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ON EXPLANATION OF NUMBER PROGRESSION

CHUNG-YING CHENG

In a recent article1 Benacerraf asserts that the less-than relation R
must be recursive in order for the set of elements on which R is defined to
constitute a set of numbers. Benacerraf thinks that this is an essential and
independent requirement for a set of elements to be a set of numbers. He
rejects Quine's view that there is only one condition upon all acceptable
explications of numbers, namely, a given set of elements must be a pro-
gression in the sense that it is an infinite series each of whose members
has only finitely many precursors.2 Now the question is whether the con-
dition that R must be recursive is an independent one for the characteriza-
tion of natural numbers. In this paper I shall show that a little closer
examination of Quine's view should dispel the doubt that the condition in
question is not an independent one.

For our purpose, it suffices to show that the less-than relation R can
be defined in terms of Quine's characterization of natural numbers as a
progression, and that the recursiveness of the less-than relation is an in-
herent feature of the progression by definition. Quine defines3 the class of
natural numbers N as follows:

N =<//{#: (z) (xez.S"zQz.^.Oez)}

In this sense to be a natural number is to be a member of all classes z
fulfilling the initial condition "Oez" and the closure condition "S"zez"
(precursors of z are in z), A class z which fulfills the initial condition
"Oe z" and the closure condition "S"zez" is in fact a progression each of
whose members has only finitely many precursors. Of course, the defini-
tion does not restrict the size of a natural number, for a natural number
can be infinitely large if there is a z which is infinitely large, even though
an axiom of infinity for z is not needed to make sense of the definition.

To see that a progression is a class z, let the progression be:

A=alt a29 a3,. .. ,θn,. ..

Since each α* has only finitely many precursors, each α, must have 0 as its
precursor, and has all the elements which are the precursors of each of its
precursors as precursors. Thus A is indeed a class z.
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Now Quine defines the less-than relation on a number progression in
terms of the equal to or less-than relation between members of a class z.

yύ x =df(z) (xez.S"zQz.z>.yez)

Thus to say that y is equal to or less than x is to say that bothy and x be-
long to a progression and thatj; is either x or a precursor of x. It follows
too that if the successor of y is either x or a precursor of x, y must be less
than x. Thus it follows the definition of y <x in terms of S'y^x.

Two things are clear from the above account. First, since the class N
of natural numbers forms a progression, it can be defined as the class of x
such that 0-x and 0 is the least element of the progression. Second, the
less-than relation < can be seen to be an inherent feature or property of
the progression of natural numbers. Now < is recursive in the sense that,
given any two elements x and y in the progression, we can know which ele-
ment of the two is greater by finite calculation. This follows from the
definition of the progression and the definition of <. Since x and y belong
to the progression, each of them has finitely many precursors, we are
therefore able to tell how many precursors each has by a finite calculation.
Since we can further tell whether A: is a precursor, or a precursor of a
precursor, or a precursor of a precursor of a precursor and so on, of y by
the definition of <, thus, to conclude, to say that the natural numbers form
a progression P is to implicitly claim that < is definable on P and < is re-
cursive on P. 4 In fact a system of objects which forms a progression, with
the successor or precursor functions suitably defined on the progression
always have the property that < is definable on the progression and < is
recursive on it.

Benacerraf attempts to construct a progression which is not recursive
in order to show that recursiveness of progression with respect to < is an
independent requirement for an adequate account of natural numbers. But
his attempt seems to end in failure. He asks us to choose a progression:

A= au a2, a3,...,a»f...

obtained as follows. Divide the positive integers into two sequences jBand
C, within each sequence letting the elements come in order of magnitude.
Let B be the sequence of Godel numbers of valid formulas of quantification,
and let C be the sequence of positive integers which are not numbers of
valid formulas of quantification. Then A is formed from B and C according
to the specification #2«-i = &» a n c* ^2n~cfr Benacerraf concludes that A is a
progression but a non-recursive one.

Now I think that this way of producing a non-recursive progression is
mistaken for the following reason. It can be shown that the progression in
question is either not a progression or a recursive progression. A is
clearly in fact not a progression because it is not guaranteed that each of
its members has finitely many precursors. Since some elements in C, by
definition, may have infinitely many precursors, C cannot be a progression,
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and therefore A cannot be a progression. On the other hand, Benacerraf
apparently thinks that C is a progression, that is, elements can be generated
each of which will be known to have finitely many precursors. If that were
the case, one should not conclude that A is a progression but not a re-
cursive one.

Finally, we come to the question whether in explicating the concept of
natural number it is necessary to explain the notion of cardinality or
cardinal number. Again Benacerraf criticizes Quine for rejecting the ex-
planation of the notion of cardinality as a part of an acceptable explication
of the notion of number. Now the notion of cardinality of a class of objects
involves the notion of one-to-one correspondence between the class of ob-
jects in question and the elements in the progression of natural numbers
1, 2, 3 , . . . In other words, one might say that to know the cardinality of a
class of objects is to know how to count the objects. In fact, this know-how
is an ability to do the counting in an intuitive sense. What Benacerraf
maintains is that an account of numbers must include an account of the use
of number words for "transitive counting"—correlating members of a
given class of objects with elements of the number progression—for the
following reason. "One cannot tell what number a particular expression
represents without being given the sequence of which it forms a part. It
will then be from its place in that sequence—that is, from its relation to
other members of the sequence, and from the rule governing the use of the
sequence in counting—that it will derive its individuality. It is for this last
reason that I urged, contra Quine, that the account of cardinality must ex-
plicitly be included in the account of number."5 That is, to learn what
numbers are is to learn how to use number words in counting and in
measuring multiplicity. Therefore, in order to explicate the notion of num-
ber, it is necessary to explain the notion of counting.

Now there are at least three objections to the above argument. First,
it might be quite true that to learn what numbers are is to learn how to use
number words in counting or in measuring multiplicity. In fact one might
say that our intuitive notion of numbers just consists in that. But the ques-
tion of explicating the notion of numbers is to explain how counting is pos-
sible and how the use of number words in measuring multiplicity is
possible. This question is to be answered by showing what structure a
number progression exhibits independently of the use of number words for
measuring multiplicity. But to say this is not to say that the account of
numbers by way of exhibiting the structure of the number progression will
not enable us to do counting. On the contrary, an explanation of numbers
should meet the condition that the use of the number words for counting is
guaranteed on the given account.6

Second, Benacerraf has assumed that number words do not refer to
anything and therefore their meanings depend upon rules governing the use
of the number sequence (indeed sequence of number words) in counting. But
this is not a justified assumption. Because from the premises that numbers
do not have their individuality independently of their relations in the num-
ber progression, it need not follow that number words do not refer to any-
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thing. Instead, in so far as a set of sets exhibits the relations of a number
progression, there is no prima facie implausibility that a number progres-
sion can be identified with the set of sets and individual numbers with
individual sets in that set on the basis of some criteria of identity formu-
lated in an overall theory.7 Thus a theoretical account of numbers need not
explicitly include as a part a prior understanding of the rules governing the
use of the number words in counting, for these rules must be already pre-
supposed and therefore should be perfectly constructible from the explica-
tion of the notion of numbers. Finally, the notion of cardinality itself
involves and presupposes the notion of natural numbers. Therefore an
explanation of cardinality need not be said to completely explain the notion
of natural numbers since it would be question begging.

In order to dispel any doubts that Quine's condition of being a progres-
sion constitutes an adequate account of natural numbers from which the use
of number words in counting or measuring multiplicity can be explained, we
might consider how the statement "There are n objects x such that Fx" is
to be explained. Now there are two ways of explaining this. One way does
not involve reference to numbers as such, but only in terms of the
numerically definite quantifiers8. Thus we can explain the statement
"There are n objects x such that Fx" in the following fashion:

'&ox)Fx' for: '~ (lx)Fx>

Then we can explain (lxx)Fx in terms of (30^)i^ by defining

<{\x)Fx> for: «(3*) {Fx.Qtf) {Fy-y?x))>

and then define:

<QnX)Fx> for: «(3Λ) (Fx (l^yHFy y f $)>

To expand this, we have:

(3Λ:1)(3Λ:2). . . ( 3 ^ ) ( J P ^ . FX2. . .Fxn-x1fx2.χ1^x3...

Xn-i?Xn (y)(FyD.y=xίvy =x2v...vy =x»)

This shows that the question as to how many x are such that Fx can be
answered by exhibiting all the distinguishable elements in the class of x's.
This exhibition is representable in terms of the theory of quantification and
the theory of identity.

Now if one still presses to know how many x are such that Fx in terms
of numbers, we must turn to the second way of explaining the statement
"There are n objects.* such that Fx". This is to explain this statement as
if it is equivalent to the statement that "The number of objects* such that
Fx isn." Since numbers form a progression, this makes it possible for us
to correlate elements of the number progression with members in the class
of objects x such that Fx. A correlation is a function. Thus to say that the
number of x such that Fx is n can be explained as saying that there exists a
function which assigns exhaustively members of class of objects x to those
of the number progression, no two to the same. Following Quine, we may
define "a has no more members than β"
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'a^ β' for: ζ(lx)(F\incx.aCίx"β)'

In terms of this terminology, we may construe "The number of the class of
objects x such that Fx is n" as saying the same thing: "The class of ob-
jects x such that Fx and the number n are alike in size."9 This can be ex-
pressed as follows:10

{x : Fx)* {y:y < n)

Now clearly y:y <n can be explained in terms of a member in the num-
ber progression which has n precursors and this member is uniquely
determined in the number progression because the less-than relations < is
uniquely defined in the progression. From this explanation of the meaning
of the statement "There are n objects x such that Fx", we see that the ac-
count of numbers as a progression in no logical sense depends upon the use
of number words for counting or measuring multiplicity, but rather
provides a basis for the possibility of such use when an one-to-one corre-
spondence is introduced into the theory of relations.

NOTES

1. Paul Benacerraf, "What Number Could Not Be", Philosophical Review, LXXIV, 1,
January, 1965, 47-73.

2. Quine maintains this in his Word and Object, MIT and John Wiley, 1960.
Benacerraf has quoted Quine from this source in his article "What Numbers
Could Not Be." Quine has also reaffirmed this view in his Set Theory and its\
Logic, Harvard University Press, 1963. In that book Quine says, "Any objects
will serve as numbers so long as the arithmetical operations are defined for
them and the laws of arithmetic are preserved. It has sometimes been urged that
we account for pure arithmetic, we must also account for the application of num-
ber in the measurement of multiplicity. But this position, in so far as it is
thought of as contrary to the other, is wrong. We have seen how to define not
only the arithmetical operations but also the Anzahlbegriff, "a has x members,"
without having yet decided what numbers are." (p. 81).

3. Cf. Quine, Set Theory and its Logic, p. 75. Note Quine's definition of natural
numbers cited above differs from earlier definitions of Frege and Russell in this:
whereas those earlier definitions take N to be {x:(z) (0 ez >S"z Q z - 'D-xez)}
where S is the successor function such that for each number x, S'x is x + 1. This
definition requires infinite classes for characterizing the class of natural num-
bers. The cited definition however does not depend on an axiom of infinity for z.
For any x to be a natural number, z need not contain more than x positive mem-
bers and 0. Furthermore, the law of mathematical induction can be justified on
the basis of this definition.

4. An intuitive notion of successor or precursor of course is presupposed in this
account.

5. Op. Cit., 72. Italics Benacerraf's.
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6. It is curious that Benacerraf considers intransitive counting, that is, counting
without referring to objects, as prior to transitive counting, that is, counting in
reference to objects other than numbers. An explication of the notion of numbers
is acceptable if it can explain how intransitive counting is possible, for it will
necessarily explain how transitive counting is possible. Quine's condition seems
quite apt to satisfy this condition. See above.

7. See discussions in my paper "Referential Involvements of Numbers", forthcom-
ing.

8. See Quine's, Methods of Logic, Henry Holt and Co., New York, 1955, 231.

9. Cf. Charles Parson's "Frege's Theory of Numbers", Philosophy in America,
edited by Max Black, Cornell University Press, 1965, 183, regarding Frege's
definition of Gleichzahligkeit or "numerical equivalence."

10. Cf. Quine's Set Theory and its Logic, 78.
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