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RESULTS REGARDING THE AXIOMATIZATION
OF PARTIAL PROPOSITIONAL CALCULI

W. E. SINGLETARY

In §3, §5, and §6 the problems of determining whether or not partial
(partial implicational) propositional calculi may be axiomatized by one, n
or fewer, or finitely many axioms are shown to be unsolvable. In §4 the
split problem for partial (partial implicational) propositional calculi is
shown to be unsolvable. We show further that there is a problem of each of
these types of any recursively enumerable degree of unsolvability.*

§0. Introduction. The problem of reducing the number of axioms for a
calculus seemed to us to be basic. Its study led to the results of §3, §5 and
§6. The split problem for partial propositional calculi dealt with in §4 was
brought to our attention by Henry Hiz after the other work was completed.
He believes the formulation of the split problem to have originated with
Lukasiewicz.

In §2 we prove that there is a partial (partial implicational) calculus
with unsolvable decision problem. This result is known but the proof given
here differs rather radically from the existing proofs. The result is in-
cluded here because it was necessary to give a complete proof of it in
developing the machinery for the proofs of later results. The style of the
proof in §2 and in part of §3 is a parallel of Yntema's [11] proof for a less
general system. The known unsolvability results for partial (partial
implicational) calculi are included in the references listed at the end of this
paper.

§1. Preliminary Definitions and Remarks. A partial implicational proposi-
tional calculus is a system having D, [, ] and an infinite list of propositional
variables Pi,qi,ri,p2,Q2,r2, . . . as primitive symbols. Its well-formed
formulas are (1) a propositional variable standing alone, and (2) [A ^ B\
where A and B are well-formed formulas. Its axioms are a finite set of
tautologies and its two rules of inference are modus ponens and substitu-
tion.
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A partial propositional calculus is a system having as primitive
symbols all of the primitive symbols of a partial implicational proposi-
tional calculus and, in addition, the primitive symbol ~. Its well-formed
formulas are (1) a propositional variable standing alone, (2) ~A9 where A is
a well-formed formula, and (3) [A ^ B], where A and B are well-formed
formulas. Its axioms are a finite set of tautologies and its two rules of
inference are modus ponens and substitution.

A set of tautologies involving only the symbols [, ], D and the proposi-
tional variables can be taken to completely specify either a partial implica-
tional propositional calculus or a partial propositional calculus. In the
following discussions all of our calculi are specified by such sets of
tautologies and our proofs are intended to be equally valid under either
interpretation. For this reason we shall refer simply to the calculus
specified by a certain set of tautologies. We shall say that a calculus P,
specified by a set of tautologies S, is axiomatizable by a set of tautologies
S1 if and only if the calculus specified by the set S1 has the same set of
theorems as does P. We shall henceforth write wff as an abbreviation for
well-formed formula.

In the sequel wffs are often abbreviated by the use of the heavy dot, •,

or by the omission of brackets or both. Wherever such abbreviations occur

the replacement of brackets is to be done in accordance with the conven-

tions of Church [2]. We shall also use the symbol 5 ' Λ ^ t o d e n o t e t n e

result of replacing the propositional variable a by the wff A at each of its
occurrences in the wff B.

Wherever we give the argument which involves a given proof from a
calculus we shall assume that the given proof is so arranged that all uses
of substitution precede all uses of modus ponens and, furthermore, that the
substitutions have been made directly in the axioms. There is no loss of
generality in making this assumption.

A semi-Ύhue system T shall consist of a finite alphabet Zγ and a finite
set of word pairs Uτ The members of Uy are called defining relations.

UT :Uι-+Ui9UΛ-+U2ί . . . , Um-*Um .

A word is a finite (possible empty) string of symbols of ZT, with possible
repetitions. We shall define W \-τ X, where W and X are words on Zτ, to
be the assertion that there exists a finite sequence of statements Wi Hτ X1}

Wz h τ , X a , . . . , Wa h-τ Xί such that Wi is W and Xa is X, and such that each
statement W{ i-τ X, is justified by one of the following rules.

1. Wi is WjY, Xi is XjYfor some j, 1 < j < i and for some word Y on
Zτ.

2. Wi is YWj, Xi is YXj, for some j, 1 ̂  j < i, and for some word Y on

zτ.
3. Wi is Xi.
4. Wi is Uji andXi is Uj for some j 9 1 ̂  j ^ m.
5. Wi is Wh Xi is Xk, Xj is Wk for some j and k, l^j<i; 1 < k < i.
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A less explicit summary of these rules is given as follows:

1. IfW\- X, then WY h XY.
2. IfW\- X, then YW h YX.
3. W \-W.
4. IfW—X, then W \-X.
5. I/WhYandYh X, then W \- X.

A semi-Thue system T will be called a standard semi-Thue system if
(1) Zr is {l,δ}, and (2) no word in a defining relation of T is the empty
word.

§2. The existence of Calculi with Recursively Unsolvable Decision Prob-
lems. We shall establish the following results.

Result 1A. There exists a partial implicational propositional calculus with
a recursively unsolvable decision problem.

Result IB. There exists a partial propositional calculus with a recursively
unsolvable decision problem.

The proof of these results and subsequent results will be dependent
upon the following Lemma which is due to Boone [1].

Lemma 1. (Boone). There is a recursive construction M° such that the
result of applying M° to any given recursively enumerable set of natural
numbers S is a standard semi-Thue system Ts having the property that the
decision problem for S is equivalent to the word problem for Ts.

With Lemma 1 assumed, the proof of Results 1A and IB are immediate
from the following theorem.

Theorem 1. There is a recursive construction M1 such that the result of
applying M1 to any standard semi-Thue system T is a calculus Pτ and a
mapping /i of the non-empty words on {l,b} onto a recursive subset of the
wffs of Pτ. Furthermore, /i is one-to-one, and if Wι and W2 are non-empty
words on {l,δ}, then Wi \-τ W2 if and only if \-p fi(Wi) => fx(W2)

We shall turn now to the task of establishing Theorem 1. Let T be a
standard semi-Thue system defined by

Uτ ιUi - Ui, i= 1,2, . . . , m .

If W is a non-empty word on {l,b} then W* is the wff defined by

I*isp2^[p2^p2]
b* is p2^[p2Z)[p2Dp2]]
(XI)* is [X* v 1*],

and

(Xb)* is [X* v 6*],

where X is an arbitrary non-empty word on {l,δ}and [̂4 v B] is an abbre-
viation for [[A 3 B] D B]. If W is a non-empty^word on {l,δ}, then fλ{W) is
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defined to be W* v h, where h is an abbreviation for the wff p2 3 [pz 3 [ ί > 2

D

[P2 3 P2]]]. Now we specify the calculus Pτ by the following set of
tautologies.

2. [[/>i v [01 v r j ] v A] =>[[[/>i v 01] v rΐ] v A]
3. [p iv A]=>[0iv A]=>B [[piv r j v f t ] ^ [ b i v r j v A]
4. (>i v A] D [01 v A] =>. [ [ n v /> J v h] => [ [ n v 0i] v A]
5. [/>iv A ] D [ ί i v A]
6. fi(Ui) 3 /i(C/t ), * = 1,2, . . . , w
7. [/>! v h] D [01 v A] =>. [ [ e i v A] D[r i v A]] =>[[/>i v h] =>[n v A]].

These wffs are intended to be, in some sense, the logical equivalents of
the rules of the semi-Thue system T and it may not be readily apparent
that this is the case. Actually, Axioms 1 and 2 have no counterparts in the
rules of T, but we account for them by the fact that the letters in a word on
{l,δ} are not grouped as are the variables in a calculus. If one then con-
siders h as no more than some sort of spacer, he readily sees that
Axioms 3-7 are rather faithful translations of the rules 1-5 of Γ.

A wff A of Pτ is semi-regular if (1) A is l*orA is 6*, or (2) A is of
the form Aι v A 2, where .Aiand A 2 are semi-regular wffs.

A wff A of Pτ is regular if A is of the form B v h, where B is semi-
regular. One should note that £2 is the only propositional variable occurring
in a regular wff.

If A v h is a regular wff of Pτ, then <A v k> is the unique word on {l,δ}
obtained from A v h by (1) abbreviating A so that it contains only [, ], v, 1*
and 6*, (2) replacing all occurrences of 1* by 1 and b* by b, and (3) r e -
moving all occurrences of [, ] and v.

Two regular wffs of P τ , A and B, are associates if and only if <Λ> is
<B>.

Lemma 2. If A and B are associates, then hp A 3 B and \-p B r> A.

The proof is by mathematical induction on the number n of occurrences
of 1* and 6* in A.

If n = 1, A is /i(l) or A is fι(B). Hence <A> is 1 and <B> is 1 or
<A> is b and < £ > is b. In either events is B. Since [/>x v A] D [pi vA]is
an axiom of P τ it follows by substitution that we have \-p A ^ B and
ι-pτ 5 3 A.

If n > 1, call the number of occurrences of 1* and δ* in -A the length of
A and let ί,^) be an abbreviation for length of A. Since A and B are associ-
ates of H(A) = 4(B) The induction hypothesis is that if C\ and C 2 are associ-
ates such that je(Cl) = 4(c2) then hpτCi D C 2 .

Since £ ( Λ ) > 1 it follows that A is [Ai v A 2] v A and 5 is [£1 v B2] v A for
some semi-regular wffs Ai,^42,l?i and £ 2 . There are two cases to consider,
either A(ΛIVA) = 4(B I VA) or.JGî vjfc) Φ 4|(BIVΛ).

Assume first that 4u2v|A) = % 2 vλ) Then it follows that &KA2v\h) =
4(B2VΌ> <^4i v A> must be the first Q^A^h) letters of <A>, <Bi v h> must be



RESULTS REGARDING THE AXIOMATIZATION 197

the first 4(B1VA) letters of <B>, and <A2 v h> must be the last A(Λ8VA) letters

of <A>, < B 2 v /*> must be the last 4(B2VA) letters of < £ > . From this and

the fact that <A> and <B> are identical we see that A1 v h and Bivh are

associates and A2 v A and 5 2 v /? are associates. We complete the proof for

this case as follows.

^PT[AI v A] D [Bι v h] by hyp. ind.

hpτ[[^i v A2] v h] D[[J5I v A a] v A] by Axiom 3.

lpτ[A2 v A] 3 [5a v k] by hyp. ind.
hPτ[[Bi vA2]vh] 3[[Bi v Ba] v A] by Axiom 4.

hPτ[[Aι v A*]v h] D[[Bi v Ba] v A] by Axiom 7.

i.e., Hp A 3 # . Then, by symmetry, we also have \-p B ^>A.

Now assume that 4(AlVA) * A(B1VA) Since we must prove the implication

in both directions there is no loss of generality in assuming that %AivA) =

8-(BLvh) + k. Let [An v A12] v h be an associate oiAivh such that (̂ΛuvA) =

(̂BivA) and i(Ai2vA) = ̂  Let [5 2i v .622] v h be an associate oi B2v h such

that (̂B,2ivA) = A? and ί(B\22Wh) = ί,(A2vA) Then <Auvh> is <Bivh>, <Aι2 v fc>

is < 5 2 i v Λ> and <A2 v /?> is <i?22 v h>. We complete the proof for this

case as follows:

hp [[A 1 v A2] v &] ^[[[^4ii v ^22] v A 2] v h] by previous case

HpT[[Au v A12] v A] =>[[5i v .621] v h] by previous case

l-pτ[[[Aii v i4ia] v i4a] v Λ] D[[[J3I V J5aJ v i4a] v h] by Axiom 3

^>ΓUa v A] D [ 5 2 2 v Λ] by hyp. ind.

^ P T [ [ [ £ I v B a J vA2]vh]z> [[[Bi v J5aJ v B22] v Λ] by Axiom 4

f-p [[[Bi v B2i] v £22] v k] 3 [[£1 v [B2i v J522]] v h] by Axiom 1

hp [[Bι v [Bai v B22]] v A] 3 [ [5 i v B2] v A] by previous case

hp [[Ui v i4a] v h]^> [[Bi v J52] v h] by Axiom 7

i.e., hp

T

τA^B.

We also have:

I-PTΠ/8 1 V -Sal V Λ] ^ [ [ B I v [£21 v 52 2]] v h] by previous case

^ [ [ ^ 2 1 v £22] v h] ^[[Aί2 v A2]v h\ by previous case
h p τ [[£1 v [Bai v .822]] v h] 3 [[£1 v [A i3 v i42]] v A] by Axiom 4

t-pτ [#i v A] 3 [A 11 v h] by hyp. ind.

hp τ[[£i v [A 12 v A2]] v A] 3[[A 11 v [A 12 v A2]] v h] by Axiom 3

•PΓΪΪAIIV [Ai2vi4a]] v A] =>[[[Au v A12] v A a] v h] by Axiom 2
h p τ [[[A 11 v A12] v A 2] v A] 3 [[A 1 v A2] v A] by previous case
H P T [[Bi v Ba] v A] 3 [[Ai v A 2] v A] by Axiom 7

i.e., hpτ 5 DA.

Lemma 3. .For non-empty words W and X on {l,ft} «/ PF hτ X, ίAβw

4>τ/i(H0=>/i(X).

If w = 1, wither ^ i s l o r ^ - > l i s a defining relation of Γ. In either

case f-p fι(W)^>fι{X) by Axiom 5 or Axiom 6.

Suppose n > 1. Let Wi v-τ Xh . . m 9 Wn.1 \-τ Xn-ι, W \-Ύ Xbe a proof in

T, then by the induction hypothesis we have \-p fi{W )^> fι{X ) for i = 1,
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2, . . . , w-1. It W \- Xis justified by rule 3 or rule 4, then ι-Pτ/i(W)=>
/i(X) by Axiom 5 or Axiom 6 respectively. If W \-τ X is justified by rule 1,
then \-Pτfι{W) ^>fi(X) by Axiom 3 and Lemma 2. If W \-τ X is justified by
rule 2, then t-Pτ fι{W) 3/i(X) by Axiom 4 and Lemma 2. If W ι-τ X is
justified by rule 5, then h fi(W) ^>fi(X) by Axiom 7 and modus ponens.

The following definition is crucial in the proof of Theorem 1.

If A is a wff of PT, then A is valid if and only if A is of the form
Ai Di42, A is not of the form Bι v B2 and (1) Ai is regular, A2 is regular
and <Λi> I-T<A2> or (2) Ai is not regular, A2 is not regular and, if Ai is
valid, then A2Ίs valid.

In the following proposition we single out certain simple properties of
wffs which will be used rather extensively in the remainder of the paper.

Proposition 1. No wff of any one of the following forms may be abbreviated
in the form Bι v £2, where Bλ and B2 are wffs.

Form α. [Ai v H] => [A2 v H]

Form b. jUiv H]^[A2v H] =>B [A* v H] =>[A4 v Jϊ]

Forme. [Uiv H]θ[A2v H] D B [[A2vjy]D[A3vJ5r]]=)[[AivJ9r]D[A3vff]].

For the proof for Form α we simply recall that [Bι v B2] is an ab-
breviation for [Bλ ^B2] ^B2 and hence, if [Ai v H] 'D[A2 V H] were of this
form, then B2 would necessarily be identified wither and also with A2 v H,
which is impossible. The proof for Form b follows from the result for
Form α, since in this case B2 would necessarily be identified with A2 v H
and also with [A3 v H] D [A4 V H]. The proof for Form c follows from the
result for Form b, since in this case B2 would necessarily be identified
with A2 v Hand also with [[A2 v H] =>[A3 v H]] 3 p i v H]^[A* v H]].

Lemma 4. Every theorem of Pτ is of Form α, b or c 0/ Proposition 1,

where H is a substitution instance of h.

First we note that substitution instances of Axioms 1, 2, 5 and 6 are of
Form α, substitution instances of Axioms 3 and 4 are of Form b, and
substitution instances of Axiom 7 are of Form c. Then from Proposition 1
it follows that Forms b and c can never serve as the minor premise in a
use of modus ponens where a formula of Form α, b or c is the major
premise. Likewise we see that a formula of Form α can never serve as
minor premise in a use of modus ponens where another formula of Form α
is the major premise. If a formula of Form α is the minor premise and a
formula of Form b or c is the major premise in a use of modus ponens,
then the resulting theorem is in Form α or b respectively. The proof of
Lemma 4 is now complete if we take into account our assumption on the
arrangement of proofs in the calculus.

Lemma 5. If A is a regular wff of PT and if B is a wff distinct from p2,

then Q 2A \ is not regular and is not valid.

Q 2 h\ is distinct from h and hence 5 β 2 ^ ' i s n o t °̂  t h e f ° r m B ι v ^
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and, therefore, cannot be regular. On the other hand, ^ l β

2 ^ l is of the form
Bι v B2 and hence is not valid.

Lemma 6. All substitution instances of the axioms are valid.

For the proof we shall consider the axioms individually. From
Proposition 1 and Lemma 4 it follows that no substitution instance of an
axiom is of the form A v B. Let P, Q and R be the wffs substituted for pi,
qλ, and τi respectively, and let H be the substitution instance of ft in each
case.

Axiom 1. [[[P v Q] v R] v H] Ώ[[P V [Q V R]] V H\.

If [[P v Q] v R] v H is regular, then P, Q and R are all semi-regular
and H is ft. Hence [P v [Q v R]] v H is also regular. And since <[[P v Q] v
i ? ] v # > is < [ P v [Q v i?]] v H> we also have <[[P v Q] v #] v H> h τ

<[P v [Q v JR]] v H> by rule 3 of T. If [[P v Q] v # ] v # is not regular,
either P, Q or R is not semi-regular or H is not ft. In any event
[P v [Q v i?]] v # is not regular, and [P v [Q v #]] v H is not valid since it
is of the form A v B.ln either case [[[P v Q] v i?] v iEί] D [[P v [Q v i?]] v H]
is valid.

Axiom 2. [[P v [Q v Λ]] v H] D [[[P v Q] v i?] v Jϊ].

The proof here is similar to the proof for Axiom 1.

Axiom 3. [P v H] D [Q v iff] D B [[P v Λ] v # ] D [[Q v R] v i/].

By Proposition 1 [P v H] ^> [Q v H] cannot be regular and [[P v R] v
H] 3 [[Q v R] v H] cannot be regular. We shall assume, therefore, that
[P v H] D [Q v /ί] is valid and show that [[P v R]v H]Ό [[Q V R] V H] must
also be valid.

Case 1. Assume that [P v H] is regular, [Q v H] is regular and
<i? v H> \-τ <Q v H>. lί R v H is also regular, then P, Q and J? are all
semi-regular and H is h. It follows that [[P v R] v H] and [[Q v R] v H] are
also regular. With < P v i7> hτ <Q v H> we also have <[P v Λ] v H> \-τ

[Q v R]v H>by rule 1 for Γ. If i? v H is not regular it follows that R is not
semi-regular and hence neither [P v R] v # nor [Q v i?] v H is regular.
Then, since [P v R] v H cannot be valid, we see that in either event
[[P v R] v H] D [[Q v Λ] v # ] is valid.

Cα^e 2. Assume that P v H is not regular and Q v H is not regular.
Then either H is not ft or neither P nor (? is semi-regular. In either event
neither [P v Q] v H nor [Q v #] v H is regular, and, since [P v R] v Hcan-
not be valid, we see that [[P v Λ] v # ] D [[Q V Λ] V H] is valid.

Axiom 4. [P v # ] =) [Q v F] D , [[Λ V P] V J5Γ] D [[R V Q] V ,ff].

The proof here is similar to that for Axiom 3.

Axiom 5. [P v H] => [P v H].

UP v H is regular, then P v His regular and < P v H> \~T < P v i^>by
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rule 3 of T. If [P v H] is not regular, then [P v H] is not regular andP v H
cannot be valid. In either event [P v #] 3 [P v H] is valid.

Axiom 6. S ί MU*)\ D SΛ2 Λ<^)'

If Λ is />», then S A ^ 1 ^ 1 i s ^ l ( ί /^ a n d S ί ^ ^ 1 i s Λ(^) N o w

/i(tf, ) and fχ{Ui) are both regular and <fi(Ui)> \-τ </i(^)>by rule 4 for Γ.

If 4̂ is not p2 it follows from Lemma 5 that neither Q'(
 2 fi(Ui)\ nor

Qi^/iίί/ί)! is regular and 3A

2/i(#V)l is not valid. In either event

gj/i(^)i=>Sϊ / i ( ^ ) | l 8 v a l l d

Axiom 7. [P v H] => [Q v #] D B [[Q v Jϊ] D [Λ v #]] 3 [[P v #] => [Λ v #]].

From proposition 1 it follows that neither [P v H] 3 [Q v #] nor
[[Q v #] D [Λ v Jϊ]] D [[P v H]o[Rv H]] can be regular. Hence it suffices
to show that if the former is valid then the latter is also valid. Again from
Proposition 1 we see that neither [Q v H] D [R V H] nor [P v H] D [JR V #]
can be regular. Therefore, in order to show that [[Q v H] D [i? v ίΓ]] D
[[P v #] D [Λ v£Γ]] is valid it is only necessary to show that if [Q v H]z>
[R v H] is valid, then [P v H]^> [R v H] is valid. Hence we shall assume
that [P v H] => [Q v #] and [Q v H] D [Λ v H] are both valid and show that
[P v H] >̂ [R v £Γ] must then be valid also.

Case I . Assume P v H is regular. Then since [P v #] 3 [Q v ^] is
valid, Q v iϊ is regular and <P v H> \~τ <Q v H>. But then, since [Q v H]o>
[R v #] is also valid, R v H is regular and <Q v H> hτ <Λ v H>. Now
P v H and R v H are both regular so we need only show that <P v H> \-τ

<R v H>, but this follows from <P v /ί> hτ <Q v H> and <Q v H> hτ

<R v H>by rule 5 for T.
Case 2. Assume P v # is not regular. Then, since [P v H] D [Q V F]

is assumed to be valid, Q v if is not regular. But then, since [Q v #] D
[JR v £Γ] is assumed to be valid, i? v H is not regular. Then, since P v H
cannot be valid, we see that [P v H] D [i? v #] is valid.

Lemma 7. # 4̂i αn<i A2 are wffs of Pτ such that Ai is valid and A{^> A2 is
valid, then A 2 is valid.

A1 is not regular for if it were it would be of the form B v H and hence
not valid. The result then follows from the fact that A1 3 A 2 is valid.

Lemma 8. If A and B are regular wffs of Pτ and hp A ^ B, then
<A>hτ<B>.

By Lemma 6 all substitution instances of the Axioms are valid. By
Lemma 7 modus ponens preserves validity. Hence A D B is valid. Then
since A is regular we have Ol> \-τ <B> from the definition of validity.

Lemma 9. Wι f~τ W2 if and only if hpΎfi(W1) 3 fi(W*).

This is merely a restatement of Lemmas 3 and 8.
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§3. Recursive Unsolvability of the Problem of Determining Whether or not
an Arbitrary Calculus is Axiomatizable by a Single Axiom. We shall
establish the following results.

Result 2A. For each recursively enumerable degree of unsolvability D
there exists a class of partial implicational propositional calculi CD such
that the problem to determine of an arbitrary member P of Co whether or
not P is axiomatizable by a single axiom is of degree D.

Result 2B. For each recursively enumerable degree of unsolvability D
there exists a class of partial propositional calculi Cp such that the
problem to determine of an arbitrary member P of CD whether or not P is
axiomatizable by a single axiom is of degree D.

These results are immediate from Lemma 1 and the following theorem.

Theorem 2. There is a recursive construction M2 such that the result of
applying M2 to any standard semi-Thue system T is a recursive class of
calculi Cr and a mapping fy of the pairs of non-empty words on {l,δ} onto
Cγ. Furthermore, fy is one-to-one, and if Wι and W2 are non-empty words
on {l,δ}, then Wι \-τ W2 if and only if fy(Wi9Wz) is axiomatizable by a single
axiom.

We turn now to the task of establishing Theorem 2. In order to fascili-
tate this task we find it convenient to introduce several new notions here.

A recursive (possibly empty) set of tautologies S is said to be sterile
if (1) no substitution instance of a wff of S is a substitution instance of any
other wff of S, and (2) no substitution instance of a wff of 5 is a substitution
instance of the antecedent of any wff of S.

Lemma 10. The minimum number of axioms necessary to axiomatize a
calculus P(S) specified by a sterile set of tautologies S is the cardinality
of S.

From condition (2) of the definition of a sterile set it follows that
modus ponens is vacuous in P(S). Then from condition (1) we see that any
set of axioms for P(S) must contain at least one substitution instance of
each wff of S.

A wff A is said to be completely untrue with respect to a calculus P if
no substitution instance of A is a theorem of P.

A set S of tautologies is said to be completely independent of a calculus
P if (1) the set S is sterile, (2) every wff of S is completely untrue with
respect to P, (3) the antecedent of every wff of S is completely untrue with
respect to P, and (4) the antecedent of every theorem of P is completely
untrue with respect to the calculus specified by S. One should note that
every subset of a completely independent set is completely independent.

Lemma 11. If P is a calculus and S is a set of tautologies completely
independent of P, then the minimum number of axioms necessary to
axiomatize the system resulting from the addition of the wffs of S to the
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axioms of P is equal to the minimum number of axioms necessary to
axiomatize P plus the cardinality of S.

From properties (1) and (2) of the definition of a completely inde-
pendent set it follows that no theorem of P is a theorem of the calculus
specified by 5 and vice versa. Properties (3) and (4) guarantee that there
is no modus ponens interaction between the theorems of P and the theorems
of the calculus specified by S. Therefore any set of axioms sufficient to
axiomatize the enriched system must contain mutually independent sets of
axioms for P and for the calculus specified by S. The result then follows
from Lemma 10.

We shall use the symbol L as an abbreviation for the wff

[|>i => Qi] 3 r j 3 . [n 3 pj] -D[q2 3 pj]m

Lukasiewicz [8] has shown that L is sufficient to axiomatize the complete
implicational propositional calculus.

Let T be a standard semi-Thue system and construct Pτ from T as in
the proof of Theorem 1. For each pair of non-empty words t^i,W2 on {1,5}
we shall designate fτ(Wi,W2) to be the system resulting from the addition of
[/ι(Wi) D/I(TF2)] 3 L to the axioms of Pτ The class Cτ will then consist
of all systems of this form. We complete the proof of Theorem 2 by showing
that fτ(Wi,W2) is axiomatizable by a single axiom if and only if Wx f-τ W2.

Lemma 12. If Wι H-T w2, thenfτ(Wi,W2) is axiomatizable by a single axiom.

From Lemma 3 and Wi \-τ W2 we have \-p fi(Wi) 3 fi(W2). Hence
/ i ( ^ ) ^ / i W is a theorem of fτ(WhW2) and by definition [fi(Wi)o
fi(W2)] 3 L is also a theorem of fτ(Wι,W2). Hence by modus ponens L is a
theorem of fτ(Wi,W2). It follows that fτ(Wι,W2) is axiomatizable by any set
of axioms sufficient to axiomatize the complete implicational calculus.
Specifically, L is sufficient to axiomatize fτ(Wι,W2).

Lemmas 13 through 20 lead to a proof of the contrapositive of the
converse of Lemma 12. Lemmas 13, 14, 18 and 19 are the necessary steps
in establishing the complete independence of [/i(WΊ) 3/1(W2)] 3 L with
respect to P if it is not the case that hp /i(Wi) 3 fι(W2).

Lemma 13. For arbitrary non-empty words on {l,b}, Wi and W^ the wff
[fi(Wi) 3/1(Wr

2)] 3 L is a sterile set.

Suppose some substitution instance of [ /i(WΊ) 3 fι(W2) ] 3 L were a
substitution instance of fι(Wι) 3 fλ(W2). Then some substitution instance of

fi(Wi) 3/1(w2) would necessarily be a substitution instance of fi(Wi). Re-
calling that fi(Wi) is of the form Aι v h and that/i(tF2) is of the form A2 v h
we readily see from Proposition 1 that this is impossible. Hence
[fi(Wι)Ώfi(W2)] 3 L is a sterile set.

Lemma 14. For arbitrary non-empty words Wi and W2 on {l,b} the wff
[fi(Wί) 3/i(TF2)] 3 L is completely untrue with respect to Pτ.

For the proof we shall show that no s u b s t i t u t i o n instance of
[/i(Wi) 3 fi(W2)] 3 L is of the form α, b or c of Proposition 1, and hence
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by Lemma 4 it follows that no substitution instance of [fi(Wι) D fi(W2)] 3 L
is a theorem of Pτ We shall consider the forms separately.

Form α. If some substitution instance of [/ι(^i) D fi(W2)] 3 L were of the
form [A i v H] D [A 2 v H], then some substitution instance of [ / I ( W I ) D

/ I ( ^ 2 ) ] would necessarily be of the form Λi v H. This is impossible by
Proposition 1.

Form b. Suppose some substitution instance of [fι(Wi) ^> fi(W2)] D L were
of the form [Aι v H] D [^2 v tf] D B [^3 v # ] D [A4 v # ] . Recalling that L is
an abbreviation for [[pi 3 # J z>rj D B [r x D pi] D [#2 3 £1] we see that some
substitution instance of [r x 3 />J D fc^ίi] must then be identified with
A4 v # . But then, since A4 v His an abbreviation for [Λ4 ^> H]^) H, H must
be identified with the substitution instance of pi and also with the substitu-
tion instance of q2 D pi. This is clearly impossible.

Form c. Suppose some substitution instance of [fι(Wi) ^ fi(W2)] 3 L were
of the form [ALvH] Ό [A2VH] 3 B [[i42vff] 3 |>3V#]] D [ [ i i v ^ ] D [^3 v £Γ]].
Then some substitution instance of L is of the form [[^2 v H] D [^3 v H]] D
[[^4I v iί] 3 [.A3 v f/"]]. Hence, from the first occurrence of pi in L, the
substitution instance of pi must be identified with A2^> H. While, from the
second occurrence of pi in L, the substitution instance of£i must be
identified with H. Clearly these conditions are incompatible.

Lemmas 15 through 18 below constitute a proof that fi(Wι) D fι(W2) is
completely untrue with respect to PT if it is not the case that \-p fi(Wι) D

fι(W2). In order to establish this result we first introduce two new
definitions.

A wff B of P is S-regular if and only if there is a regular wff B\, and

a wff A such that B is ^ 2 Bi\.

Recalling that p2 is the only variable occurring in a regular wff and the
fact that every regular wff is of the form C v h, one easily sees that if B is

S p

A wff B of PT is S-valid if and only if B is of the form Bι^ B^ B is not

of the form Aι v A2 and (1) there are regular wffs Cι and C2 and a wff A

such that £1 is $ ^ 2 Cil, £2 is $ ^ 2 C a | , and hP τ Ci D Ca, or (2) £1 is not

S-regular, £2is not S-regular, and if Bι is S-valid, then B2 is S-valid.

Lemma 15. All substitution instances of the axioms of Pτ are S-valid.

For the proof we shall again consider the axioms individually. Let P,
Q and R be the substitution instances of pi, qi, and r i respectively, and let
I/be the substitution instance of h.

Axiom 1. [[[P v Q] v R] v H] D [[P v [Q v R]] v ^ ] .

We shall consider two cases. For the first case assume that [[P v Q] v
# ] v ^ is S-regular. Then there is a wff A and a regular wff Cλ such that
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[[P v Q] v R]v H is 5,Λ2 C l ' T h u s C l i s tfCu v C l J v C ^ v * f o Γ s o m e

semi-regular wffs Cn, C12 and C13. Hence [P v [Q v #]] v .fiΓ is ^ ^ 2 [Cπ v

[C12 v C13]] v A] I, and [Cn v [C12 v C13]] v A is regular. Then since <[[C U v
C12] v C13] v h> is <[Cu v [C12 v C13]] v /*>, we have h P τ [[[Cn v C12] v
C13] v A] D [[Cn v [C 1 2 v C13 j] v A] by Lemma 2* For the second case as-
sume that [[P v Q]v R]v H is not 5-regular. Then [P v [Q v R]] v H is not
S-regular, for if it were [[P v Q] v R] v H would be also by an argument
similar to the one given above. Since [[P v Q] v R] v H is of the form
A1 v A 2 it is not 5-valid. Hence in either case [[[P v Q] v R] v # ] 3 [[P v
[Q v R]] v # ] is S-valid.

Axiom 2. [[P v [Q v Λ]] v Jϊ] D [[[P v Q] v Λ] v iff].

The proof here is similar to the proof for Axiom 1.

Axiom 3. [P v H]D[Q V # ] D B [[P v Λ] V H] D [[Q V iϋ] V if].

From Proposition 1 we see that neither [P v H] 3 [Q v ^ ] nor [[P v Λ] v
-if] 3 [[Q v R]v H] can be S-regular. Therefore it is sufficient to assume
that the former is S-valid and to prove under this assumption that the latter
must be also. We consider two cases.

Case 1. PvH is § ^ 2 CA and Q v H is $ u C»\ where Ci and C 2 are

both regular and \~p Cι 3 C2. Then d is of the form Cn v h and C2 is of
the form C21 v h where Cn and C21 are both semi-regular. We shall con-
sider two subcases.

Case la. R is ^ ) Λ

2 Rι\ where i?iis semi-regular. Then [P v R] v H is

S'IΛ2 t c " v Rί\ v *l a n d [Q v Λ] v iy is 5 , A [C2i^ Λ j v A| where [Cn v Λ j v A

and [C2i v Ri] v A are regular. By assumption we have \-p Ci 3 C2, i.e.,
H-p [Cn v A] 3[C2i v h]. Hence from Axiom 3, substitution and modus
ponens we obtain \-Pτ [[Cn v Rι] v h] 3[[C 2 i v Rι] v h]. And we see that the
result holds in this case.

Case 1b. There is no semi-regular wff Rι such that R is ^ 2 Λ l ' T h e n

neither [ P v Λ j v f f nor [Q v R] v H is 5-regular and, since [P v R] v H
cannot be S-valid, the result holds in this case.

Case 2. Neither PvH nor Q v H is S-regular. Then neither [P v R]v
H nor [Q v R]v H is S-regular, and, since [P v R] v H cannot be S-valid,
the result follows.

Axiom 4. [P v H] 3 [Q v # ] 3 β [[# v P] v # ] 3 [[i? v Q] v .ff].

The proof here is similar to that for Axiom 3.

Axiom 5. [P v H] 3 [p v Jϊ].

The proof here is immediate.

Axiom 6. Sfr/iίff/)! ^S?^^) '-
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Both fi(Ui) and f^Όi) are regular and ^Γ/i(tf, ) D/iίtf/) by Axiom 6.

Hence ^fi(U4)\ => $PJtfι(Ui) is S-valid for every wff A.

Axiom 7. [P v H) D [Q v #] =>. [[Q V J Ϊ ] D [ Λ V #]] => [[P v JBΓ] D [R V #]].

From Proposition 1 it follows that neither the antecedent nor the
consequent is S-regular, Since we also have from Proposition 1 that
neither [Q v H] D [R V H] nor [P v H] D [Λ V H] is 5-regular it is sufficient
to prove that if [P v H] D [Q v #] and [ § V ^ ] D [ Λ V #] are both 5-valid,
then [P v H] D [Λ V /ί] is S-valid. We consider two cases.

S p ,

^ 2 P i v h\ for some semi-regular wff P i and

some wff A9 then, since [P v ^ ] D [Q V fl"] is assumed to be S-valid, Q v F

is Q , Λ

2 Qi v λ| for some semi-regular wff Qi and hpΓ [Pi v ^] D [Qα v fe].

But then, since [ Q V H ] D [ Λ V H] is S-valid, R v H is Cf2 i?i v h\ for some
semi-regular wff Rι and H-Pτ [Qx v h] 3 [Λi v A]. Hence by Axiom 7, sub-
stitution, and modus ponens we obtain hp [Pi v h] D [Λi v A], and it follows
that [ P V ^ ] D [ Λ V H] is S-valid.

C«5β ^. If P v iJ is not S-regular, then, since [P v H]Ό[Q v H] is
assumed to be S-valid, Q v H is not S-regular. But then, since [Q v H]^>
[R v H] is assumed to be S-valid, it follows that R v H is not S-regular.
Hence neither P v H nor R v H is S-regular and since P v H cannot be
S-valid it follows that [P v H] 3 [R v # ] is S-valid.
Lemma 16. If A is S-valid and A ^> B is S-valid, then B is S-valid.

Since A is S-valid it cannot be S-regular. Hence from the fact that
A-D Bis S-valid it follows that B is S-valid.

Lemma 17. All theorems of P? are S-valid.

By Lemma 15 all substitution instances of the axioms are S-valid and
by Lemma 16 modus ponens preserves S-validity. The conclusion follows
from our assumption on the form of the proofs.

Lemma 18. If it is not the case that Wι \y W2 then fi(Wι)^fι(W2) is
completely untrue with respect to Pτ

We shall prove the contrapositive. Suppose hp §^fι(Wi) ^> fi(W2)\

for some wff A. Then from Lemma 16 and the fact that fi(Wλ) and /i(TΓ2)
are regular we have \-p fι{Wι) o fi(W2). Hence from Lemma 9 we also
have Wi h± W2. This establishes the result.

Lemma 19. For arbitrary non-empty words Wx and W2 on {l,b} no substitu-
tion instance of [fi(Wχ) ^>fi(W2)] D L is a substitution instance of the
antecedent of a theorem of PT.

For the proof we shall consider the forms of the theorems as given in
Lemma 4. We consider these separately.
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Form a. [Aiv H]^>[A2v H]. If [fi(Wi) ^ fi(W2)] D L had a substitution
instance of the form Aiv H, then some substitution instance of L would
necessarily be a substitution instance of h but one easily sees that this is
impossible.

Form b. [Ax v H] D [A2 V H] D B [A* v H] D [J44 v # ] . Note that the ante-
cedent of this form is of Form α. Then the result follows from Lemma 14.

Form c. [At v H] D [A2 V #] D B [[A2 V #] D [Λ3 V H]] D [[AI V #] => [A3 v #]].

The proof here is similar to that for Form b.

Lemma 20. // it is not the case that Wi \-τ Wz, then [fi(Wx) ^ fi(W2)] => L
is completely independent of Pi,

This follows from Lemmas 13, 14, 18 and 19 and the fact that modus
ponens is vacuous in the calculus specified by [/I(WI)D /ι(Wa)] D L.

Lemma 21. If it is not the case that Wι v-τ W2, then at least two axioms
are required to axiomatize fτ(Wi,W2).

This is immediate from Lemmas 11 and 20.

Lemma 22. / (WΊ,W2) is axiomatizable by a single axiom if and only if
Wι h r Wz.

This is a restatement of Lemmas 12 and 21.

§4. Recursive Unsolυability of the Split Problem for Propositional Calculi.
A calculus P is said to allow a split if P is axiomatizable by a set of
tautologies 5 and the set S can be divided into two non-empty sets Sx and S2

such that every theorem of P is a theorem of the calculus specified by Sx or
of the calculus specified by S2 and the calculi specified by Si and S2 have no
theorem in common. We shall establish the following results.

Result 3A. For each recursively enumerable degree of unsolvability D
there exists a class of partial implicational propositional calculi Co such
that the problem to determine of an arbitrary member P of CD whether or
not P allows a split is of degree D.

Result 3B. For each recursively enumerable degree of unsolvability D
there exists a class of partial propositional calculi CD such that the
problem to determine of an arbitrary member P or Co whether or not P
allows a split is of degree D.

These results are immediate from Lemma 1, the proof of Theorem 2
and the following theorem.

Theorem 3. Consider a class of calculi Cr constructed from a semi-Thue
system T as in the proof of Theorem 2. An arbitrary member P(Wi,W2) of
Cτ allows a split if and only if P(Wi,W2) is not axiomatizable by a single
axiom.

We turn now to the relatively easy task of establishing Theorem 3.
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Lemma 23. If a calculus P is axίomatizable by a single axiom A, then P
allows no split.

For the proof assume there is a calculus P axiomatizable by a single
axiom A which allows a split. Let Pi and P2 be the two calculi resulting
from the split of P. Then A is a theorem of either Pi or P 2 . Without loss
of generality assume A is a theorem of Pi. Then all of the theorems of P
are theorems of Pi and this is clearly a contradiction.

Lemma 24. Let P(Wι, W2) be a calculus of Of which is not axiomatizable by
a single axiom. Then P{Wi,W2) allows a split.

From Lemma 12 we have that it is not the case that Wι ι-τ W2. Then
from Lemma 20 it follows that [/i(PFi) D fi(W2)] ^ L is completely inde-
pendent of Pr Clearly P? and the calculus specified by the single axiom
[MWx) D/i(W2)] => ̂  constitute a split of P(WhW2).

§5. Recursive Unsolvability of the Problem of Determining Whether or not
an Arbitrary Calculus is Axiomatizable by n or Fewer Axioms. We shall
establish the following results.

Result 4A. For each recursively enumerable degree of unsolvability D and
each natural number n there exists a class of partial implicational proposi-
tional calculi CD,Π such that the problem to determine of an arbitrary
member P of CD,Π whether or not P is axiomatizably by n or fewer axioms
is of degree D.

Result 4B. For each recursively enumerable degree of unsolvability D and
each natural number n there exists a class of partial propositional calculi
CD,Π such that the problem to determine of an arbitrary member P of CDtΐl

whether or not P is axiomatizable by n or fewer axioms is of degree D.

These results are immediate from Lemma 1 and the following theorem.

Theorem 4. There is a recursive construction M3 such that the result of
applying M3 to any standard semi-Thue system T and any natural number n
is a recursive class of calculi Crtnanda mapping fτ,n of the pairs of non-
empty words on {l,δ} onto Cτ,n Furthermore, fr,n is one-to-one, and for
non-empty words Wι and W2 on {l,b} Wi hτ W2 if and only iffτ,n(Wχ,W2) is
axiomatizable by n or fewer axioms.

We turn now to the task of establishing Theorem 4. With each natural
number n we recursively associate a wff Ln as follows. Lx is p2 z> [p2^>
\p2 D [p2 D [p2 D p2]]]] and Ln\+i is p2 3 Ln.

Note that no substitution instance of Li is SL substitution instance of Lf
for i Φ j , and that no substitution instance of Li, for any natural number i,
can be abbreviated in the form A v B. For each natural number n let Kn be
the class of wffs of the form Lj D Lj for 1 ̂  j ^ n. LetK^ be the class of
formulas of the form Lj D LJ for 1 < j < 00. Now let T be an arbitrary
standard semi-Thue system and construct Pγ from T. We shall prove that
if Wι and W2 are arbitrary non-empty words on {l,b} and it is not the case
that Wi hτ W2, thenL^ is completely independent of fτ(Wι,W2).
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Lemma 25. The class of wff s K^ is sterile.

From the fact that no substitution instance of Li is a substitution
instance of Lj for i Φ j we see that no substitution instance of a wff of iζ» is
a substitution instance of any other. Now all members of K^ are of the
form Λ^A while the antecedents of these wffs are all of the form Lj.
From the fact that no substitution instance of a wff of the form A ^> A can
be a substitution instance of a wff of the form Lj we see that no substitution
instance of a wff of K^ is a substitution instance of the antecedent of a wff
of tfoo.

Lemma 26. If it is not the case that Wι ι-τ W2, then every wff of the class
ϋCoo is completely untrue with respect to fτ(Wi,W2).

By Lemma 20 [fι(Wι) ^ fi(W2)] => L is completely independent of Pτ in
this case and it follows that the theorems of fτ(Wi,W2)2ire the theorems of
Pτ and substitution instances of [fi(Wi) ^> fi(W2)] ^ L. It is sufficient,
therefore, to prove that the class K^ is completely untrue with respect to
P2 and that no substitution instance of a member of K^ is a substitution
instance of [ fι(Wι) D fi{W2)] =>L. Now every wff of K^ and every substitu-
tion instance of such a formula is of the form A ^>A. If we consider the
forms the theorems of Pr may take as given in Lemma 4, we see that only
theorems of Form α or b could be of the form A ^> A. But the antecedent of
every wff of Form α contains more symbols than the consequent of the
antecedent and this is untrue with respect to every substitution instance of
a wff of KOQ. Also the antecedent of the consequent of the antecedent of
every wff of Form b contains more symbols than the consequent of the
consequent of the antecedent and this is untrue with respect to every
substitution instance of a wff of K^. Therefore every wff of K^ is com-
pletely untrue with respect to Pγ

If some substitution instance of [fi{Wχ) D fi(W2)] ^ L were a substitu-
tion instance of a wff of K^ it follows from the form of the Ln and the form
of L that the wff identified with \pχ D #1]=) n in the substitution instance of
L would also have to be identified with n D pi in this substitution instance
of L, but this is impossible.

Lemma 27. If it is not the case that Wi \-τ W% then the antecedent of every
wff of K^ is completely untrue with respect to fτ(Wi,W2).

As in the proof of Theorem 4 we use the fact that here in the theorems
of fy(WlfW2) are the theorems of Pτ and substitution instances of [/i(l#Ί) D
fi(W2)] D L . We shall first show that the antecedent of every wff of ϋCo is
completely untrue with respect to Pτ. For this purpose we shall consider
the forms the theorems of Pτ may take as given in Lemma 4. We consider
the forms separately.

Formα. [̂ 41 v H]^)[A2v H].

Recall that every wff of K^ has an antecedent of the form Lj for some
j . The antecedent of the consequent of every wff of Form α contains more
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symbols than the consequent of the consequent, but this is untrue with
respect to every substitution instance of a wff of the form Lj.

Form b. [Ai v H] D [A2 v H] D B j>3 v #] => [Λ4 V # ] . The antecedent of the
consequent of the consequent of every wff of Form b contains more
symbols than does the consequent of the consequent of the consequent, but
this is untrue with respect to every substitution instance of a wff of the
form Lj.

Form c. [Ai v H] D [ A 2 V H] =>B [[A2 v H] 3 [A3 v H]] => [[Ai v tf ] D [A3 v #]].
The antecedent of the consequent of the consequent of the consequent of
every wff of Form α contains more symbols than does the consequent of the
consequent of the consequent of the consequent, but this is untrue with re-
spect to every substitution instance of a wff of the form Lj.

Now suppose some substitution instance oί[fi{Wί)'Dfi(W2)] 3 L were
a substitution instance of a wff of the form Lj. Then from the form of Lj it
follows that in the substitution instance of [fi(Wi) 3/1(^2)] 3 L the substi-
tution instance of [pi => #1] D Y\ would necessarily be identical to the
substitution instance of [n D pi], but this is impossible.

Lemma 28. If it is not the case that Wi \-τ W% then no substitution instance
of the antecedent of a theorem of fτ(Wi,W2) is a substitution instance of a
wff of K^.

Again recall the fact that the theorems of fτ(Wi,W2) are the theorems
of Pτ and substitution instances of [fi(Wχ) ^> fi(W2)] D L in this case. That
the result holds for wffs of Form α of Lemma 4 follows from the fact that
the antecedent of the antecedent of every wff of Form α contains more
symbols than the consequent of the antecedent while every substitution
instance of a wff of K^ is of the form A D A. For all wffs of Form b or c
of Lemma 4 and all substitution instances of [fi(Wi) 3/1(^2)] 3 L it is the
case that the antecedent of the consequent of the antecedent contains
more symbols than the consequent of the consequent of the antecedent but
for every substitution instance of a wff of /£*> the antecedent of the conse-
quent contains fewer symbols than the consequent of the consequent.

Lemma 29. If it is not the case that Wι ι-Γ W2, then the class Koo is com-
pletely independent of fτ(Wi9 W2).

This is immediate from Lemmas 25, 26, 27 and 28 and the fact that
modus ponens is vacuous in a calculus specified by a sterile class of wffs.

Now let T be an arbitrary standard semi-Thue system and letn be any
natural number. If n is 1 and PFiand W% are arbitrary non-empty words on
{l,δ}, then fτ.n(Wi,W2) is fτ(WhW2). If n > 1 and Wi and TF2are arbitrary
non-empty words on {l,b} then fτ,n(Wi,W2) is to be the calculus resulting
from the addition of Kn-i to the axioms of fτ(Wi,W2). In any case the class
Cτ,n shall consist of all calculi of the form fτ,n(Wi, W2).

Lemma 30. If Wi \-Ύ W^ then fr,n{Wi,W2) is axiomatizable by a single
axiom.

This follows from Lemma 12.
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Lemma 31. If it is not the case that Wi \~τ W2, then fτ,n{WΊ9W2) is axioma-
tizable by no fewer than n + 1 axioms.

This follows from Lemma 29, the fact that every subset of a completely
independent class is completely independent, Lemma 11 and Lemma 21.

Lemma 32. fτ,n(Wi,W2) is axiomatizable by n or fewer axioms if and only if
Wi i-τ W2.

This is immediate from Lemmas 30 and 31.

§6. Recursive Unsolvability of the Problem to Determine Whether or not an
Arbitrary Infinite Calculus is Axiomatizable by a Finite Set of Axioms. We
now relax the condition that the axioms of a partial (partial implicational)
propositional calculus be a finite set of tautologies and require only that the
set be recursive. If the set of axioms is infinite we then call the system an
infinite partial {partial implicational) propositional calculus. We shall
establish the following results.

Result 5A. For each recursively enumerable degree of unsolvability D
there exists a class of infinite partial implicational propositional calculi
CD,<X> such that the problem to determine of an arbitrary member P of Q>/0O

whether or not P is finitely axiomatizable is of degree D.

Result 5B. For each recursively enumerable degree of unsolvability D
there exists a class of infinite partial propositional calculi CD)00 such that
the problem to determine of an arbitrary member P of Cpf00 whether or not
P is finitely axiomatizable is of degree D.

These results are immediate from Lemma 1 and the following theorem.

Theorem 5. There is a recursive procedure M4 such that the result of ap-
plying M4 to any standard semi-Thue system T is a recursive class of
infinite calculi Cτ,\oo and a mapping fy, 00 of the pairs of non-empty words on
{1,6} onto Cτ,oo Furthermore, fτ,\oo is one-to-one, and for non-empty words
Wi and W2 on {l,δ}, Wi^T W2 if and only if fr,<JWi,W2) is finitely
axiomatizable.

Let T be a standard semi-Thue system. If Wi and W2are arbitrary
non-empty words on {l,b} let fτ,\oo(Wi,W2) be the infinite calculus resulting
from the addition of the class ϋCoo to the axioms of fτ(Wi,W2).

Lemma 33. If WΊ v-τ W^ then fτ,n(Wi,W2) is axiomatizable by a single
axiom.

This follows from Lemma 12.

Lemma 34. If it is not the case that WΊ y~τ W2, then /τ fioo(^^a) *s n°t
finitely axiomatizable.

This follows from Lemmas 29, 11 and 21.

Lemma 35. /T, 00(̂ 1, ̂ 2) is finitely axiomatizable if and only if Wi »~τ W2.

This is immediate from Lemmas 33 and 34.
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