A NOTE ON THESES OF THE FIRST-ORDER FUNCTIONAL CALCULUS

JULIUSZ REICHBACH

In paper [4] I have presented some generalization of the usual definition of satisfiability and as a conclusion a possibility of approximation of the first-order functional calculus by many valued propositional calculi, see [3].

In the following I am describing another way of obtaining such conclusions which I proved in 1957/8.

We are using the notation given in [2] and in particular:
(01) variables: (1') free: x_{1}, \ldots (simply x); (2') apparent: a_{1}, \ldots. (simply a)
(02) relation signs: $f_{1}^{c}, \ldots, f_{q}^{m}$,
(03) logical constants: ',,$+ \Pi$,
(04) $w(E)$-the number of free $(p(E)$-apparent) variables occurring in the expression E,
(05) $\left\{i_{m}\right\}$-the sequence i_{1}, \ldots, i_{m},
(06) $\left\{i_{w(E)}\right\}$ or $\left\{j_{w(E)}\right\}$, or $\left\{l_{w(E)}\right\}$-different indices of all free variable occurring in E,
(07) $n(E)=\max \left\{w(E)+p(E),\left\{i_{w(E)}\right\}\right\}$,
(08) S_{E}-the set of all symbols occurring in E,
(09) $E(u / z)$-the expression resulting from E by the substitution of u for each z in E with knowing conditions,
(010) $S k t$-the set of all Skolem normal forms $\Sigma a_{1} \ldots \Sigma a_{i} \Pi a_{i+1} \ldots \Pi a_{k} F$, where F is quantifier, and free variable, free and $\Sigma a_{j} G=\left(\Pi a_{j} G^{\prime}\right)$, $j=1, \ldots i$,
(011) $C(E)$-the set of significant parts of $E: H \varepsilon C(E) . \equiv . h=E$ or there exist F, G and G_{1} such that $F \varepsilon C(E)$ and: $(\exists i)\left\{H=G\left(x_{i} / a\right)\right\} \wedge\{(F=$ $\left.\Pi a G) \vee(F=\Sigma a G)\} \vee\{(H=G)\} \vee\left(H=G_{1}\right)\right\} \wedge\left(F=G+G_{1}\right)$
(012) $\mathbf{M}, \mathbf{M}_{1}, \ldots$-models; T, T_{1}, : . .-tables of given rank; $Q, Q_{1}, \ldots-$ non-empty sets of tables of the same rank.

It is known that if E is normal form or in an alternation of such forms,
then E is a thesis if and only if it may be obtained from theses of the propositional calculus by means of the following proof rules:
(11) If $(F+G)+H$ is a thesis, then $(F+H)+G$ is a thesis.
(12) If $(F+G)+G$ is a thesis, then $F+G$ is a thesis.
(13) If $(F+E)+G$ is a thesis, $x \bar{\varepsilon} S_{F+E}$ and F is a quantifierless formula, then $(F+E+\Pi a G(a / x)$ is a thesis.
(14) If $F+G\left(x_{t} / a\right)$ is a thesis and $\Sigma a G \varepsilon C(F)$ then $F+\Sigma a G$ is a thesis.

In the above rules F may not occur, see [1], Of course:
L.1. If the length of a formal proof of the formula E is k, then the length of some formal proof of $E\left(x / x_{i}\right)$ also is k.

The sequence $<D, F_{1}^{c}, \ldots, F_{q}^{m}>$ denotes a model, i.e. that the domain D is an arbitrary non-empty set and $F_{1,}^{c} \ldots, F_{q}^{m}$ is an arbitrary finite sequence of relations on D such that F_{i}^{j} is a j-ary relation, $i=1, \ldots, q$ and $j=c, \ldots, m$. A table of the rank k is a model whose domain has exactly k elements which are numbers $\leq k$.

For each model $\mathrm{M}=\left\langle D, F_{1}^{c}, \ldots, F_{q}^{m}>\right.$ by $\mathrm{M} / s_{1}, \ldots, s_{k} /$-or briefly $\mathrm{M} /\left\{s_{k}\right\}$-we shall denote a table $\left\langle D_{k}, \phi_{1}^{c}, \ldots, \phi_{q}^{\dot{m}}\right\rangle$ of the rank k such that for each $r_{1}, \ldots, r_{j} \leq k$:

$$
\phi_{i}^{j}\left(r_{1}, \ldots, r_{j}\right) . \equiv F_{i}^{j}\left(r_{1}, \ldots, r_{j}\right), i=1, \ldots, q \text { and } j=1, \ldots, m
$$

Therefore $\mathrm{M} /\left\{s_{k}\right\}=\left\langle D_{k}, \phi_{\mathrm{i}}^{c}, \ldots, \phi_{q}^{m}\right\rangle$; if s_{k} is empty then it holds for all models. $M /\left\{s_{k}\right\}$ is a submodel of M in the sense of homomorphism.

Of course:
L.2. $M /\left\{s_{k}\right\} /\left\{j_{m}\right\}=M /\left\{s_{i m}\right\}$.
D.O. $T \varepsilon \mathbf{M}[k]$. $\equiv .\left(\exists\left\{s_{k}\right\}\right)\left\{T=\mathbf{M} /\left\{s_{k}\right\}\right\}$.
$\mathbf{M}[k]$ is the set of all $\mathrm{M} /\left\{s_{k}\right\}$. We assume:

1. $\mathbf{M}\{E\}=0$ i.e. E^{\prime} is true in the model \mathbf{M}.
2. $\mathbf{M}\left(E\left\{s_{k}\right\}\right)=0$ i.e. $\left\{s_{k}\right\}$ are elements of the domain of M, x_{i} are names $s_{i}, i=1, \ldots, k$ and s_{1}, \ldots, s_{k} do not satisfy E in the model M.

It is known:
T.1. A formula is a thesis if and only if it is true.
D.1. $R\left(k, Q, T_{1}, T_{2},\left\{i_{t}\right\}, i\right) \equiv(Q$ is non-empty set of talbes of the rank $k) \wedge$ $\left(T_{1}, T_{2} \varepsilon Q\right) \wedge\left(T_{1} /\left\{i_{t}\right\}=T_{2} /\left\{i_{t}\right\}\right) \wedge\left(i f\left\{i_{t}\right\}\right.$, i are different natural numbers $\leq k$, then for each j, if $\left\{i_{t}\right\}, j$ are different natural numbers $\leq k$, then there exists $T_{3} \varepsilon Q$ such that $T_{3} / 1, \ldots, j-1, j+1, \ldots, k /=T_{1} / 1$, $\ldots, j-1, j+1, \ldots, k /$ and $\left.T_{3} /\left\{i_{t}\right\}, j /=T_{2} /\left\{i_{t}\right\}, i /\right)$.

We note that T_{3} in D.1. is a common extension of T_{1} and T_{2}.
For an arbitrary non-empty set Q of tables of the rank k, for an arbitrary taظle $T=<D_{k}, F_{1}^{c}, \ldots, F_{q}^{m}>\varepsilon D$ and for an arbitrary formula E
whose indices of free variables occurring in it are $\leq k$ we introduce the following inductive definition of the functional V :
(1d) $V\left\{k, Q, T, f_{r}^{\prime}\left(x_{r_{1}}, \ldots, x_{r_{m}}\right)\right\}=1 . \equiv F_{r}^{j}\left(r_{1}, \ldots, r_{m}\right)$,
(2d) $V\left\{k, Q, T, F^{\prime}\right\}=1 . \equiv \sim V\{k, Q, T, F\}=1 . \equiv V\{k, Q, T, F\}=0$,
(3d) $V\{k, Q, T, F+G\}=1 . \equiv . V\{k, Q, T, F\}=1 \vee V\{k, Q, T, G\}=1$,
(4d) $V\{k, Q, T, \Pi a F\}=1 . \equiv .(i)\left(T_{1}\right)\left\{(i \leq k) \wedge R\left(k, Q, T, T_{1}\left\{i_{w(F)}\right\}, i\right) \rightarrow\right.$ $\left.V\left\{k, Q, T_{1}, F\left(x_{i} / a\right)\right\}=1\right\}$.
D.2. $F \varepsilon P(k, Q) . \equiv .(T)\{(T \varepsilon Q) \rightarrow V\{k, Q, T, F\}=1\}$.
D.3. $N(k, Q, E) . \equiv\left(T_{1}\right)\left(T_{2}\right)\left\{\left(T_{1}, T_{2} \varepsilon Q\right) \wedge\left(T_{1} /\left\{i_{w(E)}\right\}=T_{2} /\left\{i_{w(E)}\right\}\right) \wedge\right.$ $\left.V\left\{k, Q, T_{1}, E\right\}=1 \rightarrow V\left\{k, Q, T_{2}, E\right\}=1\right\}$.
D.4. $F \varepsilon P[F, k] . \equiv(Q)(N(k, Q, E) \rightarrow\{F \varepsilon P(k, Q)\})$.
D.5. $F \varepsilon P|E| . \equiv .(\exists k)(\{k \geq n(F)\} \wedge\{F \varepsilon P[E, k]\})$.
D.7. $E \varepsilon P$. $\equiv . E \varepsilon P|E|$.

We may read:

1. $\quad V\{k, Q, T, E\}=1$ as: T satisfies E relative to Q^{1}.
2. $E \varepsilon P(k, Q)$ as: E is true relative to Q.
3. $N(k, Q, E)$ is an invariant relation.
4. $E \varepsilon P$ as: E is P-true.

Of course:
(3d') $V\{k, Q, T, F+G\}=0 . \equiv . V\{k, Q, T, F\}=0 \wedge V\{k, Q, T, G\}=0$,
(4d') $V\{k, Q, T, \Pi a F\}=0 . \equiv(\exists i)\left(\exists T_{1}\right)\left\{(i \leq k) \wedge R\left(k, Q, T, T_{1}\left\{i_{w(F)}\right\}, i\right) \wedge\right.$ $\left.V\left\{k, Q, T_{1}, F\left(x_{i} / a\right)\right\}=0\right\}$,
(5d') $V\{k, Q, T, \Sigma a F\}=0 . \equiv$. (i) $\left(T_{1}\right)\left\{(i \leq k) \wedge R\left(k, Q, T, T_{1},\left\{i_{w(F)}\right\}, i\right) \rightarrow\right.$ $\left.V\left\{k, Q, T_{1}, F\left(x_{i} / a\right)\right\}=0\right\}$.
T.2. If $E \varepsilon S k t, F \varepsilon C(E), n(E) \leq k, \mathbf{M}\{E\}=0, Q=\mathbf{M}[k]$, then:
(1) If $\mathrm{M} /\left\{s_{i_{w(F)}}\right\}=T /\left\{i_{w(F)}\right\}, T \varepsilon Q$ and $\mathrm{M}\left(F\left\{s_{i_{w(F)}}\right\}\right)=0$, then $V\{k, Q, T, F\}=0$.
(2) $E^{\prime} \varepsilon P[k, Q]$ and $E \bar{\varepsilon} P$.

Proof: First of all we note that (2) follows from (1). We shall prove (1) by induction on the number of quantifiers occurring in F. If $F \varepsilon C(E)$ and F is a quantifierless formula, then (1) holds. It remains to verify that if (1) holds for $F\left(x_{i} / a\right) \varepsilon G(E)$, then it also holds for formulas belonging to $C(E)$ of the form:
(1') $\Pi a F$
and
(2') $\Sigma a F$.
In the case (1^{\prime}) by virtue of the definition of satisfiability, of the assumption L.2. and ($4 d^{\prime}$) we have:

If $\mathrm{M}\left(\Pi a F\left\{s_{i_{w(F)}}\right\}\right)=0$, then $(\exists i)\left(\exists s_{i}\right)\left\{\left(x_{i} \bar{\varepsilon} S_{F}\right) \wedge(i \leq k) \wedge \mathrm{M}\left(F\left(x_{i} / a\right)\right.\right.$ $\left.\left.\left\{s_{i w(F)}\right\}, s_{i}\right)=0\right\}$; hence $(\exists i)\left(\exists s_{i}\right)\left(\exists T_{1}\right)\left\{\left(x_{i} \bar{\varepsilon} S_{F}\right) \wedge(i \leq k) \wedge\left(\mathrm{M} /\left\{s_{i_{w(F)}}\right\}, s_{i} /=\right.\right.$ $\left.\left.T_{1} /\left\{i_{w(F)}\right\}, i /\right) \wedge R\left(k, Q, T, T_{1}, i_{w(F)}, i\right) \wedge \mathrm{M}\left(F\left(x_{i} / a\right)\left\{s_{w(F)}\right\}, s_{i}\right)=0\right\}^{2} ;$ hence
$(\exists i)\left(\exists T_{1}\right)\left\{\left(x_{i} \bar{\varepsilon} S_{F}\right) \wedge(i \leq k) \wedge R\left(k, Q, T, T_{1},\left\{i_{w(F)}\right\}, i\right) \wedge V\left\{k, Q, T_{1}, F\left(x_{i} / a\right)\right\}=0\right\}$ and therefore $V\{k, Q, T, \Pi a F\}=0$.

In the case (2') by virtue of $\Sigma a F \varepsilon C(F), E \varepsilon S k t$, of the satisfiability definition, $\mathbf{M}\{E\}=0$ and of the assumption we obtain that for an arbitrary $i \leq k$ and for each $T_{1} \varepsilon Q$ we have $V\left\{k, Q, T_{1}, F\left(x_{i} / a\right)\right\}=0$ and so by ($5 d^{\prime}$) for each $T \varepsilon Q: \quad V\{k, Q, T, \Sigma a F\}=0$; q.e.d.

T.3. If $E \varepsilon S k t, E=\Sigma a_{1} \ldots \Sigma a_{i} \Pi a_{i+1} F$ and E is a thesis, then $E \varepsilon P$.

Proof: Let E, \ldots, E_{n} be a formal proof of the formula E by rules (11)-(14). We shall prove by induction on n that: $(*) E_{i} \varepsilon P|E|, i=1, \ldots, n$. If E_{i} is a thesis of the propositional calculus, then it is obviously that (*) holds; therefore (*) holds for $i=1$. Let ($*$) hold for $i<r$; we shall prove it for r. In view of the rules (11)-(14) it suffices to verify:
(1') If $(F+E)+G \varepsilon P|E|, x_{t} \bar{\varepsilon} S_{F+E}$ and F, G are quantifierless formulas, then $F+E+\Pi a G\left(a / x_{t}\right) \varepsilon P|E|$.
and
(2') If $F+G(x / a) \varepsilon P|E|, \Sigma a G \varepsilon C(F)$, then $F+\Sigma a G \varepsilon P|E|$.
(1'): Let $x_{t} \bar{\varepsilon} S_{F+E}, x_{t} \varepsilon S_{G}, k \geq n(F+E+G) \geq n\left(F+E+\Pi a G\left(a / x_{t}\right)\right), F, G$ are quantifierless formilas, $N(k, Q, E)$ and $V\left\{k, Q, T, F+E+\Pi a G\left(a / x_{t}\right)\right\}=0$. Hence by (3d'): $V\{k, Q, T, F\}=0, V\{k, Q, T, E\}=0$ and $V\{k, Q, T, \Pi a G(a /$ $\left.\left.x_{t}\right)\right\}=0$; therefore in view of ($4 d^{\prime}$) there exist $i \leq k$ and $T_{1} \varepsilon Q$ such that $R\left(k, Q, T, T_{1},\left\{i_{w\left(G\left(a / x_{t}\right)\right)}\right\}, i\right.$ and $V\left\{k, Q, T_{1}, G\left(x_{i} / a\right)\right\}=0$.

We consider two cases:
(1 $\left.{ }^{0}\right) \quad i=i_{j}$, for some $j, 1 \leq j \leq w\left(G\left(a / x_{t}\right)\right)$,
(2) i is different from $i_{1}, \ldots, i_{w\left(G\left(a / x_{t}\right)\right)}$.

The case $\left(1^{0}\right)$: For the shortest writing we assume $i=i_{1}$. By virtue of D.1. we have $T /\left\{i_{w\left(G\left(a / x_{t}\right)\right)}\right\}=T_{1} /\left\{i_{w\left(G\left(a / x_{t}\right)\right)}\right\}$. Because $G\left(x_{i_{1}} / x_{t}\right)$ is a quantifierless formula, then in view of the above $V\left\{k, Q, T, G\left(x_{i_{1}} / x_{t}\right)\right\}=0$ and by ($3 d^{\prime}$): $V\left\{k, Q, T,(F+E)+G\left(x_{i_{1}} / x_{t}\right)\right\}=0$. Because $(F+E)+G\left(x_{i_{1}} / x_{t}\right)$ is a substitution of some formula occurring in the formal proof for which (*) holds, therefore in view of L.1. and the induction hypothesis we have a contradiction with the assumption of (1^{\prime}).

The case $\left(2^{\circ}\right)$: In view of the asuumption and D.1. there exists $T_{3} \varepsilon Q$ such that $T_{3} / 1, \ldots, t-1, t+1, \ldots, k /=T / 1, \ldots, t-1, t+1, \ldots$, $k /$ and $T_{3} /\left\{i_{w\left(G\left(a / x_{t}\right)\right)}\right\}, t /=T_{1} /\left\{i_{w\left(G\left(a / x_{t}\right)\right)}\right\}, i /$. Because $N(k, Q, E), x_{t} \bar{\varepsilon} S_{F+E}$ and F, G are quantifierless formulas and from the above: $T_{3} /\left\{j_{w(E)}\right\}=$ $T /\left\{j_{w(E)}\right\}, T /\left\{l_{w(F)}\right\}=T_{3} /\left\{l_{w(F)}\right\}$ and $T_{3} /\left\{i_{w\left(G\left(x_{i 1} / x_{t}\right)\right)}, t /=T /\left\{i_{w\left(G\left(x_{i_{1}} / x_{t}\right)\right),} i /\right.\right.$, therefore $V\left\{k, Q, T_{3}, E\right\}=0, V\left\{k, Q, T_{3}, F\right\}=0$ and $V\left\{k, Q, T_{3}, G\right\}=0$. Hence by ($\left.3 d^{\prime}\right) V\left\{\left[\begin{array}{l} \\ \end{array}, Q, T_{3},(F+E)+G\right\}=0\right.$ which is inconsistent with the assumption of (1^{\prime}).
(2'): Let $x_{t} \varepsilon S_{G\left(x_{t} / a\right)}, \Sigma a G \varepsilon C(F), k \geq n\left(F+G\left(x_{t} / a\right)\right) \geq n(F+\Sigma a G), N(k, Q, E)$,
$T \varepsilon Q$ and $V\{k, Q, T, F+\Sigma a G\}=0$; hence and in view of ($3 d^{\prime}$) we have $V\{k, Q, T, F\}=0$ and $V\{k, Q, T, \Sigma a G\}=0$. We note that if $\left\{i_{w(G)}\right\}, t$, and $\left\{i_{w(G)}\right\}, j$ are sequences of different natural numbers $\leq k$, then assuming $T_{3}=T / 1, \ldots, j-1, t, j+1, \ldots, k /$, in view of $L .2$. and D.1. we obtain $R\left(k, Q, T, T,\left\{i_{w(G)}\right\}, t\right)$. Therefore by virtue of ($5 d^{\prime}$) we have $V\left\{k, Q, T, G x_{t} /\right.$ $a)\}=0$; hence by ($3 d^{\prime}$) $V\left\{k, Q, T, F+G\left(x_{t} / a\right)\right\}=0$ which is inconsistent with the assumption of (2^{\prime}); q.e.d.
T.4. If $E \varepsilon S k t, E=\Sigma a_{1} \ldots \Sigma a_{i-1} \Pi a_{i} F$, then E is a thesis if and only if $E \varepsilon P$.
T.4. is a simple conclusion from T.1-3. Of course, T.4. remains true, if we replace E by an alternation of formulas considered in T.4. Because it is easy to show that the above class of theses is equivalent with the class of all theses, therefore T.4. gives a characterization of theses of the first-order functional calculus, see [1]. We note that from the proof of T.4. it follows that be suitable formulation of D.3. and D.4. we shall obtain T.4. for normal forms.
T.4. gives a certain proof that the Kleene-Mostowski class of theses is P_{1}^{1} and simultaneously a simple proof that it is possible to approximate the first-order functional calculus by many-valued propositional calculi; the Boolean many-valued propositional calculi are determined by the product of tables belonging to Q, see ($1 d$)-(4d) and D.1.-6.

NOTES

1. If Q has one element, then V is the usual satisfiability function. Therefore the above definitions are certain generalizations of the usual satisfiability definition.
2. If $T=M /\left\{x_{k}\right\}$, where $z_{i_{1}}=s_{i_{1}}, \ldots, z_{i_{w(F)}}=s_{i_{w(F)} \text {, }}$, then $T_{1}=M /\left\{u_{k}\right\}$, where $u_{i_{1}}=$ $s_{i_{1}}=z_{i_{1}}, \ldots, u_{i_{w(F)}}=s_{i_{w(F)}}=z_{i_{w(F)},} u_{i}=s_{i}, u_{1}=s_{1}$ for others 1 , and if $\left\{i_{u}(F)\right\}$, i are different natural numbers $\leq k$, then $T_{3}=M /\left\{v_{k}\right\}$, where $v_{1}=z_{1}, \ldots, v_{j-1}=$ $z_{j-1}, v_{j}=s_{i}, v_{j+1}=z_{j+1}, \ldots, v_{k}=z_{k}$.

REFERENCES

[1] Hilbert, D., and P. Bernays, Grundlagen der Mathematik, v. II, Berlin 1939.
[2] Reichbach, J., "On characterizations of the first-order functional calculus," Notre Dame Journal of Formal Logic, v. II (1961), pp. 1-15.
[3] Reichbach, J., 'On the connection of the first-order functional calculus with many valued propositional calculi," Notre Dame Journal of Formal Logic, v. III (1962), pp. 102-107.
[4] Reichbach, J., 'On the definition of satisfiability," sent to Journal of Symbolic Logic.

