,-!)-«-»>

•E:::t3)
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and, accordingly, by Theorems 1 and 2.

H Λα0 . . λoβ.! (π(α0, . . . , αw-i)<->Ψ) — h(ζ0, . . . , ζw-0<->

•£:::£]>
from which it follows, by Theorems 1 and 2, that φeΓ. Since ("i<p)

[π(α°' • - °-J\ = π (<,[π(α°' • - ' α - l ) ] ) and since (φ -> x ) ^ 0 ' - ^ J =
^ ( « o , „ , «._,)] _ ^ . „ , β f c . ^ Qr (^ ̂  χ ) [ «* , . „ , «„.,)] =

(φ -* X), then by Theorems 1 and 2, i(p and (^ -» X) are in Γ whenever
φ, XeΓ. Assume now that φeΓ and that y, σ are an individual and a predi-
cate variable, respectively. It suffices to show that Aγφ, AσφeΓ. Suppose
ψ is a formula of Q whose only free individual variables are α0, . . , «β-i
Then,

h Λα0 . . . Λ α ^ (π(α0, . . . , ̂ . J ^ Ψ ) - (^ - ^ [ π K " " " ' α w " l ) ])
. since (^eΓ.

μ Λy Λα0 . . . Aan^1 (τr(a0, . . . , θn-ι)^ψ) — ίΛy^ ->

Ay(<pΓ(α°' ' ' ' ' α " " j ) ) b y Theorem 3, (A4), and Theorems 1 and 2,

i- Λα0 . . . λan-i (π(a0, . . . , an^1)<->ψ) —

ΛyΛoίo . . . Aαw M (π(α0, . . . , Qfw-i)<-> /̂) by (A5).

We note that either y does not have a free occurrence in ψ or y = α/, for

some z < n. In either case, by Lemma 2, Λyί^ o, . , -i \ =

(Aγφ) [Φo> * * * ' an'l]], and therefore

h Λα0 . . . Λα n . ! (π(α0, . , α«-i)<->ψ) -*

By an entirely similar argument,

h Λα0 . . . Λαw-i (π(α0, . . . , Q!w-i)^^ψ) -»

//A ^ Γπ(αo, , α«-i)l A \^(Ay^) [ ψ J - Ay^J,

and therefore AγφeT. In regard to showing that AσφeT we consider two
cases, depending on whether σ = π or σ Φ π. If σ = π, then, by definition,

(Aσφ) p α ° ' ' * ' ' ύ ? n - 1 Ί = Λσ<̂ , from which it trivially follows by Theo-

rems 1 and 2 that AσφeT. Assume then that σ Φ π. If σ has a free

occurrence in ι//, then, by Lemma 4, {Aσφ) o, . , «-i _ Λ ( J ( ^ from

which it follows by Theorems 1 and 2 that AσφeT. Suppose σ has no free
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occurrences in ψ. Accordingly, by Lemma 3, (Λσ<p) o ? -1 _

Λσ(φ^(a°' • ' α " - l } ] ) . Furthermore,

hΛα0 Λow.! Wαo, . . . , *-,)«-•*) - (φ ̂  φ^0' ' " ' ' < * - l ) ] )

since <peΓ,

hΛσ Λα0 . . . Λa,,.! (τr(α0, , α n _!^^ψ) ->

(Λσ^(Λα,)[^ -'α»-^)
by Theorem 3, (A4), and Theorems 1 and 2.

h Aα0 . . Aα«-i (τr(α0, , α«-i)<->ψ) -*
Λσ Λα0 . . . Aαw_x (π(α0, . . . , «w_i)^->ψ) by (A5), and therefore

h-Λαo . Aαβ_! (π(α0, ? α«-i)<->ψ) ^

^Aσ^ - (Λσ<^) [π(αo> * * ' ? ^ " ^ l ) by Theorems 1 and 2.

By an entirely similar argument,

hΛα 0 . . . Aα«-i (ττ(α0, , α»-i)«-*i/') -*

((Aσφ)[Φΰ' ψ'
a"-d]^ Aoφ),

and therefore Aσ^eΓ. (Q.E.D.)

Theorem 12: If a0, . . . , an_ί are all the individual variables that have free
occurrences in ψ, and π does not have a free occurrence in either ψ or in

φ[Φo' - ' α - J ] , then h Λ , , ^ [ π ( α ° ' ψ ' α - J ] .

Proof: Similar to the proof of Theorem 5, using Theorem 11 in place of
Theorem 4 and (A6) in place of (A7). (Q.E.D).

Theorem 13: I- Λirφ —• φ.

Proof: Let p be the first n -place predicate variable distinct from π and
which does not occur in φ. Then

hΛπcp - J π 5 α ° ' * * * ' ^ - ^ l by Theorem 12,

by Theorem 3, (A4), and Theorems 1 and 2,
t-Λπφ-+ Λp Λπφ by (A5),

hAπφ -> Ap( J , 0 ? ' ' ' ' ^ " x ) by Theorems 1 and 2,

L_ Λ / Γπ^ 0 ' ' α«-i)l\ oΓ7 7^0 ' » α w"i)l Γ^^o, , α«-i)1
h A P

 V I P K , . . . , fl^.i)J/ " ^LP(«O, , α.-i)J Lπ(α0, . . . , a^)]
by Theorem 12 and therefore,
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\-Λπφ -> φ by Theorems 1, 2, and

the fact that φ = J*"- ' * ' > ^ { l p><β ' ' * - J l (Q.E.D.)

Theorem 14: // α0, . . . , α,,-! αr£ <zZZ #te individual variables occurring

free in ψ, ften h Λ ^ - <pΓπ(α°' ' *, ' ^ " ^ 1 . .

Proof: Assume the hypothesis. If π does not have a free occurrence in

either ψ or in ^ o> > -i I t l i e n ^ e desired r e sult follows from

Theorem 12. If π does not have a free occurrence in ψ but does have a free

occurrence in φ\ °' ' ' ' or if π has a free occurrence in

ψ but does not have one in φ \ °' ' '* ' ^ " ^ l then, by definition,

φ\ °» » n"1 - φ^ a n c i therefore the desired result follows from

Theorem 13. Suppose then that π has a free occurrence in both ψ and

*[*"» - ' * - J ] . If φ^** - ' ^ " ^ = Λ then

h Λ ^ - φ^(a°> * ' α w " l } l by Theorem 13.

Assume therefore that <p °' ' " ' ' w - 1 \Φ φ. Let p be the first w-place

predicate variable distinct from π and which does not occur in either φ or

ψ, and let ψτ = ψ\ , °' ' # ' ' * ; . Accordingly, by definition, π does not

have a free occurrence in ψ1; and, furthermore, π does not have

a free occurrence in φ\ °' ' " J ' w - 1 , since the latter is in effect

/rΦ f c. γ,o]\r^...;M Then
\ L Ψ J/Lp(αo, ,<*n-iU

\-Mιφ^φ [π(α°' * ' a"-x)] by Theorem 12,

i- Λp (Λπ«p - c^p^ 0 ' - ' α κ " l ) ] ) by Theorem 3,

Lvφ - J π ( α ° ' ' ^-^l) |"p;α°' ' """{I by Theorem 12.

by Theorem 2, and therefore

I-ΛJNP - <pΓπ(α°' * '. ' Q W - l ) l by definition. (Q.E.D.)
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Theorem 15: If X = ((π(α0, . . . , an-i) <-> ff(α0, . . . , α»-i))-* Ψ), then

4π(α°' χ ' α S - l ) ]
Proof: Theorem 15 is easily seen to hold by a simple inductive argument
using Theorems 1, 2, 3, and (A4). (Q.E.D.)

Theorem 16: v-Miφ - φV^ " '' ^ Ί .

Proof: Assume the hypothesis. Let β0, . . . , β&_ibe (without repetition) all
the distinct individual variables that are free in ψ and that are not
members of {aQ) . . . , αw_i}. Let ζΌ, . . . , ζ feβ l be pairwise distinct Jn-
dividual constants (i.e., 0-place operation constants) which do not occur in
φ or ψ. In addition, let X = ((π(cn0, . . . , αw-ϊ)<-> π(α0, . , ««-i)) -•

ψL° ' ' J*'1 ). Accordingly, α0, . . . , «„_! are all the individual variables
Lso . ζfe-ij/

occurring free in X. Therefore,

v-Aπφ — φ π ^ 0 ' * ' ' ' ^ " ^ by Theorem 14,

X J

y-Aπφ^ φ π ^ 0 ' ' * ' ' ^ " ^ by Theorem 15,

ψ\β; • • • M

hΛ/3.... Λft-x (toφ ̂  φ^* ^ ' °~u])

by repeated application of (A5) and Theorem 2, and therefore,

h Λπ^ - ^[π ( α° ' ' *, ? ^ - ^ by Theorem 10. (Q.E.D.)

NOTES

1. Such a formulation is given by A. TarsM in [2] and developed by D. Kalish and R.
Montague in [3]. The present author in [4] and [5] has also formulated a substitu-
tion free axiomatization of first order logic without ''existential presuppositions."

2. Of course, when extending either first or second order logic to tense, epistemic,
deontic, or modal logic, qualifications in metatheorems regarding principles of
proper substitution will be required. Nevertheless, it is a far different matter
having such qualifications stipulated in the form of metatheorems than it is having
them built directly into the characterization of the logical axioms themselves.

3. cf. [4], lemma 4.27 (p. 108) and the discussion on page 106. The objections against
an unqualified, general version of Leibniz' principle (or interchangeability salυa
veritate) are applicable when certain special 'Opaque" contexts are involved, be
they modal or otherwise. But all such contexts are—or should be when properly
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formalized—other than atomic, their "opacity" being generated within the scope of
special formula operators. Atomic formulas, because they are atomic, will contain
no occurrences of such operators and consequently will uphold par excellence the
Leibnizian principle unqualifiedly.

4. Examples of such unqualified extensions of standard logic can be found in [4], [6],
and [7].

5. cf. [2].
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