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ON THE LEIBNIZIAN MODAL SYSTEM

SETSUO SAITO

The aim of the paper is to present a modal system which we will call
the Leibnizian modal system and to show the completeness of the system
with a restriction.

1. In my previous paper [1], in order to show an example of defence of
circular definition (as analysis, not stipulative definition), I gave the
following definition:

A statement is analytic if and omly if it is consistent with every
statement that expresses what is possible.

This definition, roughly speaking, is materially equivalent to Carnap’s
definition of L-truth:

A sentence G; is L-true (in S;) = Df 6; holds in every state-
description (in S,).

which is suggested by Leibniz’ conception that a necessary truth must hold
in all possible worlds (cf. Carnap [2], p. 10). If ‘‘analytic’’ is replaced by
‘“‘necessary’’ in the above definition of ‘‘analytic’’, the definition will be as
follows:

A statement is necessary if and only if it is consistent with every
statement that expresses what is possible.

This is symbolized by modal signs as follows:

Op = @) g2 0(p- 9)]

where p and g are propositional variables.

2. We shall construct a modal system, which will hereafter be called
L (the Leibnizian modal system), consisting of the following one axiom and
five rules.

A, +0p> [go0(p- )]
Rl. If =Op D O(a - p) then —Da (p is not contained in @)
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R2. If ais a tautology of the classical propositional calculus, then +-a.
R3. Substitution for propositional variabdles.

R4. Material detachment.

R5. Replacement of material equivalents.

Here a is an arbitrary formula and p,q are propositional variables.
<>’ is regarded as the abbreviation of ‘~[J~’.
The following theorems hold in L.

Theorem. F(p D ¢) 2 (Op 209q)

Proof. (1)
(2)
(3)
(4)
(5)

FOp D [<>q3<>(1> 9] [A]
FOp o [~O(p- q) D ~Oq] [From (1) by R2,R3,R5]
FOp D [~O~~(p-~q) D~ ~¢q]  [From (2) by R2,R3,R5]
FOp o [O(p D q) D04 [From (3) by R2,R5]
FO(p 2 ¢) o (Op 20q) [From (4) by R2,R3,R4]

Theorem. If a is a tautology of the classical propositional calculus,

then Fla

Proof. (1) a is a tautology of the classical propositional calculus.

(2)
(3)
(4)
(5)

[Hypothesis ]
(a-p) = p (p is not contained in ) [From (1) by R2]
FOp D Op [By R2,R3]
FOp D O(a- p) (p is not contained in @) [From (2), (3) by R5]
FOa [From (4) by R1]

The above theorems show that L contains the following system.

A. 0> 9) > (@p 20O9).
R1. If ais a tautology of the classical propositional calculus, then —Ua.
R2,R3,R4,R5. (the same as those of L)

If we call this system L', we can prove that L' contains L. The
following theorems hold in L'.

Theorem. FOp D [Og D> O(p-q)]

Proof. (1)
(2)
(3)
(4)
(5)

FO(p 2 q) > (Op >0O9) [A]
FOp o [O(p o ¢) DO4q] [From (1) by R2,R3,R4]
—Op 2 [~Og > ~0(p D 4)] [From (2) by R2,R3,R5]
FOp D [~ O~g>~0O~~(p>~q)] [From (3) by R2,R3,R5]
FOp 2 [0g 2 O(p-q)] [From (4) by R2,R5]

Theorem. If ~Op D O(a- p) where p is not contained in a, then —0Oa.

Proof. (1) FOp O O(a-p)(p is not contained in @) [Hypothesis |

(2)

F~O(a-p) D ~Op(pis not contained in @)
[From (1) by R2,R3,R5]

(3) F~O~~(a-~p) D ~O ~p(pis not contained in @)

[From (2) by R2,R3,R5]
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(4) FO(a > p) > Op(p is not contained in @)
[From (3) by R2,R3,R5]

(5) FO(a > a) D0« [From (4) by R3]
(6) FO(a D a) [By R1,R3]
(7 FOa [From (5), (6) by R4]

3. We call Ljthe system obtained from L' with the restriction that if
UOa is a formula of L, then @ does not contain [J. We shall discuss the
completeness of L, in the following.

We write a, 8,7y, ... for the formulas of L, which do not contain (1.
We write a', 8',y"', . . . for formulas of Lo. (a', B', ... are composed of
propositional variables and Oe, OB, . .. with ~, ., v, D.) Let y be an

arbitary formula not containing [J. We call a ‘‘-valuation’’ a manner of
truth value assignments to all the respective formulas which satisfies the
following condition:

true, if y D a is a tautology;

Oa =
truth value of {false, otherwise,

where @ is an arbitrary formula not containing [, and y is called ‘‘axiom’’.
(Truth value of Ja depends only ony, @ and is independent of y-valuation.)
For a formula o', the following definition is given.

a' is a y-tautology, if and only if, for a fixed y, a' is true for all
y-valuation. (@, which does not contain [J, is a y-tautology if and only if «
is a tautology.)

We now state the following theorems.
Theorem 1. If a' is provable in Ly, then a' is ay-tautology for ally.
Theorem 2. If @' is ay-tautology for ally, then @' is provable in L.

4. Let us mention the following lemmas for the sake of the proof of the
above theorems.

Lemma 1. o'.p' is y-tautology, if and only if @', ' are y-tautologies.
The proof is evident.
Lemma 2. If 6 does not contain (1 and
(1) ~dayv~0a,v. .. v~0a,vOBR,vOByv . .. vB,vd
is ay-tautology, then
(I ~Oaywv~00v ... v~ OanvOBivOBRev . . . vBa
is a y-tautology ov b is a tautology.

Proof. If 6 is not a tautology, then there exist a y-valuation by which &
is false. For such a vy-valuation, (II) is true. Therefore, (II) is a
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y-tautology, because truth value of (II) depends only on a,, @, . . ., @, B,
B2, . . ., B, ¥ and is independent of y-valuation, Q.E.D.
Lemma 3.

(M) ~Oayv~Oayv. .. .v~0OapvOByvOByv. .. vOBris ay-tautology
forallvy,
if and only if,

(1) (ay: Q- . .. %) D B;is a tautology for some i (1=i = ).
Proof. When (II) is a y-tautology for all y, let us take @;- @+ . .. - 0n
as axiom y. (if m = 0 then it means a tautology). Then since
Oa,, Oay, ..., Ooan
are true,

OB, vOBav ... vOBy

is true. Therefore for some i(1 £ ¢ = ») 0B; is true, that is, (III) is a
tautology.
If (II) is not a y-tautology for some v, (II) is false for some y, say for

v1. Then for y,0a;(s = 1, ..., m) is true for all ¢ and for v, OB;(i =
1,...,n) is false for all i. Therefore for all ¢y, D @; is a tautology.
Accordingly v1 D (@, @, . . . - @) is a tautology. On the other hand, for all

iy1D B; is not a tautology. Therefore, for all ¢ (III) is not a tautology.
Thus, if (II) is not a y-tautology for some v, then (III) is not a tautology for
all 7. Consequently if (III) is a tautology for some 7, then (II) is a
y-tautology for all y. Q.E.D.

5. Proof of Theorem 1. As to the axiom

A. O(pDq) D (Op>0g)

the following holds. If y D (p D ¢) and y D p are both tautologies, then y D ¢
is a tautology. Therefore A is a y-tautology for all y. As to R1, the
following holds. If a is a tautology, theny D @ is a tautology. Therefore, if
a is a tautology, then U@ is a y-tautology. As to R3, the following holds.
An arbitrary formula @' is reduced to the conjunction of the formulas of the
following form.

(1) ~Oayv~0Oa,v .. .v~UOa,vOByvOBav. . . v TBuvd

where 6 does not contain [.

In case § in (I) is a tautology, even if any formula is substituted for a
propositional variable in (I), then (I) remains a y-tautology for all y.
From Lemma 1 and Lemma 2, therefore, for the proof as to R3, it is
sufficient to consider

(II) NDalvN ‘—_—\agv Y "'DamVDB;[V D,Bg V...V DBn
as a'. If (I) is a y-tautology for all v, then, from Lemma 3, for some
(Im) (ay-az- ... -ay)DB; (12izn)

is a tautology. Even if any formula, which does not contain [J, is substituted
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for a propositional variable contained in (III), then (III) remains a
tautology. From Lemma 3, therefore, (II) remains a y-tautology for all
v, even if any formula, which does not contain [, is substituted for a
propositional variable contained in (II). Further as to the other rules
similar results hold evidently. Q.E.D.

6. Proof of Theorem 2. An arbitrary formula o' is reduced to the
conjunction of the formulas of the form.

1) ~Oayv~0azy .. .v~0ey OfivOBsy . . . v [Bnvd

where 6 does not contain [J. If & in (I) is a tautology, then (I) is provable in
Lo. From Lemma 1 and Lemma 2, therefore, for the proof of Theorem 2,
it is sufficient to consider

() ~0Oayv~Dav ... v~OapvOB,vOBv . .. v OBa
as a'. If (I) is a y-tautology, from Lemma 3, for some ¢
(- ... ap)DBRi(15isn)
is a tautology. Accordingly
a;2(0>(..(@m>DB)...))
is a tautology too. Therefore
Ooy 2 (0, 2 (... (Oax 206:) . .. )
that is
~0Oaq;v~Oayv .. .v~Ua,vOg;

is provable in Lo, and so (II) is provable in L.
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